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Sprays produced by pressure atomization of various liquids are investigated experi-
mentally, showing the self-similar flow fields of both the liquid and the gas phases.
Phase-Doppler measurements are conducted in the sprays at varying radial and
axial distances from the atomizer orifice. The theoretical description of the gas flow
field based on boundary-layer theory reveals a self-similar velocity field driven by
momentum transfer from the liquid phase ejected into the gaseous environment. The
momentum loss of the liquid droplet phase is also found to be self-similar, which
was to be expected, but not shown in the literature before. The analytical self-similar
description of the two-phase flow field is in excellent agreement with the experimental
data.

Key words: aerosols/atomization, multiphase flow, drops

1. Introduction
Sprays occur in many natural phenomena, such as sea sprays and rainfall, and also

in many industrial processes and in products and applications of everyday life. Since
sprays produced for the purpose of a process require the controlled atomization of
a bulk liquid in a gaseous environment, strong scientific effort has been put into
the investigation of atomization and sprays for a long time. Applications like spray
combustion, spray drying and coating, agricultural crop spraying and medical sprays
have been, and still are, extensively studied (Lefebvre & McDonell 2017). Recent
developments in nanotechnology enable the utilization of engineered nanoparticles in
consumer spray products, like waterproofing sprays and body-care products such as
hair sprays and deodorants, to enhance the desired effects (Kessler 2011). Little is
known, however, about the potential for inhalation exposure and consequent health
risks of such nanoparticle-laden sprays (Quadros & Marr 2010, 2011). Aiming at
the assessment of health risks due to nanoparticulate contents of the sprayed liquids,
the present study aims to experimentally investigate and model the flow field of
pressure-atomized consumer-type sprays to gain insights into the droplet transport
through the atmospheric air.

Self-similarity is a phenomenon well known in many flows and transport processes
without imprinted length or time scales (Brenn 2017). A well-known example is
the self-similar solution for the flow field of a single-phase submerged round jet
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by Schlichting (1933), confirmed well by experiments (Wygnanski & Fiedler 1969;
Hussein, Capp & George 1994). Self-similar phenomena in sprays are also known
from the literature. For example, Li & Shen (1999) and Ariyapadi, Balachandar &
Berruti (2003) showed self-similar mean axial drop velocity profiles in air-assisted
atomization. Alternatively, the spray was modelled as a self-similar single-phase
jet with variable density, resulting in similar scaling variables as obtained for the
single-phase case (Shearer, Tamura & Faeth 1979; Faeth 1983; Panchagnula & Sojka
1999). Wu et al. (1984) investigated Diesel-type sprays and reported self-similar axial
velocity profiles far downstream from the nozzle exit, where the drops and gas phase
are assumed to be in dynamic equilibrium. Soltani et al. (2005) found self-similar
regions of normalized mean drop velocities and normalized Sauter-mean diameters in
sprays from liquid–liquid coaxial swirl atomizers.

In spray flames, Karpetis & Gomez (1999) showed self-similarity of the evaporation
source term. Russo & Gomez (2006) showed self-similar axial velocity profiles
in buoyancy-dominated laminar spray flames. Kourmatzis, Pham & Masri (2015)
reported self-similar axial velocity profiles for the two different drop size classes
0< d< 10 µm and 40< d< 50 µm in non-reacting sprays and turbulent spray flames
in the vicinity of the nozzle exit (approximately one to ten times the nozzle diameter
downstream from the orifice). Additionally, they indicate self-similar turbulence
intensities deduced from the motion of the smallest drops (0< d< 10 µm).

Based on self-similar assumptions for several characteristics of the flow field,
Cossali (2001) developed a one-dimensional model to predict the rate of gas
entrainment into non-evaporating full-cone sprays. A recent experimental study by
Dhivyaraja et al. (2019) showed dynamic similarity of the mean drop velocities,
the Sauter-mean diameters, the liquid volume fluxes and the probability density
functions (PDFs) of the drop diameter in a certain cross-section (19 nozzle diameters
downstream from the nozzle orifice) between sprays generated by pressure-swirl
atomizers at a wide range of different flow conditions. For the theoretical description,
the authors used the similarity coordinate of the single-phase jet (Schlichting 1933)
and modified it by introducing a constant geometrical parameter of the spray.

In many of the above discussed studies, the liquid and gas were injected
simultaneously, resulting in negligible slip between the two phases. Thus, the
cross-sectional averages of liquid and gas momentum flow rates remain approximately
constant, endorsing self-similarity as observed for the single-phase jet (George 1989).
In the present work we focus on the flow fields of sprays from single-fluid pressure
atomization, where the motion of the gas phase is induced by momentum transfer
from the liquid phase exclusively. Thus, the rate of liquid momentum transport through
every spray cross-section decreases with increasing distance from the atomizer orifice,
while the gas phase gains momentum.

As an atomizer type relevant for the present study, pressure atomizers with off-
axis liquid supply, as in use with consumer-type spray cans, are studied. Sprays are
produced at mass flow rates of the order of magnitude of many consumer sprays.
Three sprays of two different liquids at different flow conditions are examined. The
size and two velocity components of the drops in the spray flows are measured by
phase-Doppler anemometry (PDA) in cross-sections at different distances from the
atomizer orifice. In these regions of the sprays, the flow field exhibits momentum
transfer from the liquid to the gas phase.

The paper is organized as follows: an overview of the experimental methods and
materials used is given in § 2. The experimental results are presented in § 3. In § 4, a
self-similar description of the two-phase flow velocity field is derived from boundary-
layer theory, accounting for momentum transfer between the liquid and the gas phases.
The paper ends with the conclusions.
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FIGURE 1. (a) Experimental set-up and (b) PDA optics with a spray cross-section.

PDA parameters Spray 1 Spray 2 Spray 3

Scattering angle ϕ 50◦ 50◦ 50◦
Beam half angle 1.386◦ 1.386◦ 1.386◦

Phase factor P12 2.231◦ µm−1 2.373◦ µm−1 2.367◦ µm−1

Phase factor P13 0.870◦ µm−1 1.028◦ µm−1 1.026◦ µm−1

Measuring range d up to 298 µm up to 251 µm up to 251 µm
Measuring range ul −63.8 to 63.8 m s−1

Measuring range vl −20.2 to 20.2 m s−1

TABLE 1. Geometrical parameters and measuring ranges of the PDA system.

