
J. Fluid Mech. (2021), vol. 916, R4, doi:10.1017/jfm.2021.270

Mixing in a sheared particulate suspension
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In a sheared suspension, the chaotic motion of the particles disperses the suspending
liquid and drives an exponential and broadly distributed growth of the elongation of its
material lines. This paper addresses experimentally and theoretically the consequences of
this complex advection on the mixing of an initially segregated blob of diffusive dye, at
large Péclet number and down to the finest scales of mixing. As the suspension is sheared,
the combined action of the mean and fluctuating components of the flow stretches and folds
the blob into a multi-scale lamellar structure. At short time, overlaps between the lamellae
are scarce and the probability distribution concentration can be understood from the local
stretching statistics only. At intermediate times, dispersion limits the volume within which
lamellae deploy; overlaps become abundant and their statistics determine the concentration
distribution. At longer times, the dye becomes homogeneous at the particle scale and the
concentration distribution is set by dispersion only. Predictions for both the concentration
distribution and the transitions between these successive stages of mixing are provided and
compared to the experimental results.
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1. Introduction

Many situations in nature or in industries involve mixing a diffusive scalar in a sheared
particulate suspension. The transport of oxygen or drugs by blood (Kabacaoğlu, Quaife
& Biros 2017; Kaoui 2018; Berg et al. 2020), of nutrients inside the cell cytoplasm
(Goldstein & van de Meent 2015), of adjuvants in concretes or of heat in some exchangers
(Dbouk 2018; Yousefi et al. 2020) provide a few examples illustrating the importance of
this problem, which still lacks a fundamental description. So far, the enhanced transport
properties of sheared suspensions have been described mostly at a macroscopic scale
through an effective diffusion coefficient (Metzger, Rahli & Yin 2013; Souzy et al. 2015;
Thøgersen & Dabrowski 2017).

This work adopts a completely different approach by developing a microscopic
description of the mixture, which enables one to predict the evolution of the scalar
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Figure 1. (a) Schematic of the experimental set-up. (b) Transverse view of the injection system used to form
a thin cylindrical blob of dyed liquid. (c) Picture of the blob cross-section at strains γ = 0 and γ = 5 for
Pé = 8500. The initial blob size is 2s0 ≈ 200 μm by 2l0 ≈ 300 μm. The intersections of the particles with the
light sheet are highlighted in grey.

concentration distribution. These developments have been made possible by the recent
convergence of three key elements. First, the existence of a theoretical framework – the
so-called lamellar approach – which envisions a mixture as a set of stretched lamellae,
possibly interacting with each other, and provides the tools to tackle complex mixing
problems from the sole knowledge of their dispersion and stretching kinematics (Ranz
1979; Duplat, Innocenti & Villermaux 2010; Le Borgne, Dentz & Villermaux 2015;
Villermaux 2019). Second, the recent experimental determination of the stretching laws in
sheared suspensions, which has revealed that fluid material lines undergo exponential and
log-normally distributed elongations (Souzy et al. 2017). Third, the recent development of
experimental techniques giving access to the finest scales of a concentration field (Souzy
et al. 2018).

Our study focuses on the evolution of an initially segregated blob of dye sheared in
a suspension of non-Brownian particles, in the limit of vanishing Reynolds number. We
show that the mixture successively goes through a solitary-strip regime, a coalescence
regime and a final dispersion regime. We systematically investigate this evolution for two
different Péclet numbers and provide predictions for the concentration distributions and
the transitions between these successive stages of mixing.

2. Experimental set-up

The experimental set-up, sketched in figure 1(a), is similar to the one used in Souzy et al.
(2018). A transparent suspension containing a blob of dyed liquid is deformed in a pure
shear flow and the mixing of the dye is measured by monitoring a slice of the suspension
perpendicular to the vorticity direction.

