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This paper presents the effects of variable-area ducts and axial temperature gradients
on the nonlinear distortion of a travelling wave. Quasi-one-dimensional continuity,
momentum and energy equations for isentropic flow are solved using a wave front
expansion technique. An evolution equation for the slope of the wave front is obtained.
This is a nonlinear ordinary differential equation that can be integrated to obtain a
solution in closed form for the slope of the wave front. The solution may admit a
singularity for compression wave fronts. The analysis considers pure compression and
pure expansion travelling waves. A general criterion is developed for the steepening of
a compression wave front into a shock. A general formula is obtained for the location
of shock formation. The effects of area variation and axial temperature gradient, and
their combined effect on the nonlinear distortion of travelling waves are studied. A
number of examples highlighting these effects are presented in the paper.

1. Introduction
In the standard linear theory of propagation of sound, a plane wave in a

homentropic environment propagates with constant energy and uniform wave speed.
If thermo-viscous effects are significant, the amplitude (energy) of a wave decreases
due to damping and after some time the wave almost disappears. However, in the
case of a finite-amplitude wave travelling in a region where the damping is not very
high, nonlinear effects come into the picture. The compressive part of a wave pulse
travels faster than the expansive part and hence wave crests tend to catch up with
wave troughs. As a result of this effect, the local slope of the wave increases and
steepening of the wave occurs. The steepening of the wave will eventually lead to
the wave ‘breaking’, with multi-valued solutions of the wave equation being obtained
(Whitham 1974). In the context of acoustic wave propagation, multi-valued solutions
are meaningless. In fact, at this point, the solution of the wave equation becomes
discontinuous (shock).

By using the method of characteristics, it is possible to analyse such a problem when
a plane compression wave is propagating in a constant-area duct with uniform entropy
(homentropic field). In this simple case, the characteristics have a constant slope, and
the Riemann invariants are constant along the characteristics. These simplifications
can be used to predict the time and location of shock formation (Liepmann & Roshko
1957). However, the shock formation in variable-area ducts in a non-homentropic
flow is more complex.

† Author to whom correspondence should be addressed: sujith@aero.iitm.ernet.in
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2 M. Tyagi and R. I. Sujith

The propagation of a small-amplitude wave (linear theory) in variable-area duct
and in the presence of a temperature gradient has not been solved for the general case.
However using the high-frequency approximation or WKB Approximation (Crighton
et al. 1992), one may show that the acoustic pressure and velocity are given by

pacoustic ∝
f

(
t −

∫ x

0

dx/a0(x)

)
√

A0(x)a0(x)
, uacoustic ∝

√
a0(x)f

(
t −

∫ x

0

dx/a0(x)

)
√

A(x)
. (1.1)

Here f is an arbitrary function that is determined from boundary or initial conditions.
A0(x) and a0(x) are the cross-sectional area of the duct and the speed of sound
respectively. The high-frequency approximation is valid only when the wavelength
of the acoustic disturbance is small relative to the change in cross-sectional area
or temperature. It is evident from the above expressions that a change in the cross-
sectional area alone affects only the amplitude of the wave and the wave shape remains
the same (the wavelength remains the same). However, in the case of temperature
gradients, both the wave shape and amplitude are affected.

Subrahmanyam, Sujith & Lieuwen (2001) have shown that exact solutions (valid
in the whole range of frequency) for the acoustic pressure and acoustic velocity of
the form (1.1) exist for a family of temperature and area profiles that have following
form:

T0(x)

T0(0)
= (1 + bx)n,

A0(x)

A0(0)
= (1 + bx)m. (1.2)

Here b is an arbitrary constant. The indices n and m are related to each other, and
the relation depends upon whether the acoustic pressure or acoustic velocity admit
travelling wave solutions of the form obtained by the WKB approximation (1.1). In
the case of acoustic pressure, n and m are related by either of the following relations:

n= −2m or n= −(2m − 4)/3. (1.3)

In the case when the acoustic velocity is of the form obtained by the WKB
approximation, the indices n and m are related by either of the following relations:

n= −2m or n= 2m + 4. (1.4)

It can easily be shown that the acoustic velocity and pressure will simultaneously be
of the form suggested by the WKB approximation if n is the negative of twice the
value of m.

