
J. Fluid Mech. (2019), vol. 861, pp. 223–252. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.912

223

Bifurcations from steady to quasi-periodic flows
in a laterally heated cavity filled with low Prandtl

number fluids

A. Medelfef1,2,†, D. Henry2, A. Bouabdallah1 and S. Kaddeche3

1Laboratoire de Thermodynamique et Systèmes Energétiques, Faculté de Physique,
Université des Sciences et de la Technologie Houari Boumediene – USTHB, BP 32,

16111 Bab Ezzouar, Alger, Algérie
2Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS/Université de Lyon,

Ecole Centrale de Lyon/Université Lyon 1/INSA Lyon – ECL, 36 avenue Guy de Collongue,
69134 Ecully CEDEX, France

3Laboratoire de Recherche Matériaux, Mesures et Applications, Institut National des Sciences
Appliquées et de Technologie – INSAT, B.P. 676, 1080 Tunis CEDEX, Tunisie

(Received 11 July 2018; revised 28 September 2018; accepted 7 November 2018;
first published online 21 December 2018)

This study deals with the transition toward quasi-periodicity of buoyant convection
generated by a horizontal temperature gradient in a three-dimensional parallelepipedic
cavity with dimensions 4× 2× 1 (length × width × height). Numerical continuation
techniques, coupled with an Arnoldi method, are used to locate the steady and Hopf
bifurcation points as well as the different steady and periodic flow branches emerging
from them for Prandtl numbers ranging from 0 to 0.025 (liquid metals). Our results
highlight the existence of two steady states along with many periodic cycles, all with
different symmetries. The bifurcation scenarios consist of complex paths between these
different solutions, giving a succession of stable flow states as the Grashof number is
increased, from steady to periodic and quasi-periodic. The change of these scenarios
with the Prandtl number, in connection with the crossing of bifurcation points, was
carefully analysed.

Key words: bifurcation, convection in cavities, nonlinear instability

1. Introduction

Buoyant convection driven by a horizontal temperature gradient is a canonical model
of fluid mechanics, which can be used from a fundamental point of view to study
the development of instabilities and the transition to chaos and eventually turbulence.
Besides this fundamental interest, the model is appropriate to study various natural,
industrial and engineering problems, in domains such as geophysics (Hart 1972),
renewable energies (Bacharoudis et al. 2007) or crystal growth (Lappa 2007). In
crystal growth processes using the horizontal Bridgman technique, the melt, contained
in a crucible withdrawn horizontally from a furnace, is subject to a horizontal
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temperature gradient generating convection. Very often, hydrodynamic instabilities
in the melt will affect the quality of crystals, as they give rise to temperature
fluctuations at the solidification front and lead to striations in the crystalline product
(Pimputkar & Ostrach 1981; Dhanaraj et al. 2010). Thus, there is considerable interest
in understanding the development of the instabilities in such situations.

Very often, the studies are performed in finite size rectangular cavities, differentially
heated between opposite vertical end walls. In such cavities, the convective flow is
governed by the temperature difference between the hot and cold end walls (or, in
a dimensionless form, by the Grashof number Gr), the fluid ability to diffuse heat
(the Prandtl number Pr, very small for molten metals) and the cavity dimensions (the
aspect ratios).

Historically, the first studies have considered simplified situations, in which
the aspect ratios in the horizontal directions tend to infinity. In this case, the
Navier–Stokes equations admit a one-dimensional steady parallel flow solution, for
which linear and nonlinear stability analyses can be performed. Hart (1972) was the
first to study this situation and he showed the existence of two types of instabilities
(transverse steady shear instability or longitudinal oscillatory instability) depending on
the Prandtl number. His stability study, which was linear and limited to small Prandtl
numbers, was later extended by Laure (1987) and Laure & Roux (1989) to include
the nonlinear analysis and by Gershuni et al. (1992) who considered higher Prandtl
numbers and pointed out the existence of steady thermal instabilities in the case of
perfectly conducting boundaries. These studies were a first step to understanding
the mechanisms of instability in differentially heated cavities. Nevertheless, as
shown by Cormack, Leal & Imberger (1974a) through an asymptotic analysis of
the two-dimensional approximation, a more complete analysis is necessary because
the real basic flow is not limited to the parallel flow part in the core region, but also
includes non-parallel recirculating flows in the end regions.

Two-dimensional simulations of the convective flows in such differentially heated
cavities have then been carried out with the objective to understand the appearance
and the development of time-dependent flows. Two different approximations have been
used in this case:

(i) Some studies have simulated the flow in the vertical plane parallel to the
gradient of temperature (in this case, the transverse dimension is supposed to be
infinite or very large) (Cormack, Leal & Seinfeld 1974b; Pulicani et al. 1990;
Mohamad & Viskanta 1991; Henry & Buffat 1998; Mercader et al. 2005). In
these studies, different aspect ratios were considered and also different Prandtl
numbers going from small Prandtl numbers to Pr = 7 (value for air). Note that
in this approximation, the basic flow is no longer parallel and the recirculating
flows at the end walls will affect the results, particularly when the longitudinal
aspect ratio is small.

(ii) Other studies have supposed the longitudinal dimension to be infinite (or at
least very large) and the flow to be invariant along this direction. In this
approximation, the two-dimensional simulations concern the steady convective
flows in the transverse cross-section plane (parallel to the isothermal cold and
hot planes). Lyubimova et al. (2009a,b) performed the stability analysis of the
basic flow obtained in this approximation. The critical instability thresholds are
obtained for a large range of aspect ratios and Prandtl numbers, with and without
a magnetic field.
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Concerning more realistic three-dimensional cavities (length L, width l and
height h), several studies, on both experimental and numerical sides, were performed
in order to understand the development of the convection, the appearance of
instabilities and the transition scenarios leading to oscillatory flows.

The first leading experimental works are those of Hurle (Hurle 1966; Hurle,
Jakeman & Johnson 1974). The experiments were performed in liquid gallium
(Pr ≈ 0.018) inside long open cavities having dimensions 10 × 1.3 × 1.5 cm3,
10 × 1 × 1.5 cm3 and 10 × 0.65 × 1.5 cm3 (L × l × h). The studies highlight the
onset of oscillatory convection when the difference of temperature between the hot
and the cold walls is increased. An extension of this work to study transition to
more complicated time-dependent states was performed by McKell et al. (1990) in a
4 × 1.3 × 1 cm3 cavity in the presence of an applied magnetic field. The dynamics
of the system is organized by a codimension-2 bifurcation corresponding to the
intersection of a line of secondary Hopf bifurcations with a line of period-doubling
bifurcations. Other experimental studies concern large aspect ratio cavities. For
instance, Hung & Andereck (1988) used liquid mercury (Pr ≈ 0.027) inside a cavity
having dimensions 16.1 × 16 × 0.9 cm3. The results show that the first instability
is connected with the oscillation of longitudinal rolls, which becomes noisy and
eventually chaotic when the temperature difference is increased. While the measured
wavelengths and frequencies are in agreement with the theoretical values of Hart
(1972), the critical Grashof number is found to be higher than the expected theoretical
thresholds. Daviaud & Vince (1993) reported the observation of different dynamical
regimes in silicone oil (Pr≈ 10) inside open cavities. For fixed horizontal dimensions
(20× 1 cm2) and varying height h of the fluid, Daviaud & Vince (1993) observed that
the first mode of instability is either longitudinal travelling waves (oscillatory modes)
for h< 2.8 mm or steady transverse rolls for higher values of h up to 10 mm. Other
experiments were also carried out by Mullin and co-workers (Braunsfurth & Mullin
1996; Juel et al. 2001; Hof et al. 2004): the working fluid is the liquid gallium and
the apparatus typically consists of an insulated 5 × 1.3 × 1 cm3 cavity differentially
heated between the end walls. Braunsfurth & Mullin (1996) found that the transition
to time dependence takes place at supercritical Hopf bifurcations. Moreover, four
different modes of oscillations are observed in a narrow Pr range (0.0166Pr60.022).
Juel et al. (2001) and Hof et al. (2004) then provided experimental and numerical
results for three-dimensional convection: the three-dimensional properties of the flow
as well as the transition towards oscillatory convection were pointed out on both
experimental and numerical sides.

Three-dimensional numerical simulations were also performed in order to understand
the dynamics of the transition towards oscillatory convection. We can mention the
studies of Dupont et al. (1987), Afrid & Zebib (1990), Ben Hadid & Henry (1997),
Henry & Buffat (1998), Wakitani (2000) and Henry & Ben Hadid (2007), focused
on low Prandtl number situations. These numerical studies concern rather confined
cavities with different typical aspect ratios and different boundary conditions (rigid
or stress-free upper boundary). It was shown that the onset of oscillations is shifted
toward higher values of the Grashof number when the upper surface is rather rigid
than free and when the lateral confinement (in the transverse direction) is increased
(stabilizing effect due to the viscous dissipation at the walls). For example, according
to Afrid & Zebib (1990), the threshold of oscillatory convection at Pr= 0 is equal to
Gr= 1.25× 105 for a rigid top surface versus 1× 105 for a stress-free upper boundary
in a 4× 1× 1 cavity (L/h× l/h× h/h). And the threshold decreases to Gr= 3× 104

in a less confined rigid 4 × 2 × 1 cavity. For a more extensive review on laterally
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heated situations in the context of crystal growth applications, we refer the reader to
the work of Lappa (2007).