2. Experimental methods and materials
The aim of this study is to explore possible self-similar properties of pressure-

atomized sprays. The experimental set-up is depicted in figure 1(a). The spray nozzle
is mounted on a two-axis traverse system allowing for radial and axial navigation in
the spray. As the measuring technique, PDA is used. A continuous-wave argon-ion
laser (Coherent Innova 90C-3) serves as the light source for a two-component
DANTEC PDA system. The transmitting optics focus two pairs of laser beams with
the wavelengths 488 nm and 514.5 nm in coinciding probe volumes (see figure 1b).
The axial and radial velocity components ul and vl, as well as the diameter d of drops
passing the probe volume are measured. Table 1 lists the geometrical parameters of the
PDA system and the measuring ranges of the drop properties measured in the sprays.
As indicated in figure 1(b), we assume the sprays to be axially symmetric. Thus, in
each cross-section, the measurement points are placed on one single radial axis. We
cover one half of this radial axis at a high spatial resolution, whereas we place only
few measurement points on the other half of the axis to verify the assumption of
axisymmetry. In order to ensure statistical reliability of the spectral spray properties,
even in parts of the probability density functions where sample numbers are low, the
properties of 100 000 drops were measured at each sampling point. The edge of the
spray was defined at the radial positions where the frequency of drop detection was
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Liquid

(a) (b)

FIGURE 2. (a) Photograph of a meridional section of the atomizer and (b) the
corresponding schematic sketch of the liquid flow through the atomizer.

5 % of the maximum drop detection rate in the current cross-section, or less than
300 Hz. In the PDA measurements, typical validation rates for the drop diameter
between 60 % and 85 % were achieved. At measurement positions close to the nozzle
exit, validation rates of 50 % occurred, since in dense spray regions the single-particle
constraint of PDA is violated at a higher probability than in more dilute regions.

The sprays are produced by a single-phase pressure atomizer with off-axis liquid
supply, as in use with consumer spray cans, with an orifice diameter of approximately
Dor=0.4 mm. Figure 2(a) shows a photograph of a meridional section of the atomizer,
and figure 2(b) sketches the flow path of the liquid through the atomizer. Due to
the off-axis feed, the liquid is ejected with angular momentum, resulting in a spray
angle larger than for plain-orifice atomizers. The azimuthal component of the liquid
sheet velocity induced by the off-axis feed, however, is much smaller than the axial
component. Structures visualized on high-speed movies of the sheet motion showed
radial motion downstream. Previous studies in the literature have shown that, even
for pressure-swirl atomizers with a strong azimuthal liquid feed velocity, the swirling
flow inside the atomizer is converted into radial motion within small downstream
distances from the nozzle exit (Schmidt et al. 1999). The corresponding azimuthal
velocity component of the resulting drops is negligible against their axial and radial
velocity components (Dafsari, Vashahi & Lee 2017; Jedelsky et al. 2018). The test
liquid is supplied to the atomizer from a pressurized tank at over-pressures up to 6
bar. The tank volume allows for operation times long enough for the present study,
which requires the measurement of large data samples.

The process of single-phase liquid atomization, with a given internal atomizer
geometry and in a given gaseous environment, is governed by a characteristic liquid
velocity ūor through the atomizer orifice, by a length scale Dor of the atomizer
orifice, as well as the liquid dynamic viscosity, density and surface tension against
the environment, µl, ρl and σ , respectively. These five relevant parameters, with three
basic dimensions involved, are represented by two non-dimensional groups, which
may be identified as

We=
ρlDorū2

or

σ
and Oh=

µl
√
ρl σDor

, (2.1a,b)

where the mean axial bulk velocity at the nozzle exit ūor follows from the liquid
volume flow rate and the cross-section of the orifice. The two non-dimensional
numbers characterize the atomization process and result. Their values are used for
setting the properties of the spraying processes in the experiments. In the present
work, three sprays with different pairs of values of the Weber and Ohnesorge numbers
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(a) (b) (c)

FIGURE 3. Instantaneous photographs of (a) spray 1, (b) spray 2 and (c) spray 3. The
images were acquired with a high-speed camera at a frame rate of 10 000 frames per
second, with an exposure time of 307 000−1 s per frame. The white bar corresponds to a
length of 5 mm.

Spray 1 Spray 2 Spray 3

Liquid mass flow rate ṁl (g s−1) 2.00 2.92 2.45
Density ρl (kg m−3) 998.2 998.2 981.7
Dynamic viscosity µl (mPa s) 1.00 1.00 1.40
Surface tension against air σ (mN m−1) 72.8 72.8 51.3
Weber number We 1394 2972 3019
Ohnesorge number Oh 0.0059 0.0059 0.0099
Location of measurement planes z/Dor 38–375 38–450 38–625

TABLE 2. Parameters of the experiments performed. The fluid properties are taken
from Khattab et al. (2012) at a temperature of 20 ◦C.

are investigated. The experimental parameters, the liquid properties and the values of
the resulting We and Oh numbers are listed in table 2. For sprays 1 and 2, water is
used as the test liquid at different throughputs, resulting in equal Ohnesorge numbers,
but different Weber numbers. For spray 3, an aqueous ethanol solution with an
ethanol content of 10 mass per cent is used. The Ohnesorge number of spray 3
exceeds that of the two other sprays, while the mass flow rate of spray 3 is adjusted
such that the Weber number is equal to the value of spray 2. The liquid throughputs
are of an order of magnitude relevant for consumer sprays. All experiments were
carried out at temperatures of 20± 1 ◦C. The spray properties are measured in 10 to
13 cross-sections downstream of the nozzle orifice.

3. Experimental results
In this section, the properties of the liquid- and the gas-phase flow fields in the

sprays measured with the PDA system are presented and discussed. At the beginning,
we give an overview on the atomization process of the sprays investigated.

3.1. Liquid sheet breakup and drop formation
Sprays formed by means of a pre-filming pressure atomizer are studied. Figure 3
depicts instantaneous photographs of the three sprays, illustrating the atomization
process. The drop phase is formed as a result of the instability and breakup of the
liquid sheet formed at the exit of the atomizer. The sheet is annular and, due to the
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motion relative to the ambient air, it is subject to the Kelvin–Helmholtz instability.
Forces deforming and destabilizing the sheet are due to pressure and viscous stresses
at the liquid–gas interface. Unstable disturbances of the sheet lead to deformations
growing in time and space. Nonlinear deformations of the liquid sheet cause its
local thinning and breakup into portions contracting to ligaments. The ligaments
themselves are Rayleigh–Taylor and capillary unstable. They finally break up into
the spray drops. Secondary breakup of the drops due to aerodynamic forces is not
important in sprays like the present ones. In its motion downstream, the spray exhibits
axial and radial velocity components. The spray cross-section increases and the spatial
drop concentration decreases with increasing distance from the atomizer orifice. The
result of the spray formation is a mixture of liquid droplets with air moving in
an equilibrium state. The subject of the present study is the self-similar process of
formation of that state of the spray.