916 R4-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

27
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.270


Mixing in a sheared particulate suspension

2.1. Suspension, blob of dye preparation and shear flow
The shear cell consists of two Plexiglas plates separated by a 3 mm gap filled with
the suspension. The suspension is composed of transparent and almost monodisperse
poly(methyl methacrylate) (PMMA) spheres, with diameter d = 335 ± 30 μm, immersed
in a Newtonian liquid. The liquid is a mixture of Triton X-100 (75.15 wt%), zinc chloride
(14.24 wt%), water (10.34 wt%) and nitric acid (0.27 wt%) with a density and a refractive
index matching those of the particles. The mixture has a high viscosity (≈4 Pa s),
which ensures that inertial effects are negligible. The particulate volume fraction of the
suspension is set to φ = 0.30.

Prior to shearing the suspension, the dyed liquid is injected with a syringe in the neutral
plane of the shear cell forming an almost cylindrical blob aligned with the y-vorticity
direction; see figure 1(b). The syringe’s needle has a diameter of 500 μm, but thinner
blobs are produced in a controlled way by withdrawing the syringe body and piston
at different velocities; see figure 1(b). For all experiments, the blob initial transverse
dimensions, 2s0 ≈ 200 μm and 2l0 ≈ 300 μm, are comparable with the particle diameter;
see figure 1(c). The injected blob is composed of the suspending fluid, to which a small
amount (C0 = 7.5 × 10−7 g ml−1) of fluorescent dye (Rhodamine 6G) is mixed. This
protocol of injecting a fluorescent liquid in a non-fluorescent suspension has been preferred
to the inverse configuration used by Souzy et al. (2017), where all the suspension is
fluorescent, except for a dark blob obtained by locally photo-bleaching the dye. While
the latter technique provides an accurate control of the blob shape, the larger amount of
fluorescence in the cell strongly decreases the signal-to-noise ratio of the concentration
measurements (≈10 versus ≈1000 for dye injection). Following Souzy et al. (2017),
the molecular diffusion coefficient of the dye, D, is measured from the evolution of
blobs of dye sheared in the fluid mixture alone (without particles). This procedure yields
D = 6.0 × 10−13 m2 s−1.

Promptly after blob injection, the suspension is sheared with a rate γ̇ by moving the
plates of the shear cell in opposite directions using two high-precision translation stages
(not shown in the schematic). The travel range of the plates sets the maximum strain γ ≡
γ̇ t = 40. Two sets of experiments are conducted for γ̇ = 0.00714 and 0.714 s−1, i.e. for
values of the Péclet number, Pé ≡ γ̇ s2

0/D, of 85 and 8500, respectively. For each Péclet
number, the experiments are repeated seven times.

2.2. Dye concentration measurements
Imaging is performed using a laser source (Laser Quantum Gem512, 2.5 W, λ = 532 nm)
turned, through a series of lenses, into a thin laser sheet (with thickness 10–15 μm).
The sheet illuminates the flow-gradient plane (xz) at a distance of 20 particle diameters
from the sidewall (approximately twice the gap width). The dye located in the illuminated
plane fluoresces and re-emits light at a longer wavelength (λ ≈ 600 nm) with an intensity
proportional to the dye concentration, C. Although the refractive indices of the liquid and
the particles cannot be strictly matched for both wavelengths with a ternary mixture (since
the densities have also to be matched), we manage to match all indices to the fourth digit
by tuning the temperature of the set-up (25.5 ± 0.3◦C) with a thermal bath. A high-pass
filter (590 nm) is used to eliminate incident light and collect only the fluorescence signal
emitted by the dye. To further reduce the background brightness, a light-trap, consisting of
razor blades stacked with their cutting edges facing the laser sheet, is placed at the bottom
of the shear cell (see figure 1b), which prevents spurious reflections of the incident laser
light.
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Figure 2. Blob of dye in the sheared suspension. Dye concentration field for (a) Pé = 8500 and (b) Pé = 85
shown for identical strains γ ≡ γ̇ t (see also supplementary movie 1 available at https://doi.org/10.1017/jfm.
2021.270).

