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Abstract

This article presents the cross-focusing of two high power dark hollow Gaussian beams in plasma when relativistic
nonlinearity is operative. A paraxial like approach has been used in the present analysis. In this study, the non-linear
dielectric function has been expanded in terms of radial distance from the maximum of the irradiance, rather than from
the axis, as is the case of Gaussian beams. The nature of propagation of a hollow Gaussian beam propagating in
plasmas has been studied under the influence of relativistic non-linearity. The effect on the order (n) of hollow
Gaussian beam on the cross-focusing of two beams has been explored in relativistic non-linearity in this publication.
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1. INTRODUCTION

The interaction of laser beams with plasmas has gained a lot
of interest worldwide because of its relevance to laser fusion
(Imasaki & Li, 2009; Sullivan & Von Rosenberg, 1986) and
charged particle acceleration (Giulietti et al., 2005; Ogata &
Nakajima, 1998; Kumar et al., 2006). In laser induced
fusion, the most interesting phase is the efficient coupling
of the laser beam to plasma to heat the latter. Hence in this
process of coupling, many nonlinear processes such as,
stimulated Raman scattering (Tajima et al., 1979), stimulated
Brillioun scattering (Sharma & Kourakis, 2010), filamenta-
tion (Nicholas & Sajjadi, 1989) or hot spot formation and
self-focusing (Sodha et al., 1974d; Gill et al., 2010) play a
vital role. Out of many non-linear processes in the laser-
plasma interaction the phenomena of self-focusing (Sprangle
et al., 1991; Hora, 1991; Kruer, 1974; Sodha et al., 1976) is
of notable attention to the physicists. It is so because of the
fact that the non-linear effects are highly sensitive to the irra-
diance distribution along the wavefront of the beam, which is
appreciably affected by self-focusing.
In recent studies, the intensity distribution has been taken

in the form of zero central intensity called the dark hollow
beams (DHBs), because beam dynamics depend on the non-

linear propagation which is sensitive to transverse intensity
distribution of the main beam. Various methods have been
developed to generate DHBs such as Laguerre-Gaussian
beams, high-order Bessel-Gaussian beams, high-order
Mathieu beams, doughnut hollow beams, LP01-mode
output hollow beam, localized hollow beams, and so on.
This is the family of special light beams or DHBs (Yin
et al., 1997). DHBs have some unique physical properties,
such as a barrel-shaped intensity distribution, a helical wave-
front, and center phase singularity, and may carry spin and
orbital angular momentum and exhibit nondiffracting behav-
ior on propagation. DHBs may be used as optical pipes, op-
tical tweezers and spanners, and have become a powerful tool
in the manipulation and control of microscopic particles
(such as micrometer-sized particles, nanometer-sized par-
ticles, biological cells, and so on). Therefore, they have
many important and extensive applications in laser optics,
binary optics, computer-generated holography, optical trap-
ping of particles, materials science, biological and medical
sciences, and so on. They also provide a powerful tool to
study the linear and non-linear particle dynamics (Patil
et al., 2010) in a storage ring. (Hechenberg et al., 1992). Sev-
eral novel DHBs have been realized by various techniques
like the transverse mode selection method, the geometrical
optical method, the computer-generated hologram, and
spatial filtering methods. The physical interpretation for
DHBs have been given by various theoretical methods like
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higher-order Bessel beams, high-order Mathieu beams,
TEM01 mode doughnut hollow beam. A DHB is designed
in general as a ringed shaped light beam with null intensity
center on the beam axis. A review of the literature throws
light on the fact that the propagation characteristics of
DHBs in a plasma or other non-linear media have not been
studied to a significant extent; but to a good extent the
beam propagation in the TEM10 mode has been done in
plasma for regions around the axis and the maximum of irra-
diance, in the geometrical optics approximation (Sodha et al.,
1974b, 1976).
The laser beam is influenced by the presence of another

laser beam. One can control the focusing/ defocusing of
laser beams by choosing the parameters of another beam.
This behavior is known as a cross-focusing of the laser
beams. Therefore, we have considered in the present paper
the effect on laser beam dynamics in the cross-focusing of
two laser beams where the two initial beams are having
DHB distribution. The study of the cross-focusing of the
laser beams having DHB distribution in relativistic nonli-
nearity has not been carried out so far. In this study, the
authors have attempted to extend the understanding to
cross focusing of dark cylindrical hollow Gaussian beams
(DHGBs), where the irradiance along the axis is zero, and
the maximum is away from the axis. Although the cylindrical
geometry has certain limitations, but some of the interesting
effects (Feit & Fleck, 1988; Johnston et al., 1997; Vidal &
Johnston, 1996) given by detailed numerical simulation
like the breaking up into a number of beams cannot be
tracked in cylindrical symmetry. So it is restricted for
beams with powers above the critical value. However,
since cylindrical beams are commonly used, a theory for cy-
lindrical beams (even approximate) is in order. Taking the re-
lativistic non-linearity (Sharma & Kourakis, 2010) into
account, the present work is based on the modified approach
followed by Sodha and Kourakis (2010). This paper investi-
gates some of the interesting facts about the cross- focusing
of the hollow Gaussian laser beams in the relativistic regime.