This work is an extension of the study of Henry & Ben Hadid (2007), where the
first instability thresholds in a differentially heated rigid cavity are determined for a
wide range of longitudinal (2< L/h< 5) and transverse (1< l/h< 6) aspect ratios and
for Prandtl numbers ranging from 0 to 0.03. The first instability mode is found to be
either steady or oscillatory depending on the Prandtl number and the aspect ratios. In
particular, for a 4× 2× 1 cavity, the first instability is triggered by a steady mode for
1× 10−4 . Pr . 1.65× 10−2 and by an oscillatory mode for smaller or larger Prandtl
numbers. In any case, energy budgets show that the destabilizing physical mechanism
is the shear, principally due to the vertical variations of the longitudinal velocity.

We focus here on the 4 × 2 × 1 rigid cavity and on the low Prandtl number
range (Pr ∈ [0, 0.025]). We want to understand how the oscillatory convection will
develop, which type of oscillatory solution (periodic, quasi-periodic, with symmetry
or not) can be observed, depending on the Prandtl number. These points need to
be clarified, particularly in the intermediate range of Prandtl number where the first
instability is steady. To tackle this problem, a spectral element code is used allowing
time evolution calculations, the continuation of steady solutions, but also the newly
developed continuation of periodic oscillatory solutions. Note that our idea is not to
simulate a real experiment, for which the boundary conditions are difficult to assess
and which would require variable fluid properties with the temperature, but to give
valuable information on the dynamics of the flow in such a situation.

In the following, the mathematical model governing our physical problem as well
as the numerical methods used to solve it are first presented. The steady basic flow at
low Gr (before the onset of instabilities), its structure and its symmetry properties are
then described. The main results of our simulations are finally presented: the steady
solutions and the different bifurcation points along them, the oscillatory periodic or
quasi-periodic solutions. The solutions obtained are first described as a function of
the Grashof number for characteristic Prandtl numbers, before giving a more general
view in the whole Prandtl number range.

2. Physical model and numerical methods
In this paper, we consider the flow in a differentially heated parallelepipedic cavity

of aspect ratios AX = L/h = 4 and AY = l/h = 2, where L is the length along the
longitudinal x-direction, l is the width along the transverse y-direction and h is the
height along the vertical z-direction (see figure 1, where the main middle vertical
planes, either the longitudinal Vl plane or the transverse Vt plane, are presented). The
vertical end walls are isothermal and held at different temperatures, TH at the right
hot end wall and TC at the left cold end wall, and the side walls are insulating.
The fluid is assumed to be Newtonian with constant physical properties (kinematic
viscosity ν, thermal diffusivity κ , density ρ), except for the density in the buoyancy
term, which, in the Boussinesq approximation, depends linearly on the temperature,
ρ= ρ0(1−β(T −T0)), where β is the thermal expansion coefficient, T0= (TC+TH)/2
is a reference temperature, and ρ0 is the value of the density at T0.

The convective motion in the differentially heated cavity is governed by the
momentum, mass and energy conservation equations. By using h, h2/ν, ν/h, ρ0ν

2/h2

and 1T/AX (1T =TH −TC) as reference quantities for length, time, velocity, pressure
and temperature, respectively, the equations take the following dimensionless form:

∂v

∂t
+ v · ∇v =−∇p+∇2v +GrΘez, (2.1)
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Vl plane Vt plane

gTH

l

L

h
TC C x

y
z

FIGURE 1. (Colour online) Geometry of the differentially heated cavity. The end walls
located at x̄=−L/2 and x̄=L/2 are held at fixed temperatures TC and TH (with TH >TC),
respectively, whereas the side walls are insulating boundaries.

∂Θ

∂t
+ v · ∇Θ =

1
Pr
∇

2Θ, (2.2)

∇ · v = 0, (2.3)

where Gr = gβh31T/(AXν
2) is the Grashof number, Pr = ν/κ is the Prandtl number

and Θ = (T − T0)AX/1T is a reduced temperature. Note that the origin of the
coordinates is taken at the centre C of the cavity.

The boundary conditions are v = 0 (no-slip conditions) for the velocity on all the
boundaries, (∂Θ/∂z)(z=±1/2)= 0 and (∂Θ/∂y)(y=±AY/2)= 0 for the temperature
on the insulating side walls, and Θ(x=±AX/2)=±AX/2 for the temperature on the
isothermal end walls.

Equations (2.1), (2.2) and (2.3) are solved in the three-dimensional domain using
a spectral element code developed by Ben Hadid & Henry (1997). This code is
based on a spatial discretization using the Gauss–Lobatto–Legendre polynomials. The
time discretization is carried out by a semi-implicit scheme proposed by Karniadakis
(1991), where the nonlinear terms are included explicitly, the pressure is then obtained
from a derived pressure equation enforcing the incompressibility constraint (with
consistent boundary conditions) and finally the linear terms are integrated implicitly.

The time integration scheme is used with the third-order-accurate formulation
proposed by Karniadakis (1991) for transient computations or unsteady flow
simulations. It is also used in its first-order formulation to compute steady state
solutions, eigenvalues and eigenvectors determining their stability, and bifurcation
points. All these computations are based on a Newton–Krylov method and follow the
ideas of Mamun & Tuckerman (1995) and Bergeon et al. (1998). They are integrated
in a continuation algorithm and, complemented by an Arnoldi method, they allow
us to obtain bifurcation diagrams of the steady flow solutions. These methods will
not be described further here as they have been already presented and well discussed
by Henry & Ben Hadid (2007) and Torres et al. (2013, 2014). In these papers, the
methods were successfully used in different problems of buoyant convection.

The continuation of periodic orbits (or cycles) has also been developed more
recently using the method proposed by Sánchez et al. (2004) and successfully used
by Puigjaner et al. (2011) in a Rayleigh–Bénard problem. The novelty here is that the
method is developed from a time integration scheme using time splitting. The method
is based on a Newton–Krylov approach in which the periodic states of (2.1)–(2.3)
are obtained as fixed points of a Poincaré map. In our code, the hyperplane defining
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the Poincaré map corresponds to a given value kp for u∗, the longitudinal velocity at
a chosen point inside the cavity, i.e. u∗= kp. The trajectories in the phase space used
to approach the periodic state are computed with the time integration scheme at third
order with a time step 1tc= 5× 10−5. These trajectories are initiated from a point in
the Poincaré hyperplane using two first-order time steps with 1t = 1tc/4 and three
second-order time steps with 1t =1tc/2, until third-order time steps with 1t =1tc
can be applied. The exact return of the trajectory to the Poincaré hyperplane is
obtained by a Newton–Krylov approach as proposed by Sánchez et al. (2004). Finally,
the successive corrections of the initial point in the Poincaré hyperplane, necessary to
converge to a closed loop (the expected cycle), are obtained, as indicated above, by
Newton–Krylov steps. As shown by Sánchez et al. (2004), at each Newton–Krylov
step, the linear system giving the correction can be solved by GMRES (generalized
minimal residual method) iterations, where the matrix–vector products correspond
to the evolution of a perturbation obtained by iterating the linearized version of
(2.1)–(2.3) along the last calculated trajectory in the phase space. The correction
thus obtained at a Newton–Krylov step is eventually adapted to lie in the Poincaré
hyperplane. The convergence to the periodic solution is assumed to be obtained
when the mean square difference between the initial and end points in the Poincaré
hyperplane is less than 10−6. The method was found to work well with a convergence
generally obtained with a few Newton–Krylov steps (2–4), each Newton–Krylov step
requiring 5–15 GMRES iterations for a prescribed precision of 10−2.

The stability of these periodic solutions is investigated in the framework of the
Floquet theory (Klausmeier 2008; Seydel 2010). We use an Arnoldi method in which
the Arnoldi basis is obtained by repeating the same process as for the GMRES
iterations, i.e. computing the evolution of a perturbation by iterating the linearized
version of (2.1)–(2.3) along the considered periodic solution. The complex eigenvalues
σ obtained by the Arnoldi method are the Floquet multipliers. If the norm of σ is
smaller (larger) than 1, i.e. the Floquet multiplier is inside (outside) the unit circle,
the perturbation associated with the corresponding eigenvector will decrease (increase)
during the cycle, indicating a stabilizing (destabilizing) behaviour. Note, however, that
there is always a Floquet multiplier equal to (+1), corresponding to a perturbation
exactly along the cycle, which will neither decrease nor increase. Excluding this last
eigenvalue, the periodic solution will be unstable if there is at least one Floquet
multiplier outside the unit circle (i.e. ∃j, |σj| > 1). Conversely, if all the Floquet
multipliers are inside the unit circle (i.e. ∀j, |σj|< 1), the periodic solution is stable.
Finally, depending on how these Floquet multipliers cross the unit circle, three
kinds of bifurcation can be obtained. If the unstable Floquet multiplier is real, a
period-doubling bifurcation will occur for σ = −1 and a bifurcation toward another
limit cycle with the same frequency for σ =+1. In contrast, if the unstable Floquet
multiplier is a pair of complex conjugate eigenvalues, a Naimark–Sacker bifurcation
(also called the generalized Hopf bifurcation) toward a quasi-periodic solution is
identified. In practice, the ten leading Floquet multipliers were calculated with the
Arnoldi method and the precise convergence (10−10) was obtained within a limited
number of Arnoldi steps (50–60).

The refined grid used for all our calculations of convective flow in a cavity with
aspect ratios AX = 4 and AY = 2 has 47× 37× 27 points in the x, y and z directions,
respectively. As shown in table 1 for some examples, this grid gives excellent
resolution of the thresholds Grc of the different bifurcation points, indicating that
both the solution and the eigenvector that will induce the oscillatory behaviour are
well resolved on the grid.
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NX ×NY ×NZ Grc(PP
l ) Grc(HP

a ) ωc(HP
a )

41× 31× 21 28 955.25 30 573.90 221.09
43× 33× 23 28 954.80 30 571.30 221.08
45× 35× 25 28 959.58 30 569.23 221.07
47× 37× 27 28 957.50 30 569.53 221.08
49× 39× 29 28 957.40 30 569.68 221.08
51× 41× 31 28 957.66 30 569.52 221.08
53× 43× 33 28 957.54 30 569.40 221.08

TABLE 1. Mesh refinement tests of numerical accuracy of the critical Grashof number
Grc for different flow bifurcations detected in a laterally heated cavity (AX = 4, AY = 2,
Pr= 0.005): steady bifurcation PP

l and Hopf bifurcation HP
a for which the value of ωc is

also given.