Hammerton & Crighton (1993) considered the model nonlinear equation
∂u/∂t + u∂u/∂x = 0. They solved the problem by numerical means based on the
use of intrinsic coordinates for plane waves. By expressing the wave profile in
terms of intrinsic coordinates, all the difficulties associated with the overturning
are circumvented. However, in this approach, exact solutions are limited. Moreover,
the model equation used is weakly nonlinear, i.e. the nonlinear term is smaller than
the linear ones by a factor of the order of u/a0, and is therefore valid only when
u/a0 � 1.

Lin & Szeri (2001) investigated the nonlinear steepening of plane and spherical
waves in the presence of an entropy gradient. In their analysis, the wave is considered
as a discontinuity in the first derivative of thermodynamic variables (for example gas
velocity) that propagates in a quiescent filed of varying entropy. They used the wave
front expansion technique to obtain a global solution in closed form for the first
derivative of gas velocity at the wave front. The analysis considered pure compression
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Distortion of travelling waves in variable-area ducts 3

and expansion waves. The solution for the slope of the wave front may admit a
singularity at a finite time, which is responsible for the steepening of the wave front
into a shock. For a plane wave, the initial compressive disturbance is a necessary
condition for the shock formation. A plane expansion wave never steepens into a
shock. In the absence of entropy gradients (homentropic flow), every compression
wave steepens into a shock while an expansion wave relaxes. In a linearly increasing
entropy field, only sufficiently steep compression waves can steepen into a shock;
otherwise they will relax. An expansion wave always relaxes in this situation. In a
linearly decreasing entropy field, every compression wave steepens into shock while an
expansion wave tends toward a constant value of slope. In Lin & Szeri’s analysis of
spherical waves, a wave propagating inwardly to the centre of coordinate system was
considered. In the homentropic flow, a compression wave moving inwardly always
blows up before it reaches the centre. An expansion wave front continuously steepens
as it moves toward the origin and an infinitesimal expansion shock forms at the centre.
However, it was argued that due the mechanical instability of the expansion shock and
the importance of diffusion near the origin, such a situation never occurs in reality.

In this paper, the waveform distortion of a travelling wave is analysed in a
variable-area duct with entropy gradients. A wave pulse, which is discontinuous
in its first derivative, is launched into a quiescent field. The wave pulse is either
pure compressive or expansive. An entropy gradient is caused by a change in the
temperature of the quiescent field. The continuity and momentum equations along
with the isentropic condition for the unsteady disturbance are solved using the wave
front expansion technique. An evolution equation for the slope of the wave front is
obtained. The steepening of the wave front (change in the slope) is analysed separately
for compression and expansion waves in variable-area ducts and in a field with an
entropy gradient. A general criterion for the steepening of a compression wave into
a shock is developed. The location of shock formation is calculated for a variety of
ducts and for different entropy gradients.

2. Governing equations
Assuming a perfect, inviscid and non-heat-conducting gas, the quasi-one-

dimensional continuity, momentum and energy equations for isentropic flow can be
written as (Thompson 1972) follows:

continuity

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
+

ρu

A

dA

dx
= 0, (2.1)

momentum
∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0, (2.2)

energy

∂s

∂t
+ u

∂s

∂x
= 0. (2.3)

Using the thermodynamic relation T ds = dh − (1/ρ) dp and the equation of state for
an ideal gas p = ρRT , the following relation can be derived:

p

ργ
= exp

(
s

cv

)
, (2.4)

where γ is the ratio of specific heats of the gas, cp/cv .
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4 M. Tyagi and R. I. Sujith

Using (2.4) one variable (for example p) can be eliminated from (2.2). Thus there
are three equations (2.1), (2.2) and (2.3) with three dependent variables. One can show
that these equations form a hyperbolic system (Whitham 1974).