2. CROSS-FOCUSING OF THE HOLLOW
GAUSSIAN BEAMS (HGBS)

Consider the propagation of two coaxial Gaussian laser
beams of frequencies ω1 and ω2 along the z direction. In a
steady state, the electric field vector E1,2 for such a beam
may be expressed in a cylindrical coordinate system with azi-
muthal symmetry as

E( )Z=0= ĵE1,2 r, z( ) exp iω1,2t
( )

, (1)

where

E1,2
( )

Z=0= E01,2
r2

2r21,2

( )n

exp
−r2

2r21,2

( )
, (2)

where E1,2 refers to the complex amplitude of the HGB of
initial beam width r1,2, E01,2 is a real constant characterizing
the amplitude of the HGB, n is the order of the HGB and a
positive integer, characterizing the shape of the HGB and
position of its irradiance maximum, ω1,2 is the wave fre-
quency, ĵ is the unit vector along the y axis and E01,2denotes
the electric field maximum at r10 = r20 = rmax = r0

���
2n

√
,

corresponding to z= 0. For n= 0, Eq. (2) represents a
fundamental Gaussian beam of width r1,2; however, the
interest of the present investigation lies in higher order
HGBs (i.e., n> 0).
The electric field vector E1,2 satisfies the wave equation

(stationary frame),

∇2E1,2 −∇ ∇.E1,2
( )+ ε1,2 r, z( )

c2
∂2E1,2

∂t2
= 0, (3)

where ε1,2is the effective dielectric function of the plasma
and c is the speed of light in free space.
For transverse beams, the second term in Eq. (3) is zero. One
can thus write the wave equation for the electromagnetic
beam as,

∇2E1,2 + ω2
1,2/c

2( )
ε1,2 r, z( )E1,2 = 0. (4)

Following Akhmanov et al. (1968) and Sodha et al. (1974a,
1976), the solution of Eq. (4) can be shown as,

E1,2 r, z( ) = jA1,2 r, z( ) exp −i ∫k1,2 z( )dz( )
, (5)

where A1,2 (r,z) is the complex amplitude of the electric field
E1,2, k1,2 z( ) = ω

c

������������
ε0 z( ), ε0 z( )√

is the dielectric function,
equivalent to the highest electric field on the wavefront of
the HGB (Eq. (11)).

Fig. 1. (Color online) Illustrates the plot between dimensionless distance of
propagation and the dimensionless beam width parameter with different
orders of HGB.

R. Gupta et al.228

https://doi.org/10.1017/S026303461100019X Published online by Cambridge University Press

https://doi.org/10.1017/S026303461100019X


Substituting E1,2 (r,z) from Eq. (5) into Eq. (4) and neglect-
ing the term ∂2A1,2/∂z2, one obtains,

2ik1,2
∂A1,2

∂z
+ iA1,2

∂k1,2
∂z

= ∂2A1,2

∂r2
+ 1

r

∂A1,2

∂r

( )

+ ω2
1,2

k1,2c2
ε− ε0( ). (6)

The complex amplitude A1,2(r,z) may be expressed as,

A1,2 r, z( ) = A01,2 r, z( ) exp −ik1,2 z( )S1,2 r, z( )( )
, (7)

where S1,2(r,z) is the eikonal associated with the HGB. Now
putting Eq. (7) into Eq. (6) and segregating the real and ima-
ginary parts of the resulting equation, we get,

2S1,2
k1,2

∂K1,2

∂z
+ 2

∂S1,2
∂z

+ ∂S1,2
∂r

( )2

= 1

k21,2A01,2

∂2A01,2

∂r2
+ 1

r

∂A01,2

∂r

( )
+ ω2

1,2 ε− ε0( )
c2k21,2

,

(8)

and

∂A2
01,2

∂z
+ A2

01,2
∂2S1,2
∂r2

+ 1
r

∂S1,2
∂r

( )
+ ∂A2

01,2

∂r
∂S1,2
∂r

+ A2
01,2

k1,2

∂k1,2
∂z

= 0.

(9)

To move further, one can adopt an approach, analogous to the
paraxial approximation. Thus one may start with, expressing
Eq. (8) and Eq. (9) in terms of variables η and z, as,

η = r/r1,2f
( )− ���

2n
√[ ]

(10)

r1,2 (z) is the width of the beam, and r = r1,2 f
���
2n

√
is the pos-

ition of the maximum irradiance for the propagating beam.
Since the irradiance of the beam is a function of r and z
only, expansions of expressions for relevant parameters
made along r, near the irradiance maximum via

r = r1,2 f (z)
���
2n

√
, are certainly justified in the paraxial like

approximation; for n= 0 (Gaussian beam ), the expansion
is made (likewise) around r= 0(as usual). In the present
analysis, the condition η ≪

���
2n

√
is strictly applicable just

like the paraxial theory. Therefore, we get the following
using Eqs. (8), (9), and (10):