3. Steady flow at low Grashof numbers

In our differentially heated parallelepipedic cavity, a convective flow will appear
as soon as the Grashof number Gr is not zero. At low Gr, this flow is steady,
unicellular and occupies the whole enclosure. More precisely, the fluid rises at the
hot wall, travels longitudinally throughout the cavity and goes down at the cold wall,
before returning to the hot wall (figure 2). As long as the temperature field remains
diffusive and the inertial effects remain small (approximately up to Gr = 1000), the
flow structure is invariant, with in particular a quasi-parallel flow in the core of the
cavity (Hadley flow, see Hart (1972)), and only its intensity varies linearly with Gr. In
the Boussinesq approximation, this steady flow exhibits different symmetries coming
from the symmetries of the equations, the geometry and the boundary conditions:

(i) a reflection symmetry Sl with respect to the middle vertical Vl plane (y= 0), also
called left/right symmetry:

Sl : (x, y, z, t)→ (x,−y, z, t), (u, v,w, Θ)→ (u,−v,w, Θ), (3.1)

(ii) a π-rotational symmetry Sπ with respect to the central transverse y-axis (x = 0,
z= 0):

Sπ : (x, y, z, t)→ (−x, y,−z, t), (u, v,w, Θ)→ (−u, v,−w,−Θ), (3.2)

(iii) a symmetry Sc with respect to the centre C of the cavity, which is such that:

Sc = Sπ.Sl. (3.3)

These symmetries belong to a Z2 × Z2 = D2 group, which contains four elements
(including the identity I). Note that we will also use the notations Sa and Sw for flows
with all the symmetries and without symmetry, respectively.

The plot of the longitudinal velocity component in the transverse Vt plane, u(y, z),
given in figure 2(a) allows to clearly visualize these symmetries. Indeed, for u in this
plane, the Sπ symmetry is expressed by (y, z)→ (y,−z), u→−u, the Sl symmetry is
given by (y, z)→ (−y, z), u→ u and finally, the Sc symmetry is such that (y, z)→
(−y,−z), u→−u. Such a plot can then be used to see the symmetries of solutions on
new branches appearing at bifurcation points. Applied on a critical eigenvector u′(y, z)
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FIGURE 2. (Colour online) For Pr = 0.025 and Gr = 3 × 104: (a) longitudinal velocity
field u(y, z) in the Vt plane; (b) velocity vector (u, w) and temperature −2 6Θ(x, z)6 2
fields in the Vl plane; (c) a three-dimensional visualization of the velocity vector field
showing the circulation loop in the cavity.

(figure 5), the plot will also indicate which symmetries are kept or broken (in that
case, they appear as anti-symmetries) at the corresponding bifurcation point.

The changes which affect the steady three-dimensional flow structure (shown in
figure 2 before any symmetry breaking at bifurcations) when the Grashof number is
increased are described in Henry & Buffat (1998) and Henry & Ben Hadid (2007). At
Gr= 10 000, the uni-cellular flow appears to be already tilted compared to the parallel
Hadley circulation. For larger values of Gr, the uni-cellular flow evolves towards a
centred roll-like structure inside a remaining long-scale circulation. As indicated by
Henry & Buffat (1998), these changes are the sign of an imperfect bifurcation which
is connected with the steady transition towards transverse rolls (shear instability) found
in the stability analysis of the parallel Hadley flow (Hart 1972). At sufficiently high
values of the Grashof number, this basic steady flow will eventually be destabilized at
different bifurcation points, which will trigger new steady or oscillatory flow solutions.
This is discussed in the next sections.

4. Bifurcation analysis of the steady flows

In a previous work, Henry & Ben Hadid (2007) determined the threshold of the first
instability of the basic steady flow in a differentially heated parallelepipedic cavity for
a wide range of aspect ratios AX and AY and Prandtl numbers. They showed the strong
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FIGURE 3. (Colour online) Bifurcation diagram (u∗ versus Gr) for Pr= 0.015 showing all
the bifurcation points in the range 3.0× 104 6Gr 6 5.1× 104. Stable steady solutions are
represented by solid lines whereas dashed lines represent unstable steady solutions. The
symmetry of these steady solutions (Sa for the leading branch and Sl for the secondary
branch) is shown in the insets. More information on the stability is given by the number
of unstable eigenvalues n−m indicated along the branches (see text).

variation of these thresholds, which were associated with instabilities of different types
(steady or oscillatory), breaking different symmetries. In the present study, the cavity
dimensions are held constant (AX = 4 and AY = 2) and only the effect of the Prandtl
number will then be depicted. However, we will not focus on the first instability of
the basic steady flow, but more largely consider all the bifurcation points that could be
involved in the further dynamics of the flow, on the basic steady flow branch (primary
branch) as well as on the steady branches that bifurcate from it (secondary branches).
Note that, in the different bifurcation diagrams presented in this study, we plot u∗, the
normalized longitudinal velocity component (u/

√
Gr) at a representative point in the

cavity (x= 0, y= 0.49391, z=−0.36911), as a function of Gr. Finally, the stability
of the branches (branches of steady states as well as branches of cycles) on these
bifurcation diagrams is indicated through a couple of numbers n−m where n is the
number of unstable real eigenvalues whereas m is the number of unstable couples of
complex conjugate eigenvalues. 0− 0 is thus the indication of a stable branch.

As a starting point, we have computed bifurcation diagrams of the steady flow
solutions for several Prandtl numbers going from 0 to 0.025 (see figure 3 and the
steady part of the different bifurcation diagrams in figures 6a, 7a, 8a, 10a). In all
these cases, a single steady bifurcation point PP

l is found on the primary branch (see
table 2). As shown in figure 3, this bifurcation is a supercritical pitchfork bifurcation
which breaks the Sc and Sπ symmetries and keeps the Sl symmetry. The secondary
branch initiated at this point thus corresponds to flow states with only the Sl symmetry
(see insets of figure 3 for example). Note that, as expected, two secondary branches
appear at the pitchfork bifurcation. These branches are dynamically equivalent as
the solution on one branch is the symmetric of the solution on the other branch

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.912


232 A. Medelfef, D. Henry, A. Bouabdallah and S. Kaddeche

Pr= 0 Pr= 0.005
Points HP

c,0 PP
l HP

a HS
l HS

w,1 HS
w,0 PP

l HP
a HP

c,0 HS
l HS

w,1

Grc 27 893 28 325 29 341 30 343 32 139 32 157 28 957 30 569 34 849 33 026 34 644
fc 2.70 — 34.6 34.7 28.6 2.25 — 35.2 2.66 36.1 29.9

Pr= 0.015 Pr= 0.025
Points PP

l HP
c,25 HP

a HS
w,25 HS

l HS
w,1 HP

c,25 PP
l HP

π HS
w,1

Grc 34 966 37 314 38 482 37 413 44 114 45 276 33 055 61 737 69 950 67 972
fc — 13.6 36.5 13.8 38.7 32.5 13.8 — 35.7 35.1

TABLE 2. Critical thresholds Grc of the principal bifurcation points (P for pitchfork, H for
Hopf) on the primary (superscript P) and secondary (superscript S) branches for Pr = 0,
0.005, 0.015 and 0.025. The subscripts c, l, π, a and w refer to the symmetries kept
by the marginal mode at the bifurcation: symmetries Sc, Sl, Sπ, all the symmetries and
without symmetry, respectively. In case of Hopf bifurcation points, the critical frequency
at threshold fc is also given.

by the broken Sc or Sπ symmetry. For this reason, only one of these branches will
often be considered and plotted. The principal bifurcation points on these steady
primary and secondary branches are also determined. Except PP

l , they are all Hopf
bifurcation points (see figure 3) and their critical characteristics (critical threshold
Grc and frequency fc) are given in table 2. In order to identify all the different
bifurcation points, we have given them specific names depending on their properties.
These points are either steady pitchfork (P) or oscillatory (H for Hopf). The type of
the branch (primary or secondary) on which they appear is indicated by a superscript
(P for primary branch and S for secondary branch), whereas the symmetry preserved
by the critical mode at the bifurcation is denoted by a subscript. More precisely, the
subscripts c, l and π correspond to the centro-symmetry Sc, the left/right symmetry Sl
and the π-rotational symmetry Sπ, respectively, whereas the subscript a (w) indicates
critical modes with all the symmetries (without symmetry). For example, the points
HP

a and HS
l are the Hopf bifurcation point on the primary branch for which all the

symmetries are kept and the Hopf bifurcation point on the secondary branch that
keeps only the Sl symmetry, respectively. The same type of notations will be used
later for the bifurcations occurring on cycles: the superscript P or S will be changed
to C to mention that the bifurcation occurs on a cycle, but with a further indication
on the symmetry of the cycle. For example the superscript Ca will indicate that the
bifurcation occurs on a cycle with all the symmetries. The subscript will still indicate
the symmetry preserved by the critical mode.