Images are recorded with a high-resolution, low-readout-noise camera (Hamamatsu
C11440) combined with a long-distance macroscope (Leica Z16 APO ×1), which provides
a resolution of 3.3 μm pixel−1 and a field of view of 6.8 mm × 6.8 mm; see figure 1(c).
During an experiment, the exposure time is progressively increased to adapt the dynamic
range of the camera to the overall decay of the dye concentration. This procedure allows
us to resolve the concentration field over longer times and over a broader concentration
range. Photo-bleaching of the dye by the incident laser sheet is minimized by using a
moderate laser power (300 mW), by capturing only one picture every strain unit, and by
using a shutter synchronized with the camera to block the incident laser light between
exposure periods. This limits the total exposure time to less than 4 s over the whole
experiment and ensures that the loss of fluorescence due to photo-bleaching remains
below 3 %. Last, the concentration field is obtained from the raw images according to
C(x, z)/C0 = (I(x, z) − Ib)/(I0 − Ib), where Ib is the background noise intensity, and I0
and C0 are the maximum intensity and the maximal concentration at t = 0, respectively.

3. General observations

Figure 2 compares, at equal strains, the typical evolution of the dye concentration field
obtained for the two Péclet numbers investigated. On a global scale, the blob of dye
is stretched by the mean flow and aligns with the mean flow direction (x), while it is
dispersed in the transverse direction by the fluctuations of the flow induced by the particles.
On a smaller scale, the flow stretches and folds the dyed liquid into thinner lamellar
structures, which are eventually blurred by molecular diffusion. At a given strain, the
spatial dispersion of the lamellae appears to be similar between the two Péclet numbers.
By contrast, the process of mixing is much more advanced for the lowest Pé, consistently
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Figure 3. Evolution of the concentration distribution for (a) Pé = 8500 and (b) Pé = 85. Symbols:
experimental data. Lines: solitary-strip model, PSS(C) (4.6), with f = 0.30 and g = 0.21. Solid lines highlight
strains (γ ≤ 18 and γ ≤ 10 for (a,b), respectively) for which the number of overlaps is expected to be small
(S/A ≤ 1; see text). Dashed lines are used at larger strains. Insets: same in double-logarithmic scales. Each
distribution is obtained by averaging seven independent runs.

with the longest time over which diffusion operates for a smaller shear rate: while most
lamellae are still thin and sharp at γ = 30 for Pé = 8500, they are broader and already
significantly blurred for Pé = 85.

Figure 3 presents the evolution of the corresponding concentration distributions, P(C).
The concentration distribution is obtained from all the pixels where the concentration level
is above the threshold value, Cth, which corresponds to the background noise. The value
of Cth is adjusted by hand to delineate the lamellae contour. Its value decreases slowly
with increasing deformation; however, this does not affect the shape of the distribution
above Cth. Initially, P(C) has the characteristic U-shape of a segregated system, with a
peak at the blob initial concentration, C/C0 = 1. As the blob is stretched and mixes with
the surrounding liquid, the probability of the large concentrations decays. At equal strains,
the steeper decay of the distributions at large concentration observed at low Péclet number
indicates a more advanced mixing. In the following, we provide a theoretical framework
to describe the evolution of these concentration distributions.

4. Solitary-strip model

At sufficiently short times, the blob of dye forms thin lamellae, which are essentially
isolated from each other and which we call hereafter elementary lamellae. Each
elementary lamella results from the stretching induced by the combination of the mean and
fluctuating components of the flow. Assuming (in line with the solitary-strip framework
(Villermaux 2019)) that the stretching rate over each lamella cross-section is uniform at
each time, the probability distribution of the lamella elongations is set by that of the fluid
material lines. In a previous work (Souzy et al. 2017), this elongation distribution has been
shown to follow a log-normal statistic given by

P(ρ) = 1√
2π σρ

exp
(

−(ln ρ − μ)2

2σ 2

)
, (4.1)
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where the elongation, ρ(t), is the ratio of the current material line length to its initial
length, and both the mean value,

μ ≡ 〈ln ρ〉 = f γ, (4.2)

and the variance,
σ 2 ≡ 〈ln2 ρ〉 − 〈ln ρ〉2 = gγ, (4.3)

of the logarithm of the elongation grow linearly with strain, with coefficients f 	 0.193
and g 	 0.174 for φ = 0.30 (Souzy et al. 2017).

