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Vitamin D, innate immunity and upper respiratory
tract infection
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Abstract
Introduction: At the turn of the twentieth century, ultraviolet light was successfully used to treat
tuberculosis of the skin. Upper respiratory tract infections had been inversely associated with sun
exposure. During the last decade, basic scientific research demonstrated that vitamin D has an
important anti-infective role.

Method: Review of the relevant literature on the influence of vitamin D on innate immunity and
respiratory tract infection.

Results: Vitamin D is involved in the production of defensins and cathelicidin – antimicrobial peptides
that provide a natural defence against potential microbiological pathogens. Vitamin D supplementation
increases cathelicidin production. Low vitamin D levels are associated with an increased incidence of
upper respiratory tract infections.

Conclusions: Vitamin D appears to play an important role in the regulation of innate immunity in the upper
respiratory tract. Optimal vitamin D levels and appropriate dosing schedules have yet to be determined.
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Introduction

In 1903, the Danish doctor Niels Finsen was awarded
the Nobel Prize for discovering that high intensity
light produced from an electric arc lamp cured 95
per cent of patients with skin tuberculosis – a con-
dition termed lupus vulgaris. By the 1920s, sun
exposure was recognised as an effective treatment
for pulmonary tuberculosis.1 With the advent of
penicillin and sulphanilamide, after the First World
War, the idea that regular sun exposure might
protect against infection was rapidly forgotten.
However, over the last decade, research into the anti-
microbial action of vitamin D has provided new
insights into this historical intervention.2 Recent lab-
oratory3 – 7 and epidemiological8 evidence suggests
that vitamin D plays an important role in both adap-
tive and innate immunity. Local innate defences,
which rapidly recognise potential microbial patho-
gens, play an important role in preventing microbial
colonisation that could lead to recurrent infection.9,10

This paper provides an overview of current knowl-
edge on the contribution of vitamin D to innate
immunity in the upper respiratory tract.

Mucosal defence and antimicrobial peptides

The upper respiratory tract is the primary site of
contact for inhaled pathogens. Exposure to potential

pathogens is common, and several protective mech-
anisms exist at mucosal surfaces. The first major
physical defence covering the ciliated respiratory epi-
thelium is a superficial gel layer of mucus which phys-
ically removes inhaled pathogens.11,12 The second
defence mechanisms are the antimicrobial peptides:
defensins, cathelicidin, and larger antimicrobial
proteins such as lysozyme, lactoferrin and secretory
leukocyte protease inhibitor in the airway
secretions.13 – 15 The third defence mechanism is the
initiation of the inflammatory response and the
recruitment of phagocytic cells to any developing
infection.12

Antimicrobial peptides, which are synthesised and
released largely by epithelial cells and neutrophils,
have a broad spectrum of antimicrobial activity
against viruses, bacteria and fungi.14,15 In contrast
to many conventional antibiotics, these peptides
appear to be bactericidal.15 Bacteria have difficulty
developing resistance to antimicrobial peptides,
although some bacteria have developed mechanisms
to evade their action.2 The initial contact between an
antimicrobial peptide and the microbe is thought to
be electrostatic, as antimicrobial peptides are posi-
tively charged and most bacterial surfaces are
negatively charged.15,16 Antimicrobial peptides kill
bacteria by inserting themselves into the cell mem-
brane bilayers to form pores, by ‘barrel-stave’,
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‘carpet’ or ‘toroidal pore’ mechanisms. These pores
disrupt cell membrane function. Recent evidence
would suggest that antimicrobial peptides can also
inhibit cell wall synthesis, nucleic acid synthesis,
protein synthesis and enzymatic activity, and can
disrupt mitochondrial membranes.15 – 17 In response
to infection, antimicrobial peptide production can
also upregulate the signalling mechanisms that
recruit phagocytic cells, assisting control of the
infection.12

Two antimicrobial peptide defensin families have
been identified in humans: a-defensins and
b-defensins. In humans, neutrophils, nasal epithelial
cells and intestinal Paneth cells produce
a-defensins.18 – 20 The epithelial cells of the lung,
skin and gut produce b-defensins.12 In epithelial
cells, the expression of b-defensin-1 appears consti-
tutive,20,21 whereas expression of b-defensin-2, -3
and -4 is inducible.12,22 – 24