From figure 3 and table 2, we can see that five main modes were found on the
primary steady branch (PP

l , HP
c,0, HP

c,25, HP
a and HP

π) and four other modes (HS
l , HS

w,0,
HS

w,1 and HS
w,25) on the secondary steady branch initiated at the steady point PP

l . All
these bifurcation points were then precisely tracked as a function of Pr in the whole
range 06Pr 6 0.025. The location of these points in the (Pr,Grc) parameter space is
shown in figure 4 and the plots of the corresponding critical modes in the transverse Vt
plane are given in figure 5. Note that, in some cases, we have introduced an index in
the subscript in order to distinguish bifurcation points corresponding to modes with the
same symmetry. The index 0 was chosen for the bifurcation HP

c,0 which is the first to
appear at Pr= 0 and for the bifurcation HS

w,0 issued from HP
c,0. Similarly the index 25
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3.2
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8.0

Grc

Grc

Pr Pr

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Pr = 3.28 ÷ 10-4

Pr = 8.83
÷ 10-5 3.645

3.650

3.655

3.660

3.665

3.670

3.675

Pr = 1.63 ÷ 10-2

(÷ 104)

(÷ 104) (÷ 104)

(÷ 10-4)

0 0.005 0.010 0.015 0.020 0.025

0 1 2 3 4 5 6 0.01620 0.01625 0.01630 0.01635 0.01640

PP
l HS

w,0 HS
w,1 HS

w,25HP
c,0 HP

c,25

PP
l HS

w,25HP
c,25

HP
a HP

π HS
l

PP
l HS

w,0 HS
w,1HP

c,0HP
a HS

l

(a)

(b) (c)

FIGURE 4. (Colour online) Tracking of the main bifurcation points in the (Pr, Grc)
parameter space. (a) Global view in the range 06Pr60.025. (b) Zoom of the region Pr6
6× 10−4 in order to highlight the crossing of the PP

l and HP
c,0 primary bifurcation points at

Pr=8.83×10−5 with the creation of the HS
w,0 secondary bifurcation at this co-dimension 2

point. (c) Zoom around the crossing of the PP
l and HP

c,25 primary bifurcation points at
Pr = 1.63 × 10−2 highlighting the creation of the HS

w,25 secondary bifurcation at this
other co-dimension 2 point. In this figure, squares are used for modes with Sl (left–right)
symmetry, circles for modes with Sc (centre) symmetry, triangles for modes with Sπ

(π-rotational) symmetry, diamonds for modes with all the symmetries and stars for modes
without symmetry. The symbols are filled (empty) for primary (secondary) bifurcation
points. The thresholds for PP

l , the only steady bifurcation, are given as black squares.

was chosen for the bifurcation HP
c,25 which is the first to appear at Pr = 25 × 10−3

and for the bifurcation HS
w,25 issued from HP

c,25. Finally the index 1 was chosen for
the other Hopf bifurcation point without symmetry HS

w,1.
Based on the crossings of the first bifurcation points on the primary branch

observed in figure 4, three main regions can be identified: for Pr 6 8.83× 10−5, the
Hopf mode HP

c,0 (figure 5f ) destabilizes the primary branch and gives birth to a limit

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.912


234 A. Medelfef, D. Henry, A. Bouabdallah and S. Kaddeche

y

-0.5

0

0.5

z

-1.0 -0.5 0 0.5 1.0

(d)

-0.5

0

0.5

z

-1.0 -0.5 0 0.5 1.0

(a)

y

-0.5

0

0.5

-1.0 -0.5 0 0.5 1.0

-0.5

0

0.5

-1.0 -0.5 0 0.5 1.0

(b)

y

-0.5

0

0.5

-1.0 -0.5 0 0.5 1.0

-0.5

0

0.5

-1.0 -0.5 0 0.5 1.0

(c)

(e) (f)

FIGURE 5. (Colour online) Contours of the longitudinal velocity perturbation u′(y, z)
in the transverse Vt plane for the critical modes (real part) associated with different
bifurcation points: (a–f ) correspond to HP

c,25 at Pr = 0.025, HS
w,25 at Pr = 0.015, PP

l , HS
l

and HP
a at Pr= 0.005 and finally HP

c,0 at Pr= 0, respectively.

cycle with the Sc symmetry and small frequency ( fc ≈ 2.70 at Pr = 0). For larger
values of the Prandtl number (8.83× 10−5 6 Pr 6 1.63× 10−2), the primary branch is
first destabilized by the steady mode PP

l (figure 5c), which will trigger a stable steady
solution with the Sl symmetry. Finally, for 1.63×10−2 6Pr62.5×10−2, it is the Hopf
mode HP

c,25 (figure 5a) that destabilizes the primary branch. A limit cycle with the Sc
symmetry is also generated at this point, but it has a larger frequency ( fc ≈ 13.8 at
Pr= 0.025) than for very small Pr values. Note that the intersection points located at
Pr= 8.83× 10−5 and Pr= 1.63× 10−2 are pitchfork-Hopf codimension-2 bifurcations.
They are at the origin of the creation of two Hopf bifurcation points on the secondary
branch, HS

w,0 (from HP
c,0 and PP

l ) and HS
w,25 (from HP

c,25 and PP
l ), respectively (see

figures 4b and 4c). We will see later that the codimension-2 point at Pr= 1.63× 10−2

is also at the origin of the creation of a pitchfork of cycles on the branch of periodic
solutions that emerges from HP

c,25. The point HS
w,25 evolves then towards smaller

Prandtl numbers with an increasing threshold whereas HS
w,0 has also an increasing

threshold but evolves slightly towards higher Prandtl numbers before turning at
Pr ≈ 1.1 × 10−4 and evolving down to Pr = 0. This latter behaviour implies that in
the range 8.83× 10−5 6 Pr 6 1.1× 10−4, the secondary steady branch is successively
destabilized and then re-stabilized by HS

w,0, before being destabilized by HS
l .

In addition, when the first bifurcation is steady (8.83 × 10−5 6 Pr 6 1.63 × 10−2),
the bifurcated secondary branch is destabilized either by the Hopf mode HS

l (figure 5d)
giving a limit cycle which keeps the Sl symmetry of the branch (Pr 6 1.21 × 10−2)
or by the Hopf mode HS

w,25 (figure 5b) that breaks this Sl symmetry and initiates a
cycle without symmetries (Pr>1.21×10−2). Finally two other crossings of bifurcation
points occurring on the primary branch can influence the dynamics of the transitions in
the cavity in the intermediate range of Pr: the crossing between the Hopf bifurcation
points HP

c,0 and HP
a at very low Pr (Pr = 3.28× 10−4) and the crossing between the

Hopf bifurcation points HP
a and HP

c,25 at Pr= 1.44× 10−2. The values of Pr given for
all these crossings of bifurcation points have been obtained with a good precision by
a Newton method.

The bifurcation analysis of the steady flows presented in this section has shown that
only two steady flow solutions exist for the cavity considered here and in the range
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of Pr studied. There are however many different Hopf bifurcation points on these
steady branches, which can generate different oscillatory flow solutions. The study of
these oscillatory flows will be presented in the next section.

5. Bifurcation analysis of the oscillatory flows
The bifurcation analysis of the oscillatory flows has been performed thanks to the

method presented in § 2 allowing the continuation of cycles and the calculation of their
stability. In what follows, we first present the results for different Prandtl numbers, for
Pr=0.025 and Pr=0 in the regions where Hopf bifurcation points first destabilize the
primary branch and for Pr= 0.015 and Pr= 0.005 in the region where exists a stable
steady secondary branch. We will then give a more global view of all the transitions
encountered in the whole Pr range. We begin with the simplest case at Pr=0.025 and
then consider the cases at successively smaller values of Pr. Note that the cycles will
be very often called according to the symmetry they keep, i.e. Sl, Sπ or Sc cycles; Sa
and Sw cycles will also be used for cycles with all the symmetries and cycles without
symmetry, respectively. The cycles will be also plotted with specific colours: green for
the Sc cycles, red for the Sa cycles, blue for the Sl cycles and pink for the Sw cycles.
Finally, as already mentioned, the bifurcations appearing on the cycles will be denoted
as P (pitchfork) or H (generalized Hopf) with a superscript giving information on the
cycle (Cl for a cycle with Sl symmetry, for example) and a subscript indicating the
symmetry kept by the critical mode.

5.1. Pr= 0.025
As shown in table 2 and in figure 4(a), the flow for Pr = 0.025 is a stable steady
convective loop (solution on the primary branch with all the symmetries) up to its
destabilization by the HP

c,25 mode at Grc= 33 055. The destabilizing mode only keeps
the Sc symmetry (figure 5a) and is associated with a critical frequency equal to 13.8.
At the critical point, the flow is found to undergo a supercritical Hopf bifurcation
toward a stable limit cycle (figure 6a). The resulting structure is thus an oscillatory
flow which keeps the central symmetry. This Sc cycle has a growing amplitude with
the increase of Gr and remains stable in a large range of Gr. This could be connected
to the absence of bifurcation points in the vicinity of the destabilizing Hopf point HP

c,25
(the next bifurcation PP

l occurs only at Grc = 61 737) (see table 2 and figure 4). To
illustrate the stability of the cycle, we give the Floquet multipliers of largest norm for
two values of the Grashof number in figure 6(b). For Gr = 52 000 (black triangles),
all the dominant Floquet multipliers are inside the unit circle, which means that the
limit cycle is stable. In contrast, when the Grashof number is increased up to Gr =
82 263 (red circles), a pair of complex conjugate Floquet multipliers cross the unit
circle, indicating the destabilization of the limit cycle at a Naimark–Sacker bifurcation,
with an eigenvector keeping the Sc symmetry. This bifurcation is supercritical and
thus gives birth to a stable quasi-periodic flow with central symmetry (QPc,2 state)
beyond Grc = 82 263. Some numerical simulations obtained by time stepping confirm
this transition: indeed, if the solution is still oscillatory periodic for Gr = 80 000, it
becomes quasi-periodic for Gr= 85 000.