3.2. Liquid-phase flow field
The PDA measurement results for the liquid-phase flow field, i.e. for the droplet
phase of the sprays, are presented in figure 4. As the primary results, phase-Doppler
anemometry provides two velocity components and the size of the liquid droplets in
the sprays. On figure 4(a,c,e), the number-mean drop diameter D10, and on (b,d,f ),
the number-mean axial drop velocity ūl, are depicted for sprays 1 through 3 from top
to bottom. The mean drop diameter D10 is smallest at the spray axis and increases
radially outwards for all the sprays. This profile shape is due to the entrainment
of air into the sprays from the environment, which transports preferentially the
smallest droplets towards the spray axis, thus leading to small mean drop sizes. With
increasing distance from the atomizer orifice, the mean drop diameter increases along
the spray axis, and the mean drop size profiles widen together with the spray flow
field. The trend of the mean drop size to increase near the spray axis is due to the
decrease of the number flux of the small drops, which is more pronounced for the
small than for the larger drops.

The number-mean axial drop velocity profiles exhibit significant differences between
the three sprays. For spray 1, with the lowest liquid mass flow rate (see table 2), a
bell-shaped profile with a maximum at the spray axis can be seen very close to the
nozzle exit. At the larger liquid mass flow rate of spray 2, a local velocity minimum
at the spray axis and a local velocity maximum at a certain radial distance from the
spray axis can be observed in the profile closest to the nozzle orifice. The difference
in the near-nozzle drop velocity profiles can be explained by the state of flow and
the inner geometry of the atomizer. Due to the inner geometry of the nozzle, angular
momentum is imposed on the liquid flow, leading to the formation of a hollow
cone-shaped liquid sheet at sufficient liquid mass flow rates. The off-axis peak in the
velocity profile indicates the location of the sheet. At lower liquid mass flow rates,
the angular momentum is insufficient for opening the conical sheet, leaving it rather
in what is called the ‘tulip stage’ (Lefebvre & McDonell 2017), with high velocities
occurring around the spray symmetry axis. This explanation is endorsed by the
obtained radial profiles of the liquid mass and momentum fluxes (not shown), which
exhibit most of the liquid mass and momentum concentrated around the spray axis for
spray 1, whereas for spray 2, local maxima of the liquid mass and momentum fluxes
are found at the positions where the velocity profile shows its maximum. Moreover,
in the obtained drop size spectra (not shown), spray 1 shows coarser atomization
than spray 2, which agrees with the findings for the liquid sheet geometry, suggesting
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FIGURE 4. Experimentally obtained spray characteristics. (a,c,e): number-mean drop
diameter D10. (b,d,f ): number-mean axial drop velocity ūl. From top to bottom, the results
of sprays 1, 2 and 3 are shown.

finer atomization for the fully open hollow cone than for the tulip-stage sheet. With
increasing distance from the nozzle, the shapes of the velocity profiles of all three
sprays evolve into one with a peak on the symmetry axis of the sprays and an
additional off-axis peak. The latter is induced by the inertia-driven radial motion of
large droplets. In turn, the shape of the velocity profile in the core region is mainly
determined by the motion of small droplets, explaining the observed maximum at the
spray axis. The profile of the number-mean axial drop velocity of spray 3 closest to
the nozzle orifice is bell shaped, similar to spray 1, although the profiles of liquid
mass and momentum fluxes of spray 3 (not shown) also suggest the formation of a
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FIGURE 5. (a) Drop diameter–velocity correlation and (b) size class-average drop velocity
as a function of the drop size at z= 25 mm and r= 7 mm for spray 2.

hollow cone-shaped liquid sheet, as in spray 2. Thus, we conclude that the velocity
profile closest to the nozzle exit of spray 3 represents an intermediate state, where
the central and the off-axis peaks are merged into a single maximum.

3.3. Gas-phase flow field
In determining the velocity of a gas flow field in a spray flow from PDA measurements
it is assumed that the smallest droplets in the spray have relaxation time scales, and
therefore Stokes numbers, small enough to represent the gas flow. Thus, these small
droplets act as nearly massless tracer particles in the gas flow field. The threshold
droplet size to be set to ensure proper representation of the gas flow field by the
droplet velocities depends on the turbulent details of the flow field, as well as on the
droplet liquid density and the ambient gas dynamic viscosity. Experiments in the flow
field at hand must be carried out in order to determine the threshold droplet size.

In figure 5(a), a scatter plot of the diameter–velocity correlation (total drop velocity
wl =

√
u2

l + v
2
l ) of droplets measured at a certain measurement location (z= 25 mm,

r = 7 mm) in spray 2 is shown. The trend that the drop velocity increases with the
drop size is characteristic of sprays injected into a stagnant ambient gaseous medium.
In deviation from this trend, however, for the smallest droplets (approximately d <
20 µm) a secondary cloud of data points at unexpectedly high velocities is found.
Discretizing the drop size axis into size classes and determining the number-mean
drop velocities w̄l in each size class d, together with the variance of the velocity,
yields the data in figure 5(b). According to the physical expectation, the mean velocity
of the small drops indeed increases with the drop diameter. For droplets below a
threshold size of, here, approximately 15 µm, however, the trend is opposite. Since
we expect the smallest droplets to decelerate fastest to the velocity of the ambient gas
phase, this is an unexpected finding which requires further investigation. This effect,
which we call the ‘teaspoon effect’, was reported by other authors already, but not
explained (Li et al. 1991; Li & Tankin 1992). We are sure that this is not an artefact
of the PDA measurements.