2S1,2
k1,2

∂K1,2

∂z
+ 2

∂S1,2
∂z

+ 1

r21,2 f
2
1,2

∂S1,2
∂η

( )2

= 1

k21,2A01,2r21,2 f
2
1,2

∂2A01,2

∂η2
+ 1���

2n
√ + η
( ) ∂A01,2

∂η

( )

+ ω2
1,2 ε− ε0( )
c2k21,2

(11)

and

∂A2
01,2

∂z
+ A2

01,2

r21,2f
2
1,2

∂2S1,2
∂η2

+ 1���
2n

√ + η
( ) ∂S1,2

∂η

( )

+ 1

r21,2f
2
1,2

∂A2
01,2

∂η
∂S1,2
∂η

+ A2
01,2

k1,2

∂k1,2
∂z

= 0.

(12)

In the paraxial like approximation, the relevant parameters
(i.e., the dielectric function ε(r,z), eikonal and irradiance)
may be expanded around the maximum of the HGB, i.e.,
around η= 0. Thus, one can express the dielectric function
ε(η,z) around the maximum (η= 0)of the HGB as

ε η, z
( ) = ε0 z( ) − η2ε2 z( ), (13)

where ε0(z) and ε2(z) are the coefficients associated with
η0and η2 in the expansion of ε(η,z)around η= 0. Putting
Eq. (13) into Eqs. (11) and (12) we get,

2S1,2
k1,2

∂K1,2

∂z
+ 2

∂S1,2
∂z

+ 1

r21,2f
2
1,2

∂S1,2
∂η

( )2

= 1

k21,2A01,2r21,2f
2
1,2

∂2A01,2

∂η2
+ 1���

2n
√ + η
( ) ∂A01,2

∂η

( )

− η2
ω2
1,2 ε2( )
c2k21,2

,

(14)

∂A2
01,2

∂z
+ A2

01,2

r21,2f
2
1,2

∂2S1,2
∂η2

+ 1���
2n

√ + η
( ) ∂S1,2

∂η

( )

+ 1

r21,2f
2
1,2

∂A2
01,2

∂η
∂S1,2
∂η

+ A2
01,2

k1,2

∂k1,2
∂z

= 0.

(15)

One can express the solution of Eq. (15), under the paraxial
approximation η ≪

���
2n

√
as

A2
01,2 =

E2
1,2

22nf 21,2

���
2n

√
+ η

( )4n
exp −

���
2n

√
+ η

( )2( )
, (16)

with

S1,2 η, z
( ) =

���
2n

√ + η
( )2

2
β z( ) + φ z( ), (17)

where

β z( ) = r21,2f1,2
df1,2
dz

,

E2
1,2 = E2

01,2
k1,2 0( )
k1,2 z( )

( )
= E2

01,2
ε0 0( )
ε0 z( )

( )1/2

.

Here f(z) is an arbitrary function of z, and f1,2(z)is the beam
width parameter for the HGB. Most of the power of the beam
is concentrated in the region aroundη= 0. There is certainly
some power of the beam beyond this limitation, which is
accounted for in an approximate manner by Eq. (16). Also,
it tells that the nature of the r dependence is not affected
by the change with propagation. Hence, power is conserved
as the beam propagates.
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Substituting from Eq. (16) and (17) into A01,2
2 and S1,2 into

Eq. (14) and equating the coefficients of η0and η2on both
sides of the resulting equation, one obtains

ε0f1,2
d2f1,2

dξ2
= 4

f 21,2
− ρ20ε2

( )
, (18)

where ξ= (c/r0
2ω)z is the dimensionless distance of propa-

gation, ρ0= (r0ω/c) is the dimensionless initial beam width.

3. CONCLUSION AND DISCUSSION

The results of the present analysis may be appreciated through
the numerical computation of the critical curve and the vari-
ation of the beam width parameter f with dimensionless dis-
tance of propagation ξ, for a chosen set of parameters for
relativistic non-linearity. The computations have also been
made to find the dependence of the beam width parameter
associated with the propagation of the hollow Gaussian
beam, on the dimensionless distance of propagation ξ in
homogeneous plasmas. One can see from Eq. (2) that the
radius of the bright ring increases when the order n of the
HGB increases, this implies that the area of the dark region
across the HGB increases as n increases. In conclusion, we
have derived the focusing equation for two hollow gaussian
laser beams interacting with each other in the cylindrical coor-
dinate system. It is interesting to compare the propagation
characteristics of the HGBs to those of the fundamental Gaus-
sian beam. It is seen that theHGBs also exhibit three regions in
the ρ0 - ∏0 space which follow a nature similar to that in the
case of the Gaussian beam. The regions for self-focusing
and steady divergence occupy larger areas while the oscil-
latory divergence becomes narrower with respect to the Gaus-
sian beam in ρ0 -∏0 space for higher order HGBs. The nature
of the critical curve involves that self-focusing is more pro-
nounced for lower orders of low power HGBs, while the
trend just reverses for high power of the beam.
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