5.2. Pr= 0.015
The bifurcation diagram corresponding to Pr = 0.015 is given in figure 7(a). This
diagram shows a different route toward quasi-periodicity. Two steady solutions (solid
black lines) and two periodic solutions (pink and green colours) are involved, with
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Grc = 33 055

Grc = 82 263
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(b)

FIGURE 6. (Colour online) Convective solutions for Pr = 0.025: (a) bifurcation diagram
(u∗ versus Gr) showing the stable steady solution with all the symmetries (primary branch)
and the Sc limit cycle with central symmetry initiated at the Hopf point HP

c,25 on the
primary branch and destabilized at Grc = 82 263. The stability of the different states is
indicated by the number of unstable eigenvalues n − m (see text in § 4); (b) Floquet
multipliers associated with the limit cycle for Gr = 52 000 (black triangles) and Gr =
82 263 (red circles), showing that the limit cycle is destabilized by a pair of complex
conjugate eigenvalues.

connections between these solutions. A third cycle, initiated at the Hopf bifurcation
point HP

a (Grc = 38 482) on the primary branch and with all the symmetries (red
colour), also exists in the same Gr range, but remains unstable and will not participate
to the observed dynamics of the flow at this value of Pr.

We can describe more precisely the dynamics of the flow in this case. The basic
steady flow with all the symmetries (primary branch) is stable up to the bifurcation
point PP

l at Grc= 34 966 where a supercritical pitchfork bifurcation occurs leading to
the stable steady flow with Sl symmetry (secondary branch). This secondary branch
is then destabilized at the Hopf bifurcation point HS

w,25 (Grc = 37 413). The marginal
mode at this point (figure 5b) is antisymmetric with respect to the Sl symmetry of the
branch, so that the resulting flow on the emerging limit cycle has no more symmetry.
This Sw cycle (pink colour) evolves super-critically and is then stable (figure 7c).
It eventually disappears at Grc = 38 588, a pitchfork bifurcation of cycles PCc,25

w on
the Sc cycle branch (green colour). There are then in fact two equivalent branches
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FIGURE 7. (Colour online) Convective solutions for Pr = 0.015: (a) bifurcation diagram
(u∗ versus Gr) showing the stable steady solutions on the primary and secondary branches
(solid black lines), the stable Sw cycle without symmetries (pink colour), which stabilizes
the Sc cycle with central symmetry (green colour) at PCc,25

w and up to Grc= 46 209, and the
cycle with all the symmetries (red colour), which remains unstable. The stability of the
different states is indicated by the number of unstable eigenvalues n−m (see text in § 4);
(b) Floquet multipliers associated with the Sc cycle for Gr= 38 588 (green squares), Gr=
40 000 (black triangles) and Gr = 46 209 (red circles); (c) Floquet multipliers associated
with the Sw cycle for Grc = 38 000 (black triangles) and Gr= 38 490 (red circles).

of Sw cycles, which emerge from the two equivalent steady secondary branches
initiated at PP

l and mentioned in § 4 and disappear at PCc,25
w .

On the other hand, this Sc cycle is initiated at the Hopf bifurcation point HP
c,25

(Grc = 37 314) on the primary branch, beyond the first steady bifurcation at PP
l .

The cycle is first unstable, as it bifurcates from an already unstable steady branch.
When the Grashof number is increased, the cycle is stabilized at the PCc,25

w pitchfork
bifurcation point, when one real Floquet multiplier crosses the unit circle (figure 7b,
green squares). For further increase of Gr, the Sc cycle evolves with a regularly
increasing amplitude until its destabilization at a supercritical Naimark–Sacker
bifurcation. The pair of complex conjugate Floquet multipliers destabilizing the cycle
is shown in figure 7(b) (red circles). These Floquet multipliers are associated with an
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eigenvector keeping the central symmetry. Beyond this bifurcation at Grc = 46 209, a
stable quasi-periodic state with Sc symmetry (QPc,2 state) can then be observed.

To summarize, for Pr= 0.015 and Gr 6 47 000, we observe a sequence of different
solutions which are stable on successive ranges of Gr: the steady solution with all
the symmetries on the primary branch for Gr 6 34 965, the steady solution with Sl
symmetry on the secondary branch for 34 965 6 Gr 6 37 413, the limit cycle with no
symmetry for 37 413 6 Gr 6 38 588, the limit cycle with Sc symmetry for 38 588 6
Gr 6 46 209 and finally the quasi-periodic solution with Sc symmetry for Gr > 46 209.

5.3. Pr= 0.005
The convective situation at Pr= 0.005 still differs from the previous situations studied,
as a coexistence of stable steady and oscillatory solutions will be observed.

The bifurcation diagram giving the different convective solutions for Pr= 0.005 is
shown in figure 8(a). When the Grashof number is increased, as for Pr = 0.015, we
first observe the two steady flow solutions, the solution with all the symmetries on
the primary branch, stable up to the pitchfork bifurcation PP

l at Grc= 28 957, and the
steady solution with Sl symmetry on the bifurcated secondary branch. This secondary
branch is stable up to the Hopf bifurcation HS

l at Grc= 33 026. This Hopf bifurcation
keeps the Sl symmetry of the secondary branch (see the marginal mode in figure 5d),
but the limit cycle with Sl symmetry that is created (blue colour) evolves sub-critically
and is then unstable at onset. This Sl cycle remains unstable while developing for
decreasing Gr and eventually disappears at Grc = 31 412, a pitchfork bifurcation of
cycles PCa

l on the Sa cycle branch (red colour). Here also, there are two equivalent
branches for this Sl cycle, which emerge from the two equivalent steady secondary
branches initiated at PP

l and disappear at PCa
l .

On the other hand, the Sa cycle, initiated at the Hopf point HP
a (Grc= 30 569) along

the primary steady branch, beyond the steady bifurcation PP
l , evolves super-critically,

as shown in figure 8(a). The stability changes for this cycle can be obtained from the
variation with Gr of the norm of the main Floquet multipliers plotted in figure 9(a).
This limit cycle is unstable at onset, with a real positive Floquet multiplier of norm
greater than one (solid blue line in figure 9a), because it is initiated on an already
unstable steady branch. The norm of this Floquet multiplier decreases linearly as Gr
is increased and becomes less than 1 (crossing of the unit circle) at Grc= 31 412, i.e.
at the pitchfork bifurcation point PCa

l . The Sa cycle, stable beyond this point, develops
in amplitude (figure 8a), before being destabilized at the pitchfork bifurcation point
PCa

c (Grc = 32 448) by a steady eigenvector (solid green curve in figure 9a), which
only keeps the central symmetry. The cycle initiated at this point holds thus the Sc
symmetry. It is first unstable as it bifurcates sub-critically from the Sa cycle, but it is
soon stabilized by a saddle-node point at Grc≈ 32 355 and then evolves for increasing
Grashof numbers. The norms of the main Floquet multipliers corresponding to this
Sc cycle are given in figure 9(b). We see the stabilization of the cycle at Grc =

32 355 (solid green line) and its destabilization by a pair of complex conjugate Floquet
multipliers (dashed green line) at Grc = 38 572. A quasi-periodic flow (QPc,2 state),
still with Sc symmetry, appears for larger Grashof numbers beyond this supercritical
Naimark–Sacker bifurcation. Note that the dynamics observed for the Sa cycle, with
the interaction with the Sl cycle and then with a Sc cycle, was already present for
Pr = 0.015. It was not detailed, however, for Pr = 0.015, because it did not lead to
stable solutions in this case.

These results have shown the coexistence of different stable solutions in the same
Gr range: coexistence of the steady solution with Sl symmetry with the Sa cycle
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FIGURE 8. (Colour online) Convective solutions for Pr = 0.005: (a) bifurcation diagram
(u∗ versus Gr) showing the stable steady solutions on the primary and secondary branches
(solid black lines), the unstable subcritical Sl cycle with left–right symmetry (blue colour),
the Sa cycle with all the symmetries (red colour) stabilized at the pitchfork bifurcation
PCa

l and up to PCa
c and the Sc cycle with central symmetry (green colour) stable above

the saddle-node point at Grc = 32 355. The stability of the different states is indicated
by the number of unstable eigenvalues n − m (see text in § 4); (b) bifurcation diagram
obtained by time-stepping simulations giving the averaged kinetic energy maximum EK,max
and minimum EK,min during a cycle for the different solutions obtained: steady solutions
on the secondary branch (black squares), periodic solutions with Sc symmetry (green
circles) and with all symmetries (red triangles, a dashed line is used for transient states);
(c,d) time series EK(t), the average kinetic energy in the cavity, for Gr = 30 000 and
33 500, respectively. Insets give the longitudinal velocity in the transverse Vt plane.
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FIGURE 9. (Colour online) Variation of the spectrum (norm of the main Floquet
multipliers) with Gr for (a) the Sa cycle and (b) the Sc cycle (see figure 8). Solid (dashed)
lines are used for steady (complex conjugate) Floquet multipliers. The associated modes
have all the symmetries (red line), the Sl symmetry (blue line), the Sc symmetry (green
line), the Sπ symmetry (yellow line) or no symmetry (pink line). The results are for
Pr= 0.005.