Cathelicidins are a diverse family of a-helical
cationic antimicrobial peptides. They have been
identified in multiple species. Whereas many
species produce a variety of cathelicidins, humans
make only one type of cathelicidin called hCAP-18.
Cathelicidins are synthesised as prepropeptides and
broken down by protease enzymes, releasing the C-
terminal peptide, which has antibacterial activity.25

The free C-terminal peptide of the human cathelici-
din hCAP-18, released by protease enzymes is a
peptide called LL-37. LL-37 had bactericidal activity.
In the skin, the peptide LL-37 can be broken down
into smaller peptides which may display a different
spectrum of activity.26 The cytotoxic concentrations
of the antimicrobial peptide LL-37 are three to five
times the concentrations needed to kill bacteria. Pre-
sumably, in vivo LL-37 concentrations are closely
regulated in order to protect host cells from
damage.16 Cathelicidins are synergistic with both
lysozyme and lactoferrin.16,27 As well as having a
broad spectrum of bactericidal antimicrobial activity,
b-defensins and cathelicidins increase proinflamma-
tory gene expression, are involved with epithelial
proliferation and repair mechanisms, and modulate
immune function via an effect on dendritic cell matu-
ration.12,21 – 23 Cathelicidin has been identified
throughout the epithelium of the upper and lower
respiratory tracts.27 – 29

Vitamin D influences the production of cathelici-
din and b-defensin-2.3 – 5,30,31 The vitamin D receptor
genes are close to two genes that encode the antimi-
crobial peptides cathelicidin and b-defensin-2.3

Vitamin D causes a small increase in cell manufac-
ture of b-defensin-2. However, in a number of
different cell types (including immune system cells
and keratinocytes) vitamin D can cause a dramatic
increase in cathelicidin production. Toll-like recep-
tors, a family of evolutionarily ancient receptor
proteins found on human immune cells, are germ
line encoded receptors, which means that they are
genetically determined.9 To some extent, this
allows the innate immune system to determine the
nature of the infecting pathogen.13 Toll-like recep-
tors respond to the byproducts of bacterial cell
walls by manufacturing both vitamin D receptor

proteins and increasing cytochrome P450
CYP27B1, the enzyme that converts circulating
25-hydroxyvitamin D into biologically active
1,25-dihydroxyvitamin D.7 This latter compound in
turn interacts with the promoter of the gene for cathe-
licidin.4 Adequate levels of 25-hydroxyvitamin D, the
major circulating form of vitamin D, are necessary to
activate cathelicidin production and to enhance
macrophage function and innate immunity. Cathelici-
din production would appear to be facilitated by
vitamin D levels of up to 100 nmol/l.5 Vitamin D sup-
plementation also increases cathelicidin production.7

Biofilms and Cathelicidin

Bacteria are now recognised as existing in two forms:
free-floating (i.e. planktonic) and in biofilms, sophis-
ticated communities which adhere to both biological
and non-biological surfaces. Many chronic infectious
diseases appear to be caused by bacteria living in a
biofilm state, including otitis media, tonsillitis and
chronic rhinosinusitis.32 – 34 Biofilms have been
defined as ‘structured communit[ies] of bacterial
cells enclosed in a self-produced polymeric matrix
and adherent to an inert or living surface’.35 In a
biofilm state, the bacteria produce an extracellular
matrix (often referred to as ‘slime’) which protects
its inhabitants against environmental threats includ-
ing ‘biocides, antibiotics, antibodies, surfactants,
bacteriophages and foraging predators such as free
living amoebae and white blood cells’.36 Bacteria
within biofilms are difficult to culture and highly
refractory to conventional antibiotic treatment.
In vitro, such bacteria produce proteinases that can
degrade antimicrobial peptides.37,38 Whether this
occurs in vivo has yet to be proven.15 Antimicrobial
peptides are also inactivated by products of inflam-
mation, such as lipopolysaccharide from Gram-
negative bacteria.39,40 A large amount of research is
currently being undertaken to assess techniques
and drugs which could potentially prevent biofilm
formation and/or break biofilms down.41 In vitro,
LL-37 the free C-terminal breakdown product of
human cathelicidin appears able to both break
down and to prevent development of Pseudomonas
aeruginosa biofilms.42,43