To compute the concentration distribution of the whole blob of dye, we first derive the
concentration distribution of each of its lamellar portions. For a slender portion of lamella
with elongation ρ(γ ), the combined advection and diffusion of the dye transversely to the
lamella follows the pure diffusion equation, ∂τ C = ∂2

ηC, in terms of the dimensionless
time scale τ = (1/Pé)

∫ γ

0 ρ2 dγ ′ and length scale η = ρh, with h the distance to the
lamella midplane (Ranz 1979; Rhines & Young 1983; Meunier & Villermaux 2003;
Souzy et al. 2018). Assuming that this portion of lamella has an initially Gaussian
concentration profile and experiences a constant elongation rate (ρ̇/ρ = ln ρ/t = const.),
its profile evolves as C = Cm e−h2/2s2

, where the half-width, maximal concentration and
dimensionless time follow, respectively,

s(t) = s0

ρ

√
1 + 2τ , Cm = C0√

1 + 2τ
and τ = γ

2Pé
ρ2 − 1

ln ρ
. (4.4a–c)

The concentration probability distribution of this portion of lamella above the threshold
concentration Cth is obtained from the change of variable PG(C) = |dh/dC|/hth, with hth
the distance from the lamella midplane at which C(hth) = Cth. This yields

PG(C, Cm) = 1

2C
√

ln
Cm

Cth

√
ln

Cm

C

, for Cth ≤ C ≤ Cm (4.5)

(see Souzy et al. (2018) for details of the calculations).
As long as the different portions of the lamellae do not overlap with each other, the

solitary-strip concentration distribution, PSS(C), for the whole blob of dye is obtained
by summing the contributions of the different lamella portions. It is expressed as
PSS ∝ ∫ ∞

0 2hthρl0P(ρ)PG(C, Cm) dρ, where 2hthρl0 is the area of a portion (in the
xz-plane) and P(ρ) is the probability, given by (4.1), that a portion has the elongation
ρ. Using hth = (s0/ρ)

√
(1 + 2τ) ln(Cm/Cth), the concentration distribution becomes

PSS(C) = A−1
∫ ∞

0

√
1 + 2τ

C

√
ln

Cm

C

P(ρ) dρ, (4.6)

with A = 2
∫ ∞

0

√
1 + 2τ

√
ln(Cm/Cth)P(ρ) dρ a normalizing constant.

Figure 3 compares the solitary-strip prediction (4.6), with f = 0.30 ± 0.03 and g =
0.21 ± 0.03 as adjustable parameters, to the experimental results. The fit is performed
on the low-Péclet-number data (Pé = 85, for which the minimal lamella width, given by
the Batchelor scale s(τ = 1) ∼ s0/

√
f Pé ≈ 16 μm, is well resolved), and up to a strain

γ = 12 (in order to have a limited influence of coalescence).
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The model captures well the shape of the concentration distributions and the progressive
decay of the concentration levels, for both Péclet numbers and up to a strain γ ≈ 12 for
Pé = 85 and γ ≈ 16 for Pé = 8500. The fitted values of f and g are also in reasonable
agreement with the experimental values determined previously by Souzy et al. (2017)
(i.e. f 	 0.193 and g 	 0.174). The difference is possibly related to the fact that the
stretching laws measured by Souzy et al. (2017) were obtained from a two-dimensional
section of a three-dimensional flow field, which may have slightly underestimated the
actual three-dimensional elongation experienced by the lamellae. Note also that the
agreement found at large Pé is somehow unexpected since the minimum lamella width,
s0/

√
f Pé ≈ 2 μm, is below the spatial resolution of the set-up (3.3 μm). At larger

strains, the solitary-strip model fails to describe the concentration distributions. This is
better appreciated in the double-logarithmic plots shown in the insets of figure 3, which
allow one to compare the concentration distributions at long times. The experimental
concentration levels are found to decay much slower than anticipated by PSS. This is
consistent with the increasing interaction between lamellae. The solitary-strip framework
no longer applies when lamellae significantly overlap with each other (see figure 2 and
Movie 1). Overlapping lamellae add up their concentration levels, which slows down the
global concentration decay relative to non-overlapping lamellae. A relevant model of the
concentration distributions at high strains thus calls for a description of coalescence.