The definition for the isentropic speed of sound is

a2 =
∂p

∂ρ

∣∣∣∣
s=constant

(2.5)

The derivatives of ρ in the continuity equation (2.1) can then be eliminated using
(2.5) to yield

1

a2

∂p

∂t
+ ρ

∂u

∂x
+

u

a2

∂p

∂x
+

ρu

A

dA

dx
= 0. (2.6)

With a little manipulation (2.2) and (2.6) can be rewritten as

∂u

∂t
+(u + a)

∂u

∂x
+

1

aρ

(
∂p

∂t
+ (u + a)

∂p

∂x

)
+

ua

A

dA

dx
=0, (2.7)

∂u

∂t
+(u − a)

∂u

∂x
− 1

aρ

(
∂p

∂t
+(u − a)

∂p

∂x

)
− ua

A

dA

dx
=0. (2.8)

Letting ∂/∂t + (u + a)∂/∂x = d+/dt and ∂/∂t + (u − a)∂/∂x = d−/dt , where d+/dt and
d−/dt are derivatives along the curves dx/dt = u + a and dx/dt = u − a respectively,
equations (2.7) and (2.8) are equivalent to

d+u

dt
+

1

aρ

d+p

dt
+

ua

A

dA

dx
= 0 (2.9)

and

d−u

dt
− 1

aρ

d−p

dt
− ua

A

dA

dx
= 0. (2.10)

In order to eliminate pressure p from (2.9) and (2.10), (2.3) and (2.4) are manipulated
to yield

1

aρ

d+p

dt
=

2

γ − 1

d+a

dt
− a2

γR

∂s

∂x
,

1

aρ

d−p

dt
=

2

γ − 1

d−a

dt
+

a2

γR

∂s

∂x
. (2.11)

Equations (2.9) and (2.10) can then be rewritten as

d+u

dt
+

2

γ − 1

d+a

dt
+

ua

A

dA

dx
=

a2

γR

∂s

∂x
, (2.12)

d−u

dt
− 2

γ − 1

d−a

dt
− ua

A

dA

dx
=

a2

γR

∂s

∂x
. (2.13)

The system of equations (2.12), (2.13) and (2.3) is equivalent to the system (2.1),
(2.2) and (2.3). However, in this system all the equations are in the characteristic
form (Whitham 1974). The Riemann variants of the system are u + 2a/(γ − 1),
u−2a/(γ − 1) and s along the characteristic velocities u + a, u−a and u respectively.

Since there are three characteristic velocities, if a disturbance occurs at some point
(say x = 0), three waves will evolve with the velocities u + a, u − a and u. These
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Distortion of travelling waves in variable-area ducts 5

waves are known as compound waves. In the case of a constant-area duct with a
uniform state (no entropy gradients), the Riemann variants are constant along the
characteristics and after travelling a sufficient distance, the compound wave separates
into two waves travelling in opposite directions with the velocities u + a and u − a.
These waves are called simple waves.

In a simple wave region, one can easily show that variables like u, a, pe (excess
pressure, p − p0) etc. are constant along the characteristic velocities (Lighthill 1978).
Therefore for a right-running simple wave:

pe = constant along dx/dt = u + a. (2.14)

In the case of a variable-area duct with entropy gradients, a compound wave does
not separate into simple waves. Therefore the above simplifications are not valid.
However, for relatively weak waves Lighthill (1978) argued that (2.14) is still valid if
pe is replaced by pe

√
Y , where the admittance Y varies gradually with x. Using the

high-frequency approximation for the admittance Y (x) = A0(x)/(a0(x)ρ0(x)), a relation
similar to (2.14) can be written for a variable-area duct with entropy gradients:

pe[A0(x)/(a0(x)ρ0(x))]1/2 = constant along dx/dt = u + a. (2.15)

Thus for a weak pulse, Lighthill first approximated a compound wave as a two
simple waves moving in opposite directions and then used the linear theory to account
the effect of change in area and temperature. Exploiting these approximations, he
derived the following quasi-linear hyperbolic differential equation:

∂V1

∂T1

+ V1

∂V1

∂X1

= 0, (2.16)

where

V1 =
(γ + 1)pe

2ρ0(x)a3
0(x)V0(x)

, X1 =

∫ x

0

dx

a0(x)
− t, T1 =

∫ x

0

V0(x) dx, (2.17)

and

V0(x) =
1√

A0(x)ρ0(x)a5
0(x)

. (2.18)

Equation (2.16) can be solved to find the location of shock formation as∫ xs

0

V0(x)

V0(0)
dx =

2ρ0(0)a3
0(0)

(γ +1)Max[∂pe/∂t]x=0

. (2.19)

The condition for Max[∂pe/∂t]x=0 to form a shock is

Max[∂pe/∂t]x=0 >
2ρ0(0)a3

0(0)