Observational data

In 1926, Smiley noted a strong inverse association
between sun exposure and upper respiratory tract
infections, and theorised that ‘disordered vitamine
metabolism in the human . . . directly due to a lack
of solar radiation during the dark months of winter’
might be responsible.44 Low vitamin D levels are
associated with an increased risk of upper and
lower respiratory tract infection. Ricketts, caused
by severe vitamin D deficiency in children, is associ-
ated with an increased risk of acute respiratory tract
infection, particularly pneumonia.45 – 49 Finnish army
recruits with vitamin D levels of less than 40 nmol/l
were found to be at increased risk of upper respirat-
ory tract infection.50 Two case–control studies have
reported an association between serum 25-hydroxy-
vitamin D levels of less than 50 nmol/l and acute
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lower respiratory tract infection in children51 and
neonates.52 Parents of Dutch children with the least
sun exposure were twice as likely to report that
their child had developed a cough, and three times
more likely to report that their child had a runny
nose, compared with parents of children with the
most sun exposure.53 Seasonal variation in influenza
has also been linked to low vitamin D levels.54

Vitamin D levels above 75 nmol/l are associated
with a reduced incidence of upper respiratory tract
infection.8

A high prevalence of vitamin D deficiency has
been noted in patients attending a general otolaryn-
gology clinic, but this was not specifically related to
upper respiratory disease.55 One study found that
50 per cent of children with otitis media with effusion
had vitamin D levels of less than 50 nmol/l; there was
no control group.56 Several groups have reported that
a- and b-defensins are produced by the sinonasal
mucosa.20,24 Cathelicidin mRNA is up-regulated in
chronic rhinosinusitis patients, particularly those
with eosinophilic mucus.28,29 The influence of
vitamin D on cathelicidin levels and the response to
infection was not considered. If vitamin D levels
are high, then increased cathelicidin levels will be
seen initially and in response to infection. The
converse also holds for low vitamin D levels.5

Interventional data

Most of the interventional data relating to treatment
of upper respiratory tract infection is indirect.

Cod liver oil contains vitamin D as well as other
nutrients that might be useful in the prevention or
treatment of infection. In one study, 185 adults
were given cod liver oil, and their prevalence of
colds over four winter months was 44.9 per cent com-
pared with 67.2 per cent in the control group.57

A second study found that cod liver oil given to
1561 adults reduced the incidence of respiratory
tract infections by 30 per cent.58 Courses of suber-
ythemal ultraviolet radiation administered twice a
week for three years to 410 teenage athletes resulted
in 50 per cent fewer respiratory viral infections and
300 per cent fewer days of absenteeism, compared
with 446 non-irradiated athletes.59

In one interventional cohort study, 60 000 IU of
vitamin D was given weekly for six weeks to children
with recurrent respiratory tract infection; these chil-
dren’s incidence of such infection reduced to that
of the control group.60 In another cohort study,
children were given 600 to 700 IU of vitamin D in
cod liver oil daily together with a multivitamin sup-
plement.61 The children in the treatment group
showed a 50 per cent reduction in the number of
medical consultations for upper respiratory tract
infections; there was no change in the control group.

In some studies in which vitamin D was given for
skeletal health, a reduction in infection risk was
also noted. In one randomised, controlled study
assessing the influence of vitamin D supplementation
on bone loss in 208 postmenopausal black (Afro-
American) women, 7.7 per cent of women random-
ised to receive 800 to 2000 IU of vitamin D daily

reported upper respiratory tract symptoms (i.e.
colds or influenza symptoms), compared with 25.0
per cent of the control group, during three-year
follow up.62 Another randomised, controlled study
of fracture prevention, in which patients were given
800 IU of vitamin D daily, found a statistically insig-
nificant 10 per cent reduction in wintertime infection
in the group receiving vitamin D; the type of infec-
tion was not specified.63 In the latter three studies,
it is unlikely that optimal anti-infective vitamin D
levels were attained.

Conclusions

Antimicrobial peptides were previously thought to
function as an initial, ‘rapid response’ defence
system against infective threats, until adaptive immu-
nity took over. However, it is now known that antimi-
crobial peptides also modulate innate and adaptive
immune responses. Vitamin D appears to play an
important role in the regulation of innate immunity
in the upper respiratory tract. Chronic rhinosinusitis
and otitis media with effusion could be related to
low vitamin D levels. Currently, the optimum
vitamin D serum concentration needed to prevent
and/or treat respiratory tract infection is unknown.
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