Figure 6 provides a spectral view of this phenomenon. It shows the probability
density function of the drop velocity wl for all drops with d< 15 µm. The data set is
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FIGURE 6. Bimodal velocity spectrum observed for small droplets in spray 2 at z =
25 mm and r= 7 mm.

the same as in figure 5. The PDF exhibits two peaks, one at a relatively low velocity
wl ≈ 6 m s−1 and a second one at a larger velocity of wl ≈ 25 m s−1. The two modes
of the PDF indicate that two different physical mechanisms influence the velocity
spectrum of these droplets. We attribute the first peak, at the lower drop velocity, to
the mean velocity of the ambient gas flow field. It represents the drops which follow
the gas flow tightly due to drag. For the second peak at the higher drop velocity, no
satisfactory explanation was found yet. A detailed analysis of the PDA data revealed
that these drops are systematically detected after the passage of drops approximately
one order of magnitude larger in size and moving at high velocities. This may indicate
a grouping effect, keeping the velocities of small drops high due to the wake of larger
drops.

To determine correctly the gas velocity from bimodal velocity distributions such as
the present ones, it must be ensured that the, in this sense, unphysically high droplet
velocities are excluded from the data analysis. For this purpose, a threshold velocity
must be determined, below which the velocities of the small droplets represent the gas
velocity. For this purpose, a bimodal skewed probability density function of the form

Φ(x)= qφ1(x)+ (1− q)φ2(x) with

φi(x)=
2

ωi

√
2π

exp
(
−
(x− ξi)

2

2ω2
i

) ∫ α̂i(x−ξi)/ωi

−∞

exp
(
−τ 2

2

)
dτ

 (3.1)

is fitted to the experimental data. Here, the weighting factor q may take values
between 0 and 1, ξi represents an arithmetic mean, ω2

i corresponds to a variance
and α̂i defines the skewness of the distribution. As an example, figure 6 shows
that the obtained fit curve (solid line) and the experimental data are in excellent
agreement. The local minimum between the two peaks of the PDF, marked by the
dashed vertical line, is defined as the threshold velocity. Thus, only drops with
d < 15 µm and velocities smaller than the threshold velocity are taken into account
for the calculation of the mean gas velocity. Using smaller drop size ranges, for
example d< 10 µm, did not change the gas velocities obtained significantly. We also
point out that the bimodal velocity distributions do not occur at every measurement
position in the spray. Far downstream from the atomizer, only unimodal distributions
were observed, supporting the wake-based explanation of this phenomenon, since the
spatial drop concentration decreases with increasing distance from the nozzle, thus
reducing the interaction of drop motions in the spray.
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FIGURE 7. Axial velocity profiles in the gas flow of the sprays deduced from the mean
velocities of small droplets. (a) Spray 1, (b) spray 2.
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FIGURE 8. Self-similar flow field of an axisymmetric single-phase submerged jet.

Figure 7 shows the axial gas velocity profiles for sprays 1 and 2 deduced from the
PDA measurement data using the above described method. In all cases, bell-shaped
profiles are obtained. The maximum values of the velocity on the spray symmetry axis
decrease with increasing distance from the atomizer. Furthermore, the rise of the local
mean gas velocity at a given radial distance from the symmetry axis with increasing
distance from the atomizer represents the radial expansion of the spray as it propagates
in the ambient air.

4. Self-similar two-phase flow
In the present section, a self-similar description of the gas- and liquid-phase

flow fields of pressure-atomized sprays is derived. This development constitutes a
generalization of the well-known description by Schlichting (1933) for single-phase
submerged free jets. The self-similar flow field of an axisymmetric single-phase
jet is schematically depicted in figure 8. Its origin is a point source of mass and
momentum. The axial location z0 of this virtual origin does not necessarily coincide
with the nozzle exit (z= 0 mm). Constant values of the self-similar coordinate η are
represented by straight lines in the (r, z) space. Along these lines, the normalized gas
velocities u(r, z)/u0(z) are constant.

4.1. Equations of motion
The flow field of the gas phase in the sprays is of turbulent boundary-layer type.
Boundary-layer flows in a stagnant environment have constant pressure throughout.
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For the description of the turbulent shear stress in the momentum balance, the
Boussinesq eddy-viscosity concept is applied. Since the turbulent eddy viscosity νt is
much greater than the molecular kinematic gas viscosity ν, the viscous contributions to
the extra stresses are neglected against the turbulent ones. The resulting axisymmetric
boundary-layer equations in cylindrical coordinates for the gas phase read

∂u
∂z
+

1
r
∂(vr)
∂r
= 0 continuity gas, (4.1)

u
∂u
∂z
+ v

∂u
∂r
= νt

1
r
∂

∂r

(
r
∂u
∂r

)
+ fd z - momentum gas. (4.2)

The radial momentum balance reduces to the estimate that the dependency of pressure
on the radial coordinate in the boundary-layer flow is weak. The turbulent eddy
viscosity νt is assumed to be of approximately constant value in the present case,
as known from the self-similar description of turbulent single-phase jets (Tennekes
& Lumley 1972; Peters 1997). On the right-hand side of the z-momentum equation
(4.2), the momentum source fd represents the transfer of momentum from the liquid
to the gas phase due to the liquid injection into the gas. Heat and mass transfer
between the two phases is not considered in our present analysis, i.e. the sprays are
treated as non-evaporating.

The equations of motion for the liquid phase represent the constant liquid mass
and the loss of momentum due to the interaction with the gas phase. For describing
this process, the drops are grouped into N size classes. The liquid volume flux is
determined from the PDA data as the drop volume in each size class moving in the
measuring time through the Saffman-corrected probe-volume area, with account for the
validation rate taken as constant for all the size classes. Denoting the liquid volume
flux components of the ith drop size class in the axial and radial directions as φz,i and
φr,i, respectively, the continuity and z-momentum equations of the liquid phase read

∂

∂z

(
ρl

N∑
i=1

φz,i

)
+

1
r
∂

∂r

(
rρl

N∑
i=1

φr,i

)
= 0 continuity liquid (4.3)

∂

∂z

(
ρl

N∑
i=1

ūl,iφz,i

)
+

1
r
∂

∂r

(
rρl

N∑
i=1

ūl,iφr,i

)
=−ρfd z - momentum liquid. (4.4)

The liquid-phase continuity equation, stating that the drop mass flux is divergence free,
does not account for drop coalescence and evaporation. In the z-momentum balance
of the liquid phase, the velocity ūl,i is the number-mean axial velocity component of
the drops in size class i. Thus, the terms on the left-hand side of (4.4) represent the
total axial change of momentum carried by the axial and radial liquid mass fluxes,