(γ + 1)

∫ ∞

0

(V0(x)/V0(0)) dx

. (2.20)

The present paper investigates the nonlinear steepening of plane finite-amplitude
waves in variable-area ducts with temperature gradients. There is no restriction on
the amplitude and frequency of the wave. Since the analysis is valid only for a plane
wave front, changes in cross-sectional area of the duct should be gradual so that the
wave front always remains planar. However there is no restriction on the temperature
gradient as long as it is smooth.
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6 M. Tyagi and R. I. Sujith

3. Expansion near a wave front
The wave front expansion is an easy way to deal with the propagation of

a discontinuity along the characteristics. Whitham (1974) has shown that for a
hyperbolic system the discontinuity in the first derivative can only occur on the
characteristics. Hence, if the wave is treated as a discontinuity in the first derivative
of the gas velocity, the leading edge of the wave will always be on one of the
characteristics. In general, it is difficult to deal with a complex wave having both
a compressive and an expansive part. Therefore, pure compression and expansion
waves will be treated separately in this paper.

The entire analysis is based on the assumption that the maximum slope occurs
at the wave front and the shock forms when the slope of the wave front becomes
infinite. Therefore it is sufficient to know the slope of wave front to find the time
and location of the shock formation. Since there is no flow (u =0) in the quiescent
field, two wave fronts in the compound wave will be moving in opposite directions
with velocities a and −a. Note that the value of a at the wave front is known in
the quiescent field. The wave front corresponding to the third wave (moving with the
velocity u) does not move. In the present paper, the behaviour of a right-running
wave front will be investigated. Due to the symmetry of the problem, a left-running
wave front will behave in the same way.

Although the behaviour of such a particular waveform is not exactly the same as
the compressive or expansive part of a complex wave, it is quite useful to obtain
a rough estimate of time and location of wave breaking. Morse & Ingard (1968)
calculated the time of shock formation for a compression wave by taking appropriate
limits in the nonlinear wave equation of plane travelling waves. In the present case, the
propagation of a travelling wave is governed by the three equations (2.12), (2.13) and
(2.3). Therefore, instead of evaluating the limits of the derivatives in these equations,
a wave front expansion will be used to obtain an evolution equation in terms of the
local slope (first derivative) of the leading edge of the wave front. For convenience,
equations (2.12) and (2.13) can be written as

A
∂a

∂t
+ Au

∂a

∂x
+

γ − 1

2
Aa

∂u

∂x
+

γ − 1

2
ua

dA

dx
= 0, (3.1)

∂u

∂t
+ u

∂u

∂x
+

2

γ − 1
a

∂a

∂x
− a2

γR

∂s

∂x
= 0, (3.2)

with the equation for isentropic flow

∂s

∂t
+ u

∂s

∂x
= 0. (3.3)

Figure 1 (a, b) shows the velocity–distance curve of a right-running wave front.
The slope of the wave front is negative for a compression wave front and positive
for an expansion wave front. If x = X(t) is the position of the wave front, there is
an undisturbed quiescent flow for x > X(t) and an unsteady flow for x < X(t). The
velocity of wave front will be

dx

dt
= Ẋ(t) = a(x, t)|x=X(t). (3.4)

In the wave front expansion technique, the frame of reference is fixed to the wave
front. The wave front is moving at velocity Ẋ(t) with respect to the ground. Let ξ
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Distortion of travelling waves in variable-area ducts 7

(a)                                                                                     (b)

u

x

x = X (t)

u

x

x = X (t)

Figure 1. Plots of particle velocity versus distance at a particular instant of time near the
wave front. Here x = X(t) is the position of the wave front. (a) Compression wave front.
(b) Expansion wave front.

be the position of a particle on the wave in this new frame of reference. Then ξ = 0,
where ξ = x −X(t) denotes the position of the wave front. All the dependent variables
are expanded in powers of ξ about the wave front for ξ > 0 and ξ < 0. If the first
derivatives are discontinuous, the appropriate expansions are (Whitham 1974)

a(ξ, t) = a0(X(t)) + ξa′
0(X(t)) +

ξ 2

2
a′′

0 (X(t)) + . . .

u(ξ, t) = 0

A(ξ, t) = A0(X(t)) + ξA′
0(X(t)) +

ξ 2

2
A′′

0(X(t)) + . . .

s (ξ, t) = s0 (X (t)) + ξs ′
0 (X (t)) +

ξ 2

2
s ′′
0 (X (t)) + . . .




for ξ > 0, (3.5)

a(ξ, t) = a0(X(t)) + ξa1(t) +
ξ 2

2
a2(t) + . . .

u(ξ, t) = ξu1(t) +
ξ 2

2
u2(t) + . . .