for 31 412 6 Gr 6 32 448 and with the Sc cycle for 32 355 6 Gr 6 33 026, and even
coexistence of the three solutions for 32 355 6 Gr 6 32 448. In order to highlight
this complex dynamics for Pr = 0.005, some additional time-stepping numerical
simulations were carried out for different Grashof numbers ranging from 30 000 to
35 000. The results are first presented in figures 8(c) and 8(d) in terms of the time
variation of EK(t), the average kinetic energy in the cavity, for Gr = 30 000 and
33 500, respectively. An important observation is that the behaviour of the states
obtained by time-stepping simulations is influenced by the different solutions and
instability modes present in the vicinity of the considered Grashof number. For
instance, for Gr = 30 000 (figure 8c), there exist the primary steady solution branch,
for which the main instability modes are the already unstable steady PP

l mode and
the still stable oscillatory HP

a mode with the frequency f (HP
a ) ≈ 35, and the stable

secondary steady branch that has bifurcated at Grc(PP
l )= 28 957 (see figure 8a). We

naturally expect that the solution at long times will be the stable steady state with Sl
symmetry on the secondary branch. In practice, we notice the existence of damped
oscillations connected with the HP

a mode (their frequency is close to f (HP
a )) which

lead to a transient convergence towards the unstable steady state on the primary
branch, and it is only for t≈ 5 that the stable steady state on the secondary branch is
eventually reached. A similar behaviour is also observed for Gr= 33 500 (figure 8d):
a transient convergence towards the Sa cycle (unstable state) is observed, before
the emergence of the Sc cycle (stable state) for t > 17. Note that such a behaviour
was already observed during transient calculations in two dimensional differentially
heated cavities by Pulicani et al. (1990). The different solutions reached during
the time-stepping numerical simulations are summarized in the bifurcation diagram
given in figure 8(b). The solutions are plotted as EK,max and EK,min, maximum and
minimum values of EK(t) during a cycle, respectively (EK,max = EK,min for a steady
solution). The green circles represent the Sc cycle, the black squares indicate the
steady flow with the Sl symmetry on the secondary branch and finally, red triangles
are used for the Sa cycle. For these last solutions, the cycles obtained as transient
states are given as dashed lines. We observe that this bifurcation diagram obtained by
time-stepping simulations is coherent with that obtained by continuation in figure 8(a).
Note, however, that the subcritical cycle with Sl symmetry is never observed as a
transient cycle during the time-stepping simulations: only damped oscillations towards
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the stable steady state with Sl symmetry are generally obtained. This could be due to
the fact that, in this case, both the subcritical cycle and the stable steady state have
the same symmetries.

5.4. Pr= 0
The case Pr= 0 has long been considered as an interesting approximation to simulate
the flows of liquid metals with small Pr, such as those observed in crystal growth
processes. The temperature field, in this limit case, is purely diffusive, with a linear
variation of the temperature between the two imposed values at the end walls, and
does not need to be solved.

The specificity in this case is that the first instability of the steady basic flow on the
primary branch occurs at the Hopf bifurcation HP

c,0, which initiates a stable cycle with
central symmetry and low frequency (Grc = 27 893 and fc = 2.7, see figure 5( f ) and
table 2). This Sc cycle (figure 10a) is destabilized at the Naimark–Sacker bifurcation
HCc,0

c by a mode with the same Sc symmetry, creating a quasi-periodic stable solution
(QPc,1 state). On the same primary branch, we find the usual PP

l bifurcation to the
steady secondary branch, which is unstable here, and a Hopf bifurcation HP

a keeping
all the symmetries. At this Hopf point, a Sa cycle appears super-critically. It is two
times unstable at onset, becomes one time unstable at PCa

l by stabilization of a steady
mode with Sl symmetry and is eventually stabilized at HCa

c by stabilization of a
complex conjugate mode with Sc symmetry. It then remains stable up to PCa

c , where a
steady mode with Sc symmetry is destabilized. At these different critical values along
the Sa cycle, different new oscillatory solutions will appear. At the pitchfork point
PCa

l , an unstable Sl cycle appears for larger Gr and this cycle eventually disappears
at the Hopf point HS

l on the secondary steady branch. At the Naimark–Sacker point
HCa

c , a stable quasi-periodic solution with central symmetry is created for smaller Gr.
This stable QPc,1 state exists down to the already mentioned bifurcation HCc,0

c on the
low frequency Sc cycle. Finally, at the pitchfork point PCa

c , a stable Sc cycle with a
frequency f = 34.67 at onset appears for larger Gr. This cycle remains stable up to
Grc= 31 476 where a quasi-periodic centro-symmetric solution (QPc,2 state) is created
beyond a supercritical Naimark–Sacker bifurcation. The QPc,1 quasi-periodic state
obtained for Pr= 0 is illustrated in figure 10(b) by time evolutions of u∗: we see the
change of this state from a solution with small amplitude short-period oscillations
on a long-period signal (Gr = 29 400, close to HCc,0

c ) to a solution with short-period
oscillations modulated in amplitude (Gr= 30 400, close to HCa

c ).

5.5. Global view of the solutions
A global presentation of the different solutions obtained when Gr is increased for
the four chosen Prandtl numbers is given in figure 11. The solutions are given by
horizontal lines covering their domain of existence in terms of Gr, these lines being
solid lines in the range where the solutions are stable. As in the previous figures,
different colours are used for the solutions, depending on their symmetries (green for
the Sc symmetry, red for the Sa symmetry, blue for the Sl symmetry and pink for the
Sw symmetry). For each Prandtl number, the solutions are presented from Gr= 27 000
up to values of Gr allowing us to reach quasi-periodic states, i.e. Gr= 34 000, 39 000,
47 000 and 83 500 for Pr = 0, 0.005, 0.015 and 0.025, respectively. We can see that
many different solutions (steady, periodic, quasi-periodic) with different symmetries
can be obtained. The path followed to go from the basic steady solution to the final
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FIGURE 10. (Colour online) Convective solutions for Pr= 0: (a) bifurcation diagram (u∗
versus Gr) showing the stable steady solution on the primary branch (solid black line),
the Sc cycle with low frequency (green colour) stable from HP

c,0 to HCc,0
c (Grc = 29 236),

the Sa cycle (red colour) stabilized at HCa
c (Grc = 30 492) and up to PCa

c (Grc = 31 241),
the unstable Sl cycle (blue colour) and another Sc cycle (green colour) stable from PCa

c
to Grc = 31 476. Quasi-periodic solutions exist between HCc,0

c and HCa
c (QPc,1 state) and

above Grc = 31 476 (QPc,2 state). The stability of the different states is indicated by the
number of unstable eigenvalues n−m (see text in § 4); (b) time series u∗(t) for the QPc,1
state (Gr= 29 400, red curve; Gr= 29 800, green curve; Gr= 30 400, blue curve).

quasi-periodic state through periodic states is different for each Pr number studied.
In any case, however, it was found that the last periodic solution is a Sc cycle, which
is then destabilized at a Naimark–Sacker bifurcation setting up a quasi-periodic state
with the same Sc symmetry.

6. Change of the transition scenarios with Pr

Until now, we have presented some bifurcation analyses for different Prandtl
numbers, but without connecting these cases between them. The idea is now to use
these few examples to deepen our understanding of how the transition scenarios
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Intersection HP
c,0/P

P
l HP

c,0/H
P
a HS

l /H
S
w,25 HP

a /H
P
c,25 PP

l /H
P
c,25

Prc 8.83× 10−5 3.28× 10−4 0.0121 0.0144 0.0163
Grc 28 327 29 398 39 518 37 642 36 630

Pr ranges R1 | R2 | R3 | R4 | R5 | R6

TABLE 3. Intersection points of the paths of the main bifurcation points on the primary
and secondary branches; Pr ranges which are thus defined in the studied interval 06Pr 6
0.025.

between the different observed stable solutions evolve when changing the Prandtl
number.

The results presented in § 5 have shown that many Hopf bifurcation points, on the
primary as well as on the secondary steady branch, are involved in the transition
scenarios. There are also important connections between Hopf bifurcation points on
the secondary branch and Hopf bifurcation points on the primary branch through
interaction of cycles at pitchfork bifurcations: for example, HS

l is connected with HP
a

through the interaction of the Sl and Sa cycles at PCa
l and HS

w,25 is connected with
HP

c,25 through the interaction of the Sw and Sc cycles at PCc,25
w . Finally the transition

scenarios appear to be strongly affected by the relative positions of the bifurcation
points on the primary branch, i.e. PP

l , HP
a , HP

c,0 and HP
c,25, and of the bifurcation points

on the secondary branch, i.e. HS
l , HS

w,0 and HS
w,25. The intersection of the paths of

these different bifurcation points then plays an important role. All these intersections,
already mentioned in § 4, are summarized in table 3, together with the Pr ranges
which are thus defined.

For 1.63 × 10−2 6 Pr 6 2.5 × 10−2, in the R6 range, the first bifurcation point is
HP

c,25. We can then expect that in this range of Pr, as for Pr=0.025, HP
c,25 will give an

Sc cycle which will evolve with the Grashof number and undergo a Naimark–Sacker
bifurcation, allowing quasi-periodicity to set up.

For 1.44 × 10−2 6 Pr 6 1.63 × 10−2, in the R5 range, the first bifurcation on the
primary branch is now steady at PP

l due to the intersection of the HP
c,25 and PP

l paths.
This codimension-2 point leads also to the creation of the Hopf bifurcation HS

w,25 on
the secondary branch initiated at PP

l and of the pitchfork bifurcation of cycles PCc,25
w

on the Sc cycle initiated at HP
c,25. In this range of Pr, as for Pr= 0.015, we can expect

to have a stable secondary branch up to the point HS
w,25, where a stable Sw cycle is

initiated. This Sw cycle ends at PCc,25
w , where it stabilizes the Sc cycle, now unstable

at its onset. A quasi-periodic state with Sc symmetry will eventually appear when the
Sc cycle will be destabilized. Note that, in this range of Pr, the Sa cycle is expected
to remain unstable and to play no role in the transition scenario.

The next changes, when decreasing Pr, occur at Prc= 1.44× 10−2 and 1.21× 10−2

and correspond to the crossings of the HP
c,25 and HP

a bifurcation points on the primary
branch and the HS

l and HS
w,25 bifurcation points on the secondary branch, respectively.