ρlφz = ρl

N∑
i=1

φz,i and ρlφr = ρl

N∑
i=1

φr,i, (4.5a,b)

respectively, which is balanced by a force term on the right-hand side. Neglecting
gravitation, the shown term represents the net force acting between the gas phase
and the total liquid volume content, so that liquid–liquid momentum transfer due to
drop collisions, breakup or coalescence need not be considered. As indicated by the
negative sign, it appears as a sink term and dynamically couples the liquid to the
gas-phase momentum balance (4.2).
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4.2. Self-similar transformation
It is the aim of the present study to show self-similar behaviour of both the
gas and the liquid phases in pressure-atomized sprays. For this purpose, the
z-momentum equation (4.2) of the gas phase is transformed into self-similar
coordinates, representing velocity components as derivatives of the Stokesian
streamfunction Ψ , so that the continuity equation (4.1) is satisfied automatically.
The streamfunction is defined through the axial and radial velocity components as

u=
1
r
∂Ψ

∂r
and v =−

1
r
∂Ψ

∂z
. (4.6a,b)

In terms of the streamfunction, the z-momentum equation of the gas phase reads

1
r
∂Ψ

∂r
1
r
∂2Ψ

∂r∂z
−

1
r
∂Ψ

∂z
∂

∂r

(
1
r
∂Ψ

∂r

)
= νt

1
r
∂

∂r

[
r
∂

∂r

(
1
r
∂Ψ

∂r

)]
+ fd. (4.7)

The self-similar coordinate η and the streamfunction Ψ are assumed to take the
forms

η= r g(z), Ψ = h(z) f (η), (4.8a,b)

where g(z) is a scaling and h(z) a mapping function. The function f (η) represents the
self-similar shape function. Introducing (4.8) into (4.7) yields(

h′

νt
+

2
νt

g′

g
h
)

f ′ 2 −
h′

νt
ηf
(

f ′

η

)
= η

[
η

(
f ′

η

)′]′
+

1
νtg4h

η2fd, (4.9)

where the prime denotes the derivative with respect to the coordinate η for f (η) and
with respect to the coordinate z for g(z) and h(z). The functions g(z) and h(z), as well
as the source term fd, must allow (4.9) to become an ordinary differential equation for
f (η). This results in the requirements that

h′

νt
= constant=: Ã, (4.10)

h′

νt
+

2
νt

g′

g
h= constant=: C̃, (4.11)

so that the functions h(z) and g(z) read

h(z)= Ãνtz+ B̃, (4.12)

g(z)= D̃
(

Ãνtz+ B̃
)(C̃−Ã)/2Ã

= D̃h(z)(C̃−Ã)/2Ã (4.13)

with the four constants Ã, B̃, C̃ and D̃. For the source term of (4.9) to be independent
of the z coordinate, we require it to be of the form

fd = νtÃg4hΩ(η), (4.14)

where Ω(η) is a yet unknown self-similar shape function.
Introducing the constants

α :=−
C̃− Ã

2Ã
, z0 :=−

B̃

Ãνt

, C := Ãνt, D := D̃(Ãνt)
(C̃−Ã)/2Ã, (4.15a−d)
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the ansatz for self-similarity (4.8) and for the momentum source term (4.14) become

η=D
r

(z− z0)α
, Ψ =C(z− z0)f (η), fd =C2D4(z− z0)

1−4αΩ(η), (4.16a−c)

where z0 marks the virtual origin of the self-similar flow field, α is an exponent and
C and D are constants required for dimensional reasons. The self-similar transform of
the z-momentum equation (4.9) reads

(1− 2α)f ′ 2 − ηf
(

f ′

η

)′
=
νt

C
η

[
η

(
f ′

η

)′]′
+ η2Ω(η). (4.17)

Note that, for α= 1 and Ω(η)= 0, this equation reduces to the self-similar momentum
equation of the submerged single-phase round jet (Brenn 2017). The axial and radial
velocity components (4.6) turn into

u=CD2(z− z0)
1−2α f ′

η
and v =CD(z− z0)

−α

(
αf ′ −

f
η

)
. (4.18a,b)

The solution of (4.17) is subject to three boundary conditions for the gas flow field.
The first two read

u|η→0 = finite ⇒ f ′(0)= 0, (4.19)
v|η→0 = 0 ⇒ f (0)= 0, (4.20)

where we made use of the formulation of the velocity components with the self-similar
function f (η) in (4.18). The third boundary condition f ′′(0) cannot be determined from
general considerations on the velocity components of the flow field. Indeed, for single-
phase submerged free jets, the solution of Schlichting (1933) shows that f ′′(0) depends
on global parameters of the flow field, such as the global momentum flow rate and
the fluid properties. We expect a similar relation in the present case. In order to solve
equation (4.17) for f (η), the quantities z0, α, νt, C, D and Ω(η) must be determined.

4.3. Determination of the virtual origin z0 and the exponent α
The virtual origin z0 and the exponent α, and additional information relating to the
self-similar solution, are determined from the self-similar representation (4.16) by
linking the self-similar transformed flow quantities to the experimental data. For this
purpose, the experimentally measured gas velocity on the symmetry axis of the spray
u0(z), where r= 0, i.e. η= 0, is represented by the formulation in (4.18), which reads

u0(z)=CD2f ′′(0)︸ ︷︷ ︸
=:Uexp

(z− z0)
1−2α. (4.21)

Second, as required by self-similarity, the normalized gas velocities u/u0 have to
satisfy

u
u0
= constant for η=D

r
(z− z0)α

= constant. (4.22)

The quantities z0, α, Uexp and the ratios η/D associated with the normalized axial gas
velocities are determined by a data fit such that both conditions (4.21) and (4.22) are
satisfied.
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FIGURE 9. Experimental and fitted axial gas velocity profiles at z= 35 mm for the three
sprays.

Further to the constraints (4.21) and (4.22), the self-similar solution must meet the
axial dependency of the momentum flow rate I(z) of the gas phase deduced from the
experiments. In general, and in self-similar coordinates, the rate of axial momentum
transport through a plane z= constant is defined by

I(z)= 2πρ

∫
∞

r=0
u2r dr= 2πρC2D2

∫
∞

η=0

f ′ 2

η
dη︸ ︷︷ ︸

=:Mexp

(z− z0)
2−2α . (4.23)

In contrast to the single-phase jet, the momentum transport rate of the gas phase is
not constant, but it increases with the z coordinate due to momentum transfer from
the liquid to the gas phase. To determine the experimental momentum transport rate of
the gas phase, we require an analytical expression of the axial gas velocity u obtained
experimentally at discrete positions ri (see figure 7). For this purpose, the measured
axial gas velocity profiles of each cross-section are fitted with a bell-shaped function
of the form

u(r, z)=
A1(z)(

1+ A2(z) r2
)2 , (4.24)

with the two independent parameters A1(z) and A2(z). The obtained velocity profiles
(4.24) are in excellent agreement with the experimental data, as exemplarily depicted
in figure 9. With these profiles, the evolution of I(z) is calculated from the
experiments, and the parameter Mexp is determined by curve fitting.