A(ξ, t) = A0(X(t)) + ξA1(t) +
ξ 2

2
A2(t) + . . . ,

s(ξ, t) = s0(X(t)) + ξs1(t) +
ξ 2

2
s2(t) + . . .




for ξ < 0. (3.6)

Note that a0(x) and s0(x) are the known sound speed and entropy in the quiescent
field. A0(x) is the cross-sectional area of duct. In a quiescent field u0(x) is zero. For
ξ > 0, the coefficients of all the powers of ξ are known. For ξ < 0, only the coefficients
of ξ 0 are known and others have to be found. Also, for A0(x), all the derivatives
are known on both sides of the wave front, i.e. A1(t) = A′

0(X(t)), A2(t) = A′′
0(X(t)) and

so on.
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8 M. Tyagi and R. I. Sujith

Now evaluating the required derivatives for ξ < 0:

∂a(ξ, t)

∂t
= [a′

0(X(t)) − a1(t)]Ẋ(t) + ξ [a′
1(t) − a2(t)Ẋ(t)] + . . . ,

∂u(ξ, t)

∂t
= [−u1(t)]Ẋ(t) + ξ [u′

1(t) − u2(t)Ẋ(t)] + . . . ,

∂A(ξ, t)

∂t
= [A′

0(X(t)) − A1(t)]Ẋ(t) + ξ [A′
1(t) − A2(t)Ẋ(t)] + . . . =0,

∂s(ξ, t)

∂t
=[s ′

0(X(t)) − s1(t)]Ẋ(t) + ξ [s ′
1(t) − s2(t)Ẋ(t)] + . . . ;




(3.7)

∂a(ξ, t)

∂x
= a1(t) + ξa2(t) + . . . ,

∂u(ξ, t)

∂x
= u1(t) + ξu2(t) + . . . ,

∂s(ξ, t)

∂x
= a1(t) + ξa2(t) + . . . ,

∂A(ξ, t)

∂x
= A1(t) + ξA2(t) + . . . .




(3.8)

Substituting the above power series expansions into (3.1), (3.2) and (3.3) and equating
the coefficients of ξ 0, ξ 1 etc, gives

ξ 0:

a′
0 − a1 +

γ − 1

2
u1 = 0, (3.9)

−u1 +
2

γ − 1
a1 − a0

γR
s1 = 0, (3.10)

s ′
0 − s1 = 0, (3.11)

ξ 1:

a′
1 − a2a0 + (a′

0a0 − a1a0)
A1

A0

+ a1u1 +
γ − 1

2

[
a0u2 + a1u1 + a0u1

A1

A0

]

+
γ − 1

2
u1a0

A1

A0

= 0, (3.12)

−a0u2 +
2

γ − 1
a0a2 + u′

1 + u2
1 +

2

γ − 1
a2

1 − 1

γR

[
a2

0s2 + 2a0a1s1

]
= 0, (3.13)

s ′
1 − a0s2 + u1s1 = 0. (3.14)

The system of equations (3.9), (3.10) and (3.11) is singular with respect to variables
a1, u1 and s1. Therefore it cannot be solved for them. Similarly the system of
equations (3.12), (3.13) and (3.14) cannot be solved for the variables a2, u2 and s2.
Elimination of a1, u1 and s1 from (3.9), (3.10) and (3.11) yields

s ′
0 =

2γRa′
0

(γ − 1)a0

. (3.15)

In the same fashion, the variables a2, u2 and s2 areeliminated from (3.12), (3.13) and
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Distortion of travelling waves in variable-area ducts 9

(3.14), which gives the following equation:

2

γ − 1

[
a′

1 + (a′
0a0 − a1a0)