Beyond these two crossings, in the R3 range, the dynamics found in the R5 range
and involving the Sw cycle and the Sc cycle is now entirely unstable as these two
cycles are affected by a supplementary unstable complex conjugate mode. As shown
in figure 8(a) for Pr = 0.005, the important dynamics in this R3 range is connected
with the Sl and Sa cycles: the secondary steady branch is stable up to HS

l , giving birth
subcritically to an unstable Sl cycle, which will eventually stabilize the Sa cycle at the
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pitchfork point PCa
l . Another pitchfork point on the Sa cycle will give rise to a stable

Sc cycle and finally to a QPc,2 state with central symmetry.
In the intermediate R4 range, the dynamics must be more complex as, compared to

the R5 range, only the crossing of HP
c,25 and HP

a on the primary branch has occurred.
To have more information on the dynamics in this R4 range, we have calculated the
bifurcation diagram for Pr= 0.013, which is presented in figure 12. We see that this
diagram involves both the characteristics found in the R5 and R3 ranges. The Sw cycle,
stable at onset as in the R5 range, is now destabilized at a Naimark–Sacker bifurcation
HCw,25

w , before to disappear at the pitchfork bifurcation PCc,25
w on the Sc cycle coming

from HP
c,25 (Grc= 38 636). This Sc cycle, now two time unstable at onset, is then not

stabilized. In contrast, as in the R3 domain, the Sa cycle is only one-time unstable at
onset at HP

a (Grc = 35 835) and is stabilized at the pitchfork bifurcation PCa
l to the Sl

cycle. Note that this Sl cycle is two-time unstable at its subcritical onset at HS
l and a

Naimark–Sacker bifurcation HCl
w makes this cycle one-time unstable for smaller Gr in

order to fit with its stability at PCa
l . As already seen, the Sa cycle is then destabilized

at a pitchfork point (Grc= 38 844), which gives birth to a secondary Sc cycle, slightly
sub-critical at its origin, stable on a large domain of Gr from Grc = 38 767 to Grc =

43 665. The subsequent scenario is different from what was obtained for other values
of Pr. The Sc cycle is destabilized by a period-doubling bifurcation initiating an Sc
cycle with a double period. This new Sc cycle is destabilized at Grc = 46 148 at a
pitchfork bifurcation giving rise to a Sw cycle without symmetry stable up to Grc =

46 646 and then to a quasi-periodic state without symmetry, QPw. In fact, on the new
Sc cycle, there is also a Naimark–Sacker bifurcation very close to 46 148. The QPc,3
quasi-periodic state with central symmetry which then appears is unstable at onset,
but must be further stabilized as it can be obtained by time-stepping calculations at
larger Gr values as Gr = 46 300 and 46 600. There is then the coexistence of both
quasi-periodic states without symmetry and with the Sc symmetry in a certain range
of Gr values, as it was confirmed by time-stepping calculations at Gr= 46 650.

A specificity of the R4 range is the existence of the Naimark–Sacker bifurcations
HCl

w and HCw,25
w on the Sl and Sw cycles, respectively. Some extra calculations have

shown that, for Pr = 0.0142, these bifurcation points HCl
w and HCw,25

w are close to the
existence limit PCa

l and PCc,25
w of their respective cycles, whereas, for Pr = 0.0122,

HCl
w and HCw,25

w are close to the birth points HS
l and HS

w,25 of their respective cycles
and also close to each other. All this means that the HCl

w and HCw,25
w points appear

at PCa
l and PCc,25

w , respectively, when the HP
a and HP

c,25 bifurcation points cross on the
primary branch at Prc = 1.44× 10−2 and that they disappear at HS

l and HS
w,25, when

these HS
l and HS

w,25 points cross on the secondary branch at Prc= 1.21× 10−2. This is
also an indication that the stable part of the Sw cycle, between HS

w,25 and HCw,25
w , very

progressively shortens between Pr= 1.44× 10−2 and Pr= 1.21× 10−2 and eventually
disappears at Pr= 1.21× 10−2.

The last crossings of bifurcation points occur on the primary branch, crossing of
HP

c,0 and HP
a at Prc = 3.28× 10−4 and crossing of HP

c,0 and PP
l at Prc = 8.83× 10−5,

and they delimit the two ranges R2 and R1 of Pr. Except for the limit case Pr =
0, we do not have bifurcation diagrams in these ranges and some extra calculations
will then be necessary to understand the transition between the diagrams at Pr =
0.005 and Pr = 0. We will follow interesting new bifurcation points appearing on
the cycles in these Pr ranges (figure 13) and compute a newly observed cycle for
Pr= 0.0001 (figure 14). Compared to the diagram at Pr= 0.005, the crossing of HP

c,0

and HP
a at Prc = 3.28 × 10−4 will change the stability of the Sa cycle at its onset
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FIGURE 12. (Colour online) Bifurcation diagram (u∗ versus Gr) for Pr= 0.013 showing
all the convective solutions from the stable steady solution with all the symmetries to the
appearance of quasi-periodicity. As in the previous bifurcation diagrams, the Sa cycle is
red, the Sl cycle is blue, the Sc cycles are green and the Sw cycles are pink. The stability
of the different states is indicated by the number of unstable eigenvalues n−m (see text
in § 4). This case is intermediate between the cases at Pr=0.015 and Pr=0.005 and parts
of their dynamics are found here. Note the occurrence of a period-doubling bifurcation at
Grc = 43 665, a specificity of this case.

at HP
a , with one pair of unstable complex conjugate Floquet multipliers in addition

to the already unstable real Floquet multiplier. At the same time, however, a new
Naimark–Sacker bifurcation HCa

c appears on the Sa cycle and stabilizes the pair of
complex conjugate Floquet multipliers. As shown in figure 13, HCa

c evolves from HP
a

at Pr= 3.28× 10−4, crosses the path of PCa
l , the other bifurcation on the Sa cycle, at

Pr≈ 2.3× 10−4, before continuing towards Pr= 0. The appearance of this HCa
c point

allows the dynamics obtained at Pr= 0.005 to remain, i.e. the stabilization of the Sa

cycle at PCa
l and the further dynamics for larger Gr, at least down to Pr= 2.3× 10−4.

Indeed, for Pr values below 2.3 × 10−4, it is now above HCa
c that the Sa cycle is

stabilized, in coherence with what is observed for Pr= 0. Note that the domain where
the Sa cycle is stable is highlighted in figure 13. Finally, the crossing of HCa

c and PCa
l

also modifies the unstable spectrum of the Sl cycle at PCa
l , where it emerges from the

Sa cycle, as a pair of complex conjugate Floquet multipliers is now destabilized. We
found, however, that the crossing also induces the creation of a new Naimark–Sacker
bifurcation HCl

w on the Sl cycle, stabilizing these Floquet multipliers. Beyond HCl
w , the

unstable spectrum of the Sl cycle is then the same as before the crossing, allowing
the dynamics on the secondary branch to which the Sl cycle is connected at HS

l to be
maintained. HCl

w will move all along the Sl cycle, from PCa
l at Pr= 2.3× 10−4 to HS

l
at Pr = 8.83× 10−5, i.e. at the crossing of HP

c,0 and PP
l . This last crossing does not

change the dynamics initiated from the primary branch and previously described.
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FIGURE 13. (Colour online) Paths of the bifurcation points in the very small Pr range.
In addition to the bifurcation points on the primary and secondary steady branches (PP

l ,
HP

c,0, HP
a , HS

l and HS
w,0, as in figure 4b), are given the bifurcation points on the Sa cycle,

steady bifurcation PCa
l (sky-blue line, extrapolated with a dashed part) and Naimark–Sacker

bifurcation HCa
c (dark-blue line), and the bifurcation HCl

w on the Sl cycle calculated for
Pr = 1 × 10−4 and Pr = 2.2 × 10−4 (black crosses) and interpolated in between (dashed
black line). The domains where are stable the secondary steady flow (domain with oblique
lines) and the Sa cycle (domain with grey background) are highlighted. The bifurcation
HCc,0

c on the Sc,0 cycle is given for Pr= 0 and Pr= 1× 10−4 (red crosses) and interpolated
in between (dashed red line). For Pr 6 8.83 × 10−5, the QPc,1 state can be obtained
between HCc,0

c and HCa
c . Above Pr = 8.83 × 10−5 (dashed vertical black line), the QPc,1

state is still observed in the Gr range below HCa
c and above the red asterisks, which define

an approximate lower limit.