The two parameters Uexp and Mexp in (4.21) and (4.23) relate to the self-similar
function f (η) as per

Uexp =CD2f ′′(0) and Mexp = 2πρC2D2
∫
∞

η=0

f ′ 2

η
dη. (4.25a,b)

They represent equations for determining the model constants C and D. In order to
determine their values, the self-similar shape function f (η) is required.

In table 3, the values of z0 and α, and of the quantities Uexp and Mexp, determined
from the experiments, are listed. Notably, the exponent α is close to a value of 2/3
for all the three sprays investigated. It differs significantly from the single-phase
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Spray 1 Spray 2 Spray 3

α 0.66 0.71 0.65
z0 (mm) −2.2 −14.8 −3.1
Uexp (m2α s−1) 3.50 3.73 4.45
Mexp (kg m2α−1 s−2) 0.12 0.19 0.31

TABLE 3. Parameters determined from the constraints (4.21) to (4.23).

round jet, where its value is unity. The lower value of 2/3 in the two-phase flow
indicates that self-similarity coordinate lines η= constant are no longer straight, as in
the single-phase jet shown in figure 8, but curved, which is due to the acceleration
of the gas phase by the liquid drops. As such, the more slowly diverging coordinate
lines reflect the physical process of momentum transfer between the two phases.
The virtual origins are located inside the nozzle, as indicated by the negative values
obtained. The values of Uexp and Mexp increase with the Weber and Ohnesorge
numbers. A larger Weber number relates to a larger injected liquid momentum flow
rate, resulting in a higher gas velocity along the spray axis, i.e. in larger values of
Uexp. Accordingly, the total rate of momentum transfer from the liquid to the gas
phase is higher, as indicated by larger values of Mexp. At a larger Ohnesorge number,
as in spray 3, the liquid atomization leads to smaller droplets (compare figures 4(c)
and 4(e)). The smaller droplets with the larger total surface experience more intense
momentum transport to the gas phase, resulting in larger values of Mexp and Uexp.

Figures 10 and 11 show that the descriptions of the maximum gas velocity, the
momentum flow rate and the profiles of the normalized axial gas velocity in the flow
fields achieved represent the experimental data very well. In figure 10(a), the decrease
of the axial gas velocity along the symmetry axes of the three sprays is depicted.
Figure 10(b) shows the increase of the axial momentum flow rate of the gas phase
with increasing distance from the atomizer. For all three sprays, the experimental data
are matched very well by (4.21) and (4.23).

The values of the exponent α in (4.23) listed in table 3 indicate that the gas
momentum flow rate increases as ∝ (z − z0)

2/3. This axial increase is slower than
that obtained by Cossali et al. (1996), who measured the gaseous mass flow rate
entrained into an unsteady full-cone spray, which is defined as

ṁe(z)= 2πρ

∫
∞

r=0
u(r, z)r dr. (4.26)

Assuming the self-similar coordinate applied in single-phase jets, ηsp= r/(z− z0), and
expressing the characteristic velocity scale in terms of the measured entrained mass
flow rate ṁe, they arrive at a linear dependency of the momentum flow rate, I ∝ (z−
z0). This different scaling may be attributed to differences in the interaction between
the liquid and the gas phases occurring in the near field of their considered unsteady
full-cone diesel spray as compared to the presently investigated sprays.

The scaled experimental axial velocity profiles u/u0 in figure 11 collapse very well
when plotted against the coordinate η/D. Minor deviations are seen for sprays 2 and
3 in the cross-sections closest to the nozzle exit (z= 15 mm). In this region, the self-
similar behaviour of the spray flow is not fully developed yet, which is a well-known
behaviour of boundary-layer flows. Additionally, figure 12 shows the scaled radial
velocity profiles v(z− z0)

α as given by (4.18) versus the coordinate η/D. They collapse
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FIGURE 10. (a) Axial gas velocity on the symmetry axis of the spray as a function of
the axial position. (b) Gas momentum flow rate as a function of the axial position. The
parameters used for computing the curves in both diagrams are listed in table 3.
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FIGURE 11. Self-similar profiles of the normalized axial gas flow velocity for (a) spray 1,
(b) spray 2 and (c) spray 3.

as well for all the three sprays. Due to the larger measurement uncertainty of the
relatively small radial velocity components, the scatter is larger than for the axial gas
velocity profiles.

4.4. Determination of the self-similar shape function f (η)
The determination of the shape function f (η) requires the coupled solution of the
dynamic problem of (4.17) together with the self-similar equivalents of (4.3) and
(4.4). For this purpose, a functional description of the shape function Ω(η) of the
momentum source term is required, which would have to be deduced from the PDA
measurement data. The determination of fluxes from PDA data, however, is inaccurate
(Roisman & Tropea 2001; Bade & Schick 2011).

We therefore propose the different approach of assuming that the self-similar shape
function f (η) is of the form

f (η)=
η2

1+ η2/4
, (4.27)
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FIGURE 12. Self-similar profiles of the normalized radial gas flow velocity for (a) spray 1,
(b) spray 2 and (c) spray 3.

which is the solution for the submerged single-phase round jet (Schlichting 1933).
With the help of (4.18), the self-similar profiles in figure 11 become

u
u0
=

1
f ′′(0)

f ′(η)
η
=

1(
1+ η2/4

)2 . (4.28)

Using (4.27), the constants C and D are calculated from (4.25a,b) to

C=
3

8π

Mexp

ρUexp
, D= 2Uexp

√
π

3
ρ

Mexp
. (4.29a,b)

With the knowledge of the constant D, the scaled gas velocity profiles of all three
sprays in figure 11 may be represented in a single diagram. This is shown in figure 13,
where the self-similar velocity profiles of all three sprays collapse excellently on the
single profile given by the self-similar function (4.28) evaluated with the solution
(4.27) for f (η) (solid line).