A1

A0

+ a1u1 +
γ − 1

2
a0u1

A1

A0

+ a2
1

]
+ a1u1 + u1a0

A1

A0

+ u′
1 + u2

1 − a
0

γR
[s ′

0 + u1s1 + 2a1s1] = 0. (3.16)

Now, (3.16) and any two equations from system (3.9), (3.10) and (3.11) can be used to
solve for the variables a1, u1 and s1. Solving for u1 and knowing that A1(t) = A′

0(X(t)),
one obtains the following first-order nonlinear differential equation (Riccati equation):

u′
1(t) +

1

2

(
a0(X(t))A′

0(t)

A0(X(t))
+ a′

0(X(t))

)
u1(t) +

γ +1

2
u2

1(t) = 0. (3.17)

Before proceeding to a detailed analysis of the problem, some discussion about
the physical significance of (3.17) is necessary. The first term (u′

1(t)) is the rate of
change of the slope of the wave front. The second term is due to the change in the
cross-sectional area and the axial variation in the mean temperature, and is linear in
u1(t). The third term is nonlinear in u1(t). For a plane wave moving in a constant-area
duct with homentropic flow, (3.17) becomes

u′
1(t) +

γ +1

2
u2

1(t) = 0. (3.18)

In the linear acoustic theory of plane wave propagation, the nonlinear terms are
neglected, and a wave moves without any nonlinear distortion. If one neglects the
nonlinear term in (3.18), the slope of the wave front will remain constant. However,
for a finite-amplitude wave, the slope of the wave front changes in a nonlinear fashion.

4. Nonlinear distortion of a wave front
In this section, the nonlinear distortion of a travelling wave front in a duct with

varying cross-section area and varying temperature will be analysed. Equation (3.17)
can be solved to obtain the first derivative of the wave front at time t . It is easier to
deal with the position of wave front, X(t), as an independent variable instead of time
t . Therefore, writing

du1

dt
=

du1

dX(t)

dX(t)

dt
=

du1

dX(t)
a0(X(t)), (4.1)

equation (3.17) becomes

du1

dy
+

1

2

(
A′

0(y)

A0(y)
+

a′
0(y)

a0(y)

)
u1 +

γ +1

2a0(y)
u2

1 = 0. (4.2)

Here, y =X(t) is the position of the wave front. The time t corresponding to the
position y can then be evaluated from the following integral:

t =

∫ y

0

dy

a0(y)
. (4.3)

Though (4.2) is a nonlinear ordinary differential equation (ODE) in u1(y), it can easily
be transformed to a linear ODE in 1/u1 by dividing with u2

1:

d

dy

(
1

u1

)
− 1

2

(
A′

0(y)

A0(y)
+

a′
0(y)

a0(y)

)
1

u1

=
γ + 1

2a0(y)
. (4.4)
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10 M. Tyagi and R. I. Sujith

Equation (4.4) is a first-order linear ODE whose solution is given by

1

u1(y)
=

1

u1(0)

IF(0)

IF(y)
+

γ + 1

2IF(y)

∫ y

0

IF(y)

a0(y)
dy. (4.5)

where the integrating factor

IF(y) = exp

[
−

∫
1

2

(
A′

0(y)

A0(y)
+

a′
0(y)

a0(y)

)
dy

]
=

1√
A0(y)a0(y)

, (4.6)

and u1(0) is the initial slope of the wave front.

4.1. Compression wave

As stated earlier, in our analysis pure compression and pure expansion waves are
treated separately. In this section, the nonlinear distortion of a compression wave
front will be discussed. For a compression wave front, the initial slope is negative, i.e.
u1(0) < 0. For convenience, write

u1(0) = −|u1(0)|, (4.7)

then (4.5) becomes

1

u1(y)
= − IF(0)

IF(y)

[
1

|u1(0)| − γ +1

2IF(0)

∫ y

0

IF(y)

a0(y)
dy

]
. (4.8)

Equation (4.8) gives the slope of the wave front at a position y. There is a possibility
that the right hand side of (4.8) could become zero at some finite value of y = ys .
This will occur when

|u1(0)| = 1

γ + 1

2IF(0)

∫ ys

0

IF(y)

a0(y)
dy

. (4.9)