5. Coalescence model

Overlaps between lamellae necessarily occur because the unfolded area of the blob
grows exponentially and eventually becomes larger than the dispersion envelope in which
the blob develops. Indeed, the length of the elementary lamellae, 2〈ρ〉l0, increases
exponentially, while, after a short initial contraction, their width s is locked at the Batchelor
scale, sB ∼ √

D/f γ̇ , at which the transverse compression rate ∼ f γ̇ is balanced by the
diffusive broadening rate ∼ D/s2; see (4.4a–c). The non-overlapping blob area thus
increases exponentially as S ∼ sB l0 ef γ̇ t. On the other hand, the dispersion envelope
grows from the combined effect of the mean flow and of the Fickian dispersion induced
by the fluctuating motion of the particles. For Pé � 1, the area of dispersion, which
is illustrated in figure 4(a) by overlaying the concentration fields of seven experiments,
increases algebraically with time according to

A = π

√
[l20 + 2κt][s2

0 + 2κ(t + γ̇ 2t3/3)] ∼ κγ̇ t2, (5.1)

where κ ≈ 0.017φγ̇ d2 is the shear-induced dispersion coefficient (Metzger et al. 2013;
Souzy et al. 2017). The value of κ is obtained from the evolution of the spatial variance of
the dye concentration σ 2

z in the transverse direction (z); see figure 4(b).
As a result, the typical number of overlaps between elementary lamellae, given by

the ratio S/A, eventually becomes very large. For the low-Péclet-number experiments,
S/A ∼ 10 for γ = 20 and S/A ∼ 104 for γ = 40. This estimate for the number of
overlaps corroborates the validity range of the solitary-strip model observed in figure 3.
Significant deviation from the experimental data is found around γ = 12 (respectively
16) for Pé = 85 (respectively 8500), while (4.4a–c) and (5.1) yield S/A = 1 at γ 	 10
(respectively 18). However, it must be noted that these estimates are meaningful only in
the average sense. In practice, the transition between the solitary-strip and the coalescence
regimes is not expected to be sharp, but rather gradual, because of the broad distribution
of the stretching and merging statistics, which will be discussed in the following.
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Figure 4. (a) Overlay of the concentration fields obtained from seven runs at γ = 7.5. Each colour corresponds
to a run. The dashed line delineates the dispersion envelope of area A (5.1). (b) Normalized spatial variance of
the dye concentration in the transverse direction, 
σ 2

z /d2 = (σ 2
z − σ 2

z (t = 0))/d2, versus strain. The linear fit
(black line) provides the shear-induced dispersion coefficient κ = 0.017φγ̇ d2.

As shown in figures 2 and 5(a), these overlaps result from the continuous stretching,
folding and fusing of adjacent lamellae into a single portion of lamella. This iterative
process continuously creates a new lamella, hereafter called super-lamella, which contains
an increasingly large number of folded elementary lamellae, while preserving the
essentially lamellar structure of the blob of dye. This super-lamella typically meanders
between each pair of neighbouring particles within the dispersion envelope. Hence, its
total length 2L does not grow exponentially but is limited by the area of the dispersion
envelope according to 2L/2l0 = aA/A0, where a is a constant of order one. Like in
(4.4a–c) for the elementary lamellae, this effective stretching dynamics sets the evolution
of the super-lamella width S and dimensionless time T:

S
s0

= A0

aA
√

1 + 2T, with T = a2

Pé

∫ γ

0

A2

A2
0

dγ ′. (5.2)

The long-time evolution of S ∼ √
γ /Pé is consistent with the experimental observations:

the apparent width of the super-lamellae is larger at low Pé and slowly increases with strain
(see figure 2).

We then assume that the aggregation process forming the super-lamella occurs at
random and with a constant rate prescribed by the growth of A and 〈ρ〉. As a consequence,
the number of elementary lamellae n fused into a super-lamella follows the exponential
distribution (Smoluchowski 1917):

P(n) = 1
〈n〉 e−n/〈n〉, with 〈n〉 = 〈ρ〉l0

L
= 〈ρ〉A0

aA , (5.3)

which is valid when the mean number of elementary lamellae contained in a super-lamella
is large (〈n〉 � 1). The expression for 〈n〉 reflects that the length of the elementary
lamellae, 2〈ρ〉l0, must fold entirely over the length 2L of the super-lamella. This recovers
the exponential increase of 〈n〉 with time discussed above.