With the self-similar shape function f (η) known, the shape function of the
momentum source term Ω(η) from the self-similar transformed z-momentum equation
(4.17) can be calculated. Before doing this, in the next section we determine the
turbulent eddy viscosity νt, which will be required to evaluate Ω(η).

4.5. Determination of the turbulent eddy viscosity νt

The turbulent eddy viscosity of the gas flow field is determined from the PDA data.
The analysis is based on the Boussinesq eddy-viscosity concept, representing the
turbulent (r, z) shear stress as per

− u′v′ = νt
∂u
∂r
. (4.30)

Here, u′ and v′ denote the axial and radial velocity fluctuations of the gas phase,
respectively. The fluctuations are a property of the gas flow field induced by
the motion of the liquid phase. In sprays, the presence of droplets dampens or
enhances the gas-phase turbulence through mechanisms well reported in the literature
(Balachandar & Eaton 2010). In the sprays investigated in the present study, a
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FIGURE 13. Universal self-similar axial velocity profile of the gas flow field in the three
sprays.

dampening effect dominates due to the moderate drop Reynolds numbers. Only a
small fraction of droplets exhibits Reynolds numbers in a range where vortex shedding
occurs, which is the main mechanism for the enhancement of the carrier-phase
turbulence (Hetsroni 1989; Johnson & Patel 1999).

The cross-correlation u′v′ is determined from the PDA measurement data by

u′v′ =

∑
i

∑
j

nij(u− ui)(v − vj)∑
i

∑
j

nij

. (4.31)

For this purpose, only the smallest drops d < 15 µm in the measurement data sets
are accounted for, since they may be assumed to represent the gas flow field properly,
also under turbulent flow conditions (see § 3.3). In (4.31), nij represents the number
of drops in the axial velocity class ui with the radial velocity vj.

Transforming (4.30) into self-similar coordinates, the dependency

− u′v′ ∝ (z− z0)
1−3α (4.32)

of the cross-correlation of the turbulent velocity fluctuations on the axial coordinate
is obtained. The cross-correlations calculated from the experimental data (4.31) are
scaled with their axial dependency (4.32) and plotted in figure 14 against the self-
similar coordinate η for sprays 1, 2 and 3. The profiles collapse and match well
the scaled radial gradient of the axial velocity. This confirms the earlier assumption
of constant turbulent eddy viscosity. The values of the turbulent eddy viscosity νt =

80ν, 100ν, 110ν are obtained for sprays 1, 2 and 3, respectively. These values are two
orders of magnitude larger than the molecular kinematic viscosity ν = 0.154 mm2 s−1

of air at 20 ◦C, in a range reported for the single-phase jet by Tennekes & Lumley
(1972) and by Peters (1997).
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FIGURE 14. Turbulent cross-correlations u′v′ scaled with their axial dependency
according to the self-similar approach. (a) Spray 1, (b) spray 2 and (c) spray 3.

4.6. Determination of the momentum source term
With the self-similar shape function (4.27), the shape function Ω(η) of the momentum
source term can be calculated from (4.17) as

Ω(η)=
2(

1+ η2/4
)4

[
2 (1− 2α)+ η2

+
νt

C

(
2− η2

)]
. (4.33)

To verify this shape function, the solution is compared to the measurement data.
For this purpose, the axial momentum source is computed from the PDA data. Due
to the inaccuracy of flux terms calculated from PDA data (Roisman & Tropea 2001;
Bade & Schick 2011), however, the results obtained must be interpreted with care.
The deviations are predominantly due to inaccuracies in determining the effective
probe-volume cross-section in PDA measurements, which is well reported in the
literature (Albrecht et al. 2003; Sipperley, Bade & Schick 2018). Thus, we just
attempt to obtain from the measurements an estimate of the shape of the momentum
source term, rather than an exact functional description.

The momentum source term is determined from the divergence of the drop
momentum (4.4), where the liquid momentum change in space is balanced with
the drag force. Since the momentum source term fd is assumed to be self-similar in
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FIGURE 15. Self-similar terms of the liquid-phase z-momentum equation (4.34a,b) for
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FIGURE 16. Shape functions of the momentum source terms estimated from PDA data
(dashed lines) and calculated by (4.33) (solid lines).

(4.14), the two terms on the left-hand side of (4.4)

Γ1 :=
∂

∂z

(
ρl

N∑
i=1

ūl,iφz,i

)
and Γ2 :=

1
r
∂

∂r

(
rρl

N∑
i=1

ūl,iφr,i

)
(4.34a,b)

must exhibit self-similarity as well. Thus, the obtained profiles for each of the two
terms Γ1 and Γ2 in every cross-section are scaled with the axial dependency of the
momentum source term on (z− z0)

1−4α, as required by the self-similar ansatz (4.16).
In figure 15, the results obtained are plotted against the coordinate η/D for spray 1 as
an example. In view of the mentioned inaccuracies inherent to the calculation of flux
terms from PDA data, and the fact that the axial and radial contributions of these flux
terms to the divergence are evaluated as ratios of differences to calculate Γ1 and Γ2,
the profiles collapse well, confirming the self-similar behaviour of the liquid phase.

To calculate the shape of the source term fd, and, subsequently, the shape function
Ω(η) as defined in (4.16), the sum of the mean profiles of the scaled terms Γ1 and Γ2
presented in figure 15 is calculated. In figure 16(a), the momentum source terms Ω(η)
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for all three sprays are plotted by dashed lines. For spray 1, a bell-shaped profile with
a peak at the symmetry axis of the spray is obtained. For sprays 2 and 3, the profiles
exhibit a local minimum at the spray axis and a peak further radially outwards. This
agrees with the observation from the mean axial drop velocities in figure 4. Since
we are interested in the shape of the momentum source term, all three experimentally
determined profiles of Ω(η) were rescaled to the order of unity, using the scaling
factors 11, 10 and 3 for sprays 1, 2 and 3, respectively. This is reasonable, owing to
the already noted inaccurate determination of mass and momentum fluxes from PDA
data. The actually applied scaling factors are well consistent with previous studies in
the literature showing that the evaluation of mass and momentum fluxes from PDA
data may lead to overestimates of up to an order of magnitude (Tropea 2011; Bade
& Schick 2011).

The shape functions of the momentum source term from the self-similar solution
(4.33) are depicted in figure 16(a) by solid lines. It can be seen that radially outwards,
i.e. at large values of η, the experimental trends are approximately captured. However,
closer to the spray axis (η = 0), the curves deviate. For sprays 2 and 3, even
negative values of the momentum source term are obtained, which would indicate
that momentum is transferred from the gas to the liquid phase. This is not physical
for the present sprays.