At this stage, the first derivative of the wave front becomes infinite. This phenomenon
is referred to as a shock. The steepening of a compression wave front into shock is
greatly influenced by variations in the cross-section of the duct and entropy. In some
cases it is also possible that for a given compression wave front, the right-hand side
of (4.8) always remains negative. Equivalently[

1

|u1(0)| − γ + 1

2IF(0)

∫ y

0

IF(y)

a0(y)
dy

]
max

> 0. (4.10)

Now
∫ y

0
(IF(y)/a0(y)) dy is an increasing function of y that has a maximum value of∫ ∞

0
(IF(y)/a0(y)) dy. Therefore, condition (4.10) can be rewritten as

|u1(0)| < 1

γ + 1

2IF(0)

∫ ∞

0

IF(y)

a0(y)
dy

. (4.11)

Inequality (4.11) gives the maximum value of the initial slope of a wave front that
will not steepen into a shock. Thus, only sufficiently steep compression wave fronts
steepen into a shock; they must have initial slope

|u1(0)| >
1

γ + 1

2IF(0)

∫ ∞

0

IF(y)

a0(y)
dy

. (4.12)
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Distortion of travelling waves in variable-area ducts 11

It is clear from (4.12) that if the integral
∫ ∞

0
(IF(y)/a0(y)) dy does not converge, all the

compression waves fronts will steepen into shocks at some finite distance given by
(4.9). If it converges, only those compression wave fronts having initial slope given
by (4.12) will steepen into shocks.

It can be easily shown that the condition of shock formation (4.12) and the relation
for the location of the shock (4.9) are same as obtained by Lighthill (1978) in the
limit of weakly nonlinear waves at high frequencies, (2.19) and (2.20). Similar to the
expansions (3.6) in § 3, the power series expansion for p is

p(ξ, t) = p0 + ξp1(t) +
ξ 2

2
p2(t) + . . . ; (4.13)

p1 is related to u1 through the relation p1 = ρ0(x)a0(x)u1. Also [∂p/∂t]x=X(t) =
−a0(X(t))p1(t). Since, in our case, the maximum slope occurs at the wave front,
Max[∂pe/∂t]x=0 = −a0(0)p1(t). Substituting these relations into (2.19) and (2.20) results
in (4.9) and (4.12).

It is clear from the above analysis that a change in the slope of the wave front
determines the nonlinear steepening of a wave front. If one takes the nonlinearity to
be weak (Lighthill’s theory, explained in § 2), the maximum value of the initial slope
in (2.19) and (2.20) could be related to the amplitude and frequency of a harmonic
wave. Consider a source of plane harmonic waves at the position x =0 emitting a
wave of amplitude u0 and frequency ω, i.e.

u(0, t) = u0 sin(ωt). (4.14)

The maximum slope of the wave Max[∂u/∂t]x=0 will be u0ω, i.e. the maximum slope
of a harmonic wave is the product of its amplitude and frequency. As in the present
analysis it is assumed that the maximum slope of a wave occurs at the wave front,
|u1(0)| should be equal to u0ω. Since nonlinear distortion is greater (shock formation
is favoured) for a steep wave front, a wave of high frequency and amplitude will
steepen fast. Therefore, for a wave of given frequency, a shock will form only if the
amplitude is larger than a threshold value.

4.1.1. Compression wave travelling in a varying-cross-section duct
in a homentropic environment

In the previous subsection, it was shown that wave distortion and steepening of
a wave front into a shock are affected very much by changes in the environment.
Here, the term ‘environment’ refers to the cross-sectional area of the duct under
consideration and the temperature in the duct. It is possible to prevent the steepening
of a wave front into a shock by changing the properties of the environment. In this
subsection, the effect of variation in the area of cross-section alone on the waveform
distortion will be discussed. Although (4.8) is applicable for any smooth duct, in
this analysis only ducts with monotonically increasing (diverging) or decreasing
(converging) cross-section will be considered. In fact any smooth duct consists of
many converging and diverging ducts, each of which can be analysed separately.

In a homentropic environment a0(x) is constant. Hence, (4.8) becomes

1

u1(y)
= −

√
A0(y)

A0(0)

[
1

|u1(0)| − γ + 1

2a0(0)

∫ y

0

√
A0(0)

A0(y)
dy

]
, (4.15)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

53
91

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003005391


12 M. Tyagi and R. I. Sujith

and (4.9) reduces to ∫ ys

0

√
A0(0)

A0(y)
dy =

2a0(0)

|u1(0)|(γ + 1)
= β. (4.16)

Hereβ is the shock formation distance for a plane wave front in a constant-area duct
in homentropic conditions.