As shown in figure 5(a), the super-lamella has a nearly Gaussian concentration profile.
Then, owing to the conservation of the dye, the maximum concentration, CM , of a
super-lamella is determined by its width S and by the number n of elementary lamellae
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Figure 5. (a) Coalescence event and corresponding concentration profiles before (blue) and after (red) merging
occurs. (b) Sketch of the super-lamella formed by the coalescence of elementary lamellae. (c,d) Comparison
between the experimental distributions and the coalescence model PC(C) (5.6), for (c) Pé = 8500 and (d)
Pé = 85. The coalescence model is plotted when the number of overlaps becomes significant (S/A > 1), i.e.
when γ > 10 for Pé = 85 and when γ > 18 for Pé = 8500.

with maximum concentration Cm that it contains. This yields

CM = 1
S

n∑
i=1

siCm,i 	 n〈sCm〉
S

= s0C0

S〈ρ〉 n, (5.4)

where the mean-field approximation (averaging of sCm) is relevant for the large number of
overlaps considered here (n � 1). The local width S of the super-lamella could possibly
correlate with the number n of elementary lamellae it contains locally. However, the
variations in S observed in the experiments, which are of the order of a few units, are
negligible relative to the orders of magnitude variations in n given by (5.3). We therefore
assume that S is independent of n and uniform. The final concentration distribution,
accounting for coalescence, is then obtained by summing the contributions of the Gaussian
concentration profiles of the super-lamella for all values of n, i.e.

PC(C) ∝
∫ ∞

1
P(n)HthPG(C, CM) dn, (5.5)

where the apparent width of a super-lamella (i.e. where C > Cth) follows Hth =
S
√

ln(CM/Cth), which is defined for Cth < CM . Introducing ñ ≡ n/〈n〉, (5.5) can be recast
into

PC(C) = A′−1

2C

∫ ∞

1/〈n〉
e−ñ√

ln
〈CM〉ñ

C

dñ, with
〈CM〉

C0
≡ CM|ñ=1

C0
= 1√

1 + 2T
, (5.6)

and A′ = ∫ ∞
1/〈n〉 e−ñ

√
ln(〈CM〉ñ/Cth) dñ a normalizing constant. Through (5.2)–(5.3) for T

and 〈n〉, (5.6) is entirely set by the Péclet number and the kinematic quantities A and 〈ρ〉.
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0)
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(a) (b) (c) (d )

Figure 6. Sketch of the successive stages of mixing for a small blob (s0 ∼ d) at large Péclet number. (a) Initial
segregated blob of dye with a peaked concentration distribution. (b) Above a strain γ ∼ 1, the blob evolves as a
solitary strip (without overlaps) undergoing exponentially growing, log-normally distributed, elongations. The
distribution decays close to algebraically (4.6). (c) The dispersion envelope area, A ∼ κγ̇ t2, is soon too small
to contain the exponentially growing area of an unfolded blob, S = sBl0 ef γ̇ t. Overlaps become significant
above the strain at which n ∼ S/A ∼ 1. The random iterative aggregation of elementary lamellae forms a
super-lamella with overall length 2L ∼ 2l0A/A0, width S ∼ s0

√
γ /Pé, and which contains an exponentially

distributed number of elementary lamellae (5.3). The concentration distribution decays like C−1 below an
exponential cut-off at the mean concentration (5.6). (d) When the super-lamella has thickened up to the
microscopic stirring scale, i.e. when S ∼ d, portions of the super-lamella coalesce. The concentration field
should then follow an overall Gaussian shape spanning the whole dispersion envelope.