We attribute this discrepancy to an underestimation of the turbulent eddy viscosity
νt by the PDA data. The values of νt are obtained from the cross-correlations of
the velocity fluctuations of the smallest drops in the spray with d < 15 µm, where
0<d<5 µm is the smallest drop size class due to statistical reasons. Because of their
finite mass, drops can follow turbulent fluctuations only up to a threshold fluctuation
frequency, as detailed by Chao (1964). Due to this effect, large turbulent structures
up to a certain frequency are captured in the turbulent energy spectrum, resulting in
values for u′v′ and νt of the correct order of magnitude. However, νt is underestimated,
since high-frequency turbulent fluctuations are missed due to the low-pass filtering
effect from the drops. This assumption is supported by the comparison of relaxation
time scales of the drops and the time scale of the smallest turbulent structures in the
gas phase. According to the work of Chao (1964), drops with a diameter of 2.5 µm
which represent the mean diameter of our smallest drop size class, follow turbulent
fluctuations up to frequencies of the order of magnitude of O(103 Hz) for the fluids
used in the present study. We obtain similar values when estimating the fluctuation
frequency of the large-scale turbulent structures in the gas flow fields of the sprays
investigated. However, the smallest high-frequency turbulent fluctuations occur in a
frequency range of approximately O(104 Hz). For accurately measuring turbulent
single-phase flows, much smaller droplets with diameters around 1 µm are needed,
as in use as tracer particles in laser-Doppler measurements (Hussein et al. 1994).

An increase of the values of νt reported in § 4.5 by 50 % brings the theoretical and
experimental data for the momentum source term very close, as shown in figure 16(b).
It is seen in figure 16 that the shape function of the momentum source term in (4.33)
represents correctly the shapes of the momentum source for tulip-like sheets, as in
spray 1, as well as for open sheets, as in sprays 2 and 3, where maxima occur off
the symmetry axis.

4.7. Scope and limitations of the model
The self-similar model for the two-phase flow field of a pressure-atomized spray
presented allows for a convenient description of the flow fields of both phases.
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FIGURE 17. Velocity ratio of the validity criterion (4.35) for the self-similar spray model
for (a) spray 1, (b) spray 2 and (c) spray 3.

The agreement with the experimental data shows that transport processes form a
self-similar two-phase flow field.

The model was built on a boundary-layer approximation of the gas flow field.
Consequently, the analytical description is valid downstream from a distance from
the atomizer orifice only, thus ensuring the slenderness of the flow field allowing for
use of the boundary-layer form of the momentum equation. In the present case, the
minimum distance from the atomizer required for the analytical solution to agree with
the measurement is z/Dor ≈ 38. This distance is approximately two (spray 1) or three
times (sprays 2 and 3) the breakup length of the liquid sheets shown in figure 3.

One characteristic of the self-similar solution is the dependency of the flow field
properties on the axial coordinate following a power law of the form (z − z0)

β . In
the properties of the gas phase, the exponent β is positive, while for the liquid-phase
properties it is negative. The momentum throughput of the gas phase through every
plane z = constant, however, can increase only in a region of the flow field where
momentum transfer from the liquid to the gas phase persists, i.e. as long as the drop
velocities are higher than the gas velocity. This fact sets limits to the validity of
the self-similar description downstream, which do not emerge from the mathematical
structure of the solutions themselves. The criterion limiting the validity of the self-
similar model is the difference of the liquid from the gas velocity, normalized by the
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initial liquid velocity through the atomizer orifice,

ûl(r, z)− u(r, z)
ūor

> 0, (4.35)

where ûl is the volume-mean axial drop velocity. As long as this ratio is positive,
momentum is transferred from the liquid to the gas phase. The downstream boundary
of the self-similar flow field described by the above model is located at an axial
position where the velocity difference between the liquid and the gas phases has
become small compared to the momentum-flux equivalent liquid velocity at the
entry of the flow field. Figure 17 shows that the values obtained with this criterion
are well above zero at all measurement locations in the three sprays investigated,
so that the self-similar theory holds. The ratio in (4.35) decreases with increasing
z coordinate and flattens out, showing that the spray tends to evolve towards an
equilibrium state between the droplet and the gas phases. From that state on, the
liquid–gas two-phase mixture is characterized by a mixture density and continues
moving at a mixture velocity, as described by others (Faeth 1983; Panchagnula &
Sojka 1999; Desantes et al. 2011). Under these so-called ‘locally homogeneous flow’
(LHF) conditions, the treatment of the two-phase flow as a single fluid allows for the
classical self-similar description of single-phase jets as found in Schlichting (1933).
Aside from the LHF regime associated with zero relative velocity between the liquid
and gas phases, the criterion (4.35) also excludes spray regimes where momentum
transfer is not globally unidirectional. This is, e.g. the case in air-assisted and air-blast
sprays, where momentum is transferred from a co-injected high-speed gas stream to
the liquid phase.

5. Summary and conclusions

Pressure-atomized sprays produced at mass flow rates of consumer spray applications
were investigated experimentally at different pairs of the Weber and Ohnesorge
numbers. The air motion in the sprays is induced by the liquid ejected from
the atomizer. Measurements with phase-Doppler anemometry cover the regions of
the sprays with large slip velocities between the liquid and the gas phases, from
close to the atomizer up to axial distances of 625 orifice diameters. The spray
characterization by PDA shows the effects of different sheet geometries, producing
sprays either with high liquid concentration around the symmetry axis, or with a
hollow-cone profile. An approach is introduced to determine the gas velocity in the
sprays from the PDA drop data, using the smallest spray droplets as tracer particles.

The experiments reveal self-similar behaviour of both the liquid and the gas phases,
which was not reported in the literature before. The analytical solution for the
self-similar flow field of the gas phase, derived from boundary-layer theory, is in
excellent agreement with the experimental results. Notably, the obtained self-similar
shape function of the gas flow field is similar to the single-phase jet. However, the
scaling variables obtained differ significantly, resulting in a slower decrease of the
axial gas velocity with increasing distance from the atomizer orifice, and a stronger
radial expansion of the flow field than in the single-phase flow.

A limitation of the self-similar model is seen in the power-law dependency of the
flow field variables on the axial coordinate, which is applicable only until the state of
equilibrium between the states of motion of the two phases is reached.
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