We have now to describe the specific dynamics due to the bifurcation point HS
w,0

that appears on the secondary branch at the crossing of HP
c,0 and PP

l at Prc = 8.83×
10−5. HS

w,0 will destabilize the secondary steady solution in a certain range of Gr just
above Pr= 8.83× 10−5 (figure 13). This range of Gr will shorten as Pr is increased
and disappear at Pr ≈ 1.1 × 10−4. HS

w,0 will also generate a stable Sw cycle without
symmetry and with a long period. This cycle is shown in figure 14 for Pr = 1 ×
10−4. It is stable from Grc= 28 581, where it is initiated at HS

w,0 ( fc= 2.76), to Grc=

29 705, where is it destabilized at a Naimark–Sacker bifurcation and gives rise to a
quasi-periodic state. This quasi-periodic state without symmetry was never observed
as a stable state, meaning that the Naimark–Sacker bifurcation must be subcritical. In
contrast, the QPc,1 state with Sc symmetry, which exists and is stable between HCc,0

c
and HCa

c for Pr = 0 and up to Prc = 8.83 × 10−5 in the R1 range, continues to be
stable in a certain Gr range above Pr= 8.83× 10−5 despite the destabilization of the
Sc cycle. This QPc,1 state was observed by time-stepping calculations below HCa

c in a
Gr range decreasing in size with the increase of Pr and disappearing at the crossing
of HCa

c and PCa
l at Pr= 2.3× 10−4. This Gr range can be seen in figure 14 between

the HCa
c curve and the red asterisks, which give the smallest Gr values where the QPc,1

state was obtained. Note finally that the second point HS
w,0 appearing at Grc = 30 004
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FIGURE 14. (Colour online) Bifurcation diagram (u∗ versus Gr) for Pr = 1 × 10−4

highlighting the Sc cycle with long period (green colour) initiated at HP
c,0 (Grc = 28 383,

fc = 2.79) on the primary branch and unstable at this value of Pr and the Sw cycles with
long periods (pink colours) initiated at the two points on the secondary branch belonging
to the HS

w,0 path. The Sw cycle initiated at Grc = 28 581 (light-pink colour, fc = 2.76) is
stable at onset and then destabilized at Grc = 29 705 at a Naimark–Sacker bifurcation,
whereas the Sw cycle initiated at Grc = 30 004 ( fc = 2.20) remains unstable. The steady
secondary branch is stable from PP

l (Grc = 28 328) to the first HS
w,0 point, and then from

the second HS
w,0 point to HS

l (Grc = 30 386).

on the secondary branch, and restabilizing it, does not give rise to stable states as it
can be observed in figure 14 for Pr = 1 × 10−4. From all these results obtained for
the very low values of Pr, we can also conclude that the dynamics in the whole R1
range is similar to that obtained for Pr = 0, with only some variations of the main
bifurcation points, HP

c,0, the onset of the stable Sc cycle with long period, HCc,0
c , the

onset of the stable QPc,1 state and HCa
c , the limit of the QPc,1 state and onset of the

stable Sa cycle (see figure 13).
We finally give a summary of all the different stable flow states, from steady to

quasi-periodic, which have been obtained in the study for 0 6 Pr 6 0.025 in table 4.
We also indicate in which domain of Pr from R1 to R6 (see table 3) they can be
found. Fourteen different stable states have been obtained, corresponding to two steady
states, eight cycles and four quasi-periodic states. We see that, besides the basic Sa

steady state, the quasi-periodic QPc,2 state is found in all the Pr ranges. The primary
Sc cycle is stable for the largest values of Pr in ranges R5 and R6, whereas the
primary Sa cycle, although never stable at its onset, is obtained as a stable state in the
other ranges R4 to R1 and gives birth to a stable secondary Sc cycle. The secondary
Sw cycle is stable in R5 where it also stabilizes the primary Sc cycle, but also in R4
in a shrinking interval of Gr. In contrast, the secondary Sl cycle is never obtained as a
stable state, although it is involved in the stabilization of the Sa cycle. The long-period
primary Sc cycle is only stable in R1, but another long-period secondary Sw cycle is
stable in a very small range of Pr inside R2. The quasi periodic QPc,1 state, stable in
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Pr ranges R1 R2 R3 R4 R5 R6

Basic Sa steady state × × × × × ×

Secondary Sl steady state × × × ×

Primary Sc cycle × ×

Primary Sc cycle (long period) ×

Primary Sa cycle × × × ×

Secondary Sw cycle × ×

Secondary Sc cycle × × × ×

Secondary Sw cycle (long period) ×

Secondary Sc cycle (double period) ×

Secondary Sw cycle (double period) ×

QPc,1 state × ×

QPc,2 state × × × × × ×

QPc,3 state ×

QPw state ×

TABLE 4. Summary of the different stable flow states, from steady to quasi-periodic, which
have been obtained in the study and the domains of Pr from R1 to R6 (see table 3) where
they can be found. The cycles are given as primary when they are initiated at a Hopf
bifurcation on the steady primary branch and as secondary when they are initiated at a
Hopf bifurcation on the steady secondary branch or at a pitchfork bifurcation on another
cycle.

R1 and part of R2, has the peculiarity of being an intermediate state between stable
cycles. Finally, the largest number of stable states is obtained in R4, which appears
as a range of Pr where transition between different bifurcation scenarios occurs.

7. Conclusion
Buoyant convection is an ubiquitous phenomenon both in nature and industry. This

is why it has been considered as a classical problem of physical fluid mechanics for
a long time. Our interest in this problem is motivated by crystal growth applications
where oscillatory convection often rises in the liquid bulk subjected to a horizontal
temperature gradient and highly impacts the quality of the final solid product.
Moreover, the numerical studies previously concerned by this problem mainly used
time-stepping approaches for selected cases and could not catch the precise dynamics
involved in the transition from steady to periodic and quasi-periodic states.

The numerical study presented in this paper uses powerful continuation techniques
allowing us to follow both steady and periodic solutions when the governing parameter
is varied. It is focused on a side heated parallelepipedic cavity of given aspect ratios
(AX = 4, AY = 2), filled with a low Prandtl number fluid in the range 0 6 Pr 6 0.025.
Despite this very small Pr range, our results have shown a complex flow dynamics,
with bifurcation scenarios involving different steady and periodic solutions and
changing with Pr. Rather than giving a summary of all the bifurcation scenarios
observed, we will quote important information obtained during this study.

In these situations heated from the side and at small Pr, the steady solutions are
only few: the basic one-roll flow with all the symmetries (basic steady branch) and,
possibly, another solution corresponding to the breaking of one of the symmetries
(here the Sl solution on a secondary steady branch). In contrast, the oscillatory
periodic solutions are numerous, initiated at the different Hopf bifurcation points on
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the primary or secondary steady branches, and several of these cycles are involved in
the dynamics of the system leading to the stable solutions. If the scenario is simple
for the largest values of Pr (as Pr = 0.025) with a supercritical Hopf bifurcation on
the primary branch leading to a periodic solution, which is stable in a large range of
Gr, the situation becomes more complex for smaller values of Pr. In particular, in the
domain of Pr where the first instability is steady and where a stable secondary steady
branch exists, some cycles that are unstable at their onset on the primary branch
will be stabilized by interaction with cycles coming from the secondary branch. A
striking example is for example given by the case Pr = 0.005: the secondary branch
is stable up to a Hopf bifurcation with Sl symmetry and a stable Sl cycle could then
be expected. In fact, the Hopf bifurcation being subcritical, the Sl cycle is unstable
and cannot be observed, but it stabilizes a Sa cycle which can then be obtained,
together with a Sc cycle which bifurcates from the Sa cycle. We can also note the
possible coexistence of stable solutions (steady or oscillatory) in certain Gr ranges.
The situations closer to Pr = 0 are particularly complex because the bifurcation
points on the steady primary and secondary branches co-exist in a smaller Gr range.
And the scenario obtained for Pr = 0, which, in the past, has been thought to be
representative of what is obtained in the small Pr range, is in fact strictly valid only
for Pr 6 8.83× 10−5.

This study has also shown that the bifurcation scenarios change at the different
intersections of the bifurcation points on the primary and secondary steady branches,
but also sometimes at intersections of bifurcation points on cycles. We have tried to
understand all the changes induced in the dynamics by these different intersections
and then to give a clear view of the dynamics in the whole Pr range considered. In
any case, the bifurcation scenarios, which begin with the basic steady flow, eventually
lead to a cycle with Sc symmetry and a further quasi-periodic state with the same Sc
symmetry. An exception was found for Pr= 0.013 with a period-doubling bifurcation
first affecting the Sc cycle and the further coexistence of quasi-periodic states with Sc
symmetry and without symmetry. This specific dynamics at high Gr values could exist
in the vicinity of Pr= 0.013, but was not observed for Pr= 0.005 and Pr= 0.015.

Qualitative comparisons can be made with the experiment of Braunsfurth & Mullin
(1996) in a 4 × 1.3 × 1 cavity. In this experiment using liquid gallium, both the
Grashof number and the Prandtl number were changed by varying the temperature
difference as well as the applied mean temperature. We can note that the cavity is
more transversally confined than our cavity, but also that, as shown by Juel et al.
(1999), the generated flow has not the Sπ symmetry due to the imperfect insulation
of the cavity. A consequence of this last point is that the steady bifurcation leading
to the breaking of this Sπ symmetry cannot be found in the experiment. Interestingly,
however, different oscillatory states are found in the experiment when varying Gr and
Pr, which compares well with our results. The mentioned dimensionless frequencies
are 52.1, 22.1, 65.7 and 39.2, values a little higher than our values, but in the same
range for Pr corresponding to gallium. Note also that the experimental temperature
measurements were performed through a lid in the Vl symmetry plane: a consequence
is that, for oscillations that break the left–right symmetry, the temperature signal
obtained has twice the frequency of the signals measured elsewhere in the cavity
(Hof et al. 2004). The frequencies of the experimental oscillatory flow could then be,
in some cases, half the values given. More quantitative comparisons are difficult due
to the differences in the geometry and symmetry properties, but also because of the
different ways to span the (Gr, Pr) parameter space.

Our study was limited to Gr values allowing us to reach quasi-periodic states, a
domain where our continuation techniques were particularly useful to understand the
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flow dynamics. We have not explored the domain of larger Gr, which would lead
to more complex oscillatory flows and eventually to chaotic states, but only time-
stepping techniques can be used for such further studies. Our continuation techniques,
in contrast, could be used to study the flow dynamics in cavities with different aspect
ratios. According to Henry & Ben Hadid (2007), the first instability affecting the
basic steady flow strongly depends on the cavity aspect ratios, and can be steady or
oscillatory and with different symmetries. In particular, bifurcations leading to states
with the Sπ symmetry (never seen in this study) can be obtained for certain aspect
ratios. Such changes in the first instability characteristics would imply changes in the
bifurcation scenarios, which it could be interesting to study in the future.
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