The concentration distribution PC behaves like ∼ (1/C) e−C/〈CM〉 (within logarithmic
corrections). It is thus entirely prescribed by the average maximum concentration 〈CM〉,
below which the distribution decays like 1/C, and above which the decay is exponential.
This prediction is compared with the experimental distributions in figure 5(c,d), with a,
the proportionality factor between the super-lamellae length 2L/2l0 and the dispersion
area A/A0, as the only free parameter (its value is set by fitting the model to the
low-Péclet-number data, which yields a = 4 ± 1, consistently with the expectation that a
is of order one). For large Péclet number (Pé = 8500), the agreement with experiments is
slightly improved relative to the solitary-strip model but not quantitative. The coalescence
model predicts a larger probability for the intermediate concentration levels and a
distribution tail decaying more sharply than observed experimentally. This discrepancy
is consistent with the observations in figure 2, which show that for Pé = 8500 the bundles
of lamellae are only partially fused, even at large strains. Their concentration profiles
are therefore not well captured by the Gaussian shape assumed in the model. Another
potential bias is that, for Pé = 8500, the typical thickness S of the super-lamella, which is
set by the Batchelor scale, s0

√
γ /Pé (see 5.2), is comparable with the laser sheet thickness,

∼10 μm. For a lamella that is not perpendicular to the laser sheet, this would average the
concentration profile and alter the concentration measurements.

By contrast, for moderate Péclet number (Pé = 85), the coalescence model captures
quantitatively the shape of the distributions at long times (γ � 16), both for the
low-concentration part (∼1/C) and for the typical concentration 〈CM〉 above which the
distributions decay sharply. In this case, coalescing lamellae are found to be almost entirely
fused, at all times, into a super-lamella with a close to Gaussian concentration profile.

6. Conclusion

Mixing in a particulate suspension is determined not only by the mean flow and the scalar
diffusion, but also by the crucial contribution of the chaotic fluctuating motion induced
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by the particles, which sets both the stretching of the liquid at the smallest scales and its
global dispersion at the largest ones. Mixing proceeds by the formation of elementary
lamellar structures, which stretch, fold, are dispersed, diffuse and eventually overlap.
The overall mixing of a blob of dye, whose initial size is of the order of the particle
diameter, goes through three main stages that are summarized in figure 6.

(i) Below a deformation γ ∼ 10, which depends only logarithmically on Pé, the growth
of the dispersion envelope Ȧ/A is typically larger than the sub-particle scale stretching
rate f γ̇ . Overlaps are thus scarce, and the concentration distribution is well captured by a
solitary-strip description (4.6), which is based solely on the local statistics of stretching of
the fluid material lines (Souzy et al. 2017).

(ii) At larger strains, overlaps become abundant. The exponentially stretched elementary
lamella is randomly folded and merged into a thicker super-lamella, which undergoes a
global algebraic stretching, prescribed by the growth of A, and thickens as S ∼ s0

√
γ /Pé at

long times. The super-lamella thus contains an exponentially increasing number of folded
elementary lamellae n, and the iterative random aggregation at the origin of its formation
implies that n is exponentially distributed (5.3). This coalescence process leads to the
concentration distribution PC(C) ∼ (1/C) e−C/〈CM〉 (5.6). This description was shown
to apply at moderate Pé (∼ 102). However, it still has to be refined to account for the
continuously incomplete merging of the super-lamella observed at larger Pé (∼ 104).

(iii) Last, at even larger strains, when the width of the super-lamella becomes of the
order of the microscopic stirring scale, i.e. when S ∼ d, the portions of super-lamella are
expected to coalesce. The concentration field should then follow an overall Gaussian shape
spanning the whole dispersion envelope, except for a thin mixing front at the edge of the
envelope. This third stage has not been studied here because it is expected to occur for
strains γ � (d/s0)

2Pé, which are beyond those achievable with our set-up.
The above microscopic description of the mixing process has been confronted to

experiments for a single volume fraction (φ = 0.30). It is, however, expected to apply over
a broad range of volume fractions, typically for φ = [0.20–0.55], where the kinematics
of the flow was shown to follow the same dispersion, stretching and folding mechanisms.
From the dependence of the kinematic coefficients ( f , g and κ) on φ (Sierou & Brady
2004; Souzy et al. 2017), the models proposed in the present study provide direct
quantitative predictions for the evolution of the concentration distributions over a broad
range of volume fractions.

To conclude, we would also like to highlight that resolving the microscopic mechanisms
of mixing at high Pé represents an experimental challenge. In the present study, it has
been addressed thanks to experimental developments (injection device, index matching,
light trap, dynamic range acquisition) giving access to the evolution of the concentration
levels over three decades – a key aspect that could stimulate future studies on mixing.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2021.270.
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