For a diverging duct A0(y) is always greater than A0(0), i.e.
√

A(0)/A(y) <√
A(0)/A(0) ⇒ ys >β , indicating that shock formation is delayed in a diverging duct

compared to a duct with constant cross-section area. In the case of a converging
duct A0(y) always is less than A0(0) and hence the shock will form before β . For a
homentropic environment, the shock condition (4.12) reduces to

|u1(0)| >
1

γ + 1

2a0(0)

∫ ∞

0

√
A0(0)

A0(y)
dy

. (4.17)

It can be easily shown by using the properties of improper integrals that for
a converging duct, the integral

∫ ∞
0

√
A(0)/A(y) dy is divergent. Consequently any

compression wave front travelling in a converging duct will eventually steepen into
a shock. If the area of cross-section of a converging duct becomes zero at some

finite point y∗, the integral
∫ ∞

0

√
A(0)/A(y) dy must be replaced by

∫ y∗

0

√
A(0)/A(y) dy.

In this case, every compression wave front will steepen into shock before y∗. This
situation is similar to a spherical compression wave travelling towards the centre of
a sphere that always steepens into a shock before reaching the centre (Lin & Szeri
2001).

In the case of diverging ducts, there is a possibility that
∫ ∞

0

√
A(0)/A(y) dy may

converge. Usually this occurs when a duct is diverging rapidly (for example, an expo-
nential horn). When a compression wave front travels in such a duct, the magnitude
of its initial slope must exceed a minimum value (4.17) in order to steepen into shock.

In order to provide a better understanding, the above analysis is applied to some
common ducts.

Example (a)
Consider a plane compression wave front travelling in a duct, whose area of cross-

section varies as A0(x) = A0(0)(1 + αx)n, α > 0, n ∈ R. Such a function may represent
four different types of ducts depending upon the value of n (see figure 2a–d). It will
be seen that the behaviour of the compression wave in the four ducts will be different.
Our integral of interest is∫ ∞

0

√
A0(0)

A0(y)
dy =

∫ ∞

0

1

(1 + αy)n/2
dy (4.18)

∫ ∞

0

1

(1 + αy)n/2
dy = ∞, n � 2

=
2

α(n − 2)
, n> 2. (4.19)

From these values, it can be concluded that a compression wave front travelling in
a duct for which n � 2 will always steepen into shock. This case includes converging
ducts (n< 0) as well (for example see figure 2d). Figure 2(b, c) shows a diverging
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Distortion of travelling waves in variable-area ducts 13

(a) (b)
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Figure 2. Plots of the cross-section radii for polynomial area variation. (a) n= 4 (n> 2),
(b) n= 2, (c) n= 1 (n < 2) and (d) n= −4 (n < 0). Here the value of α is taken to be unity.

conical duct (n= 2) and a diverging parabolic duct (n= 1) respectively. These two
ducts are examples of diverging ducts in which every compression wave evolves into
a shock. For n> 2 (for example see figure 2a) a shock will form only if the initial
slope of the wave front satisfies the following condition:

|u1(0)| >
(n − 2)αa0(0)

γ + 1
. (4.20)

In all the above cases, if a shock forms the location of the shock can be evaluated
from (4.16) as

ys =
1

α

[(
1 +αβ − 1

2
nαβ

)2/(2−n)

− 1

]
, n 
= 2

=
eαβ − 1

α
, n= 2. (4.21)

Here β is the shock formation distance for a plane wave in a homentropic environment.
Figure 3(a) shows the change in the slope of a compression wave front as it

propagates in a diverging duct of area variation A0(y) = A0(0)(1 + y)4 for different
values of initial slope. In this example the compression waves steepen into shock for
|u1(0)| > 250 s−1. Figure 3(b) shows the shock formation distance as a function of n

in ducts of polynomial area variation A0(y) = A0(0)(1 + y)n. The value of |u1(0)| is
10 s−1. It can be seen that as the value of n increases, the shock formation distance
increases. Figure 3(c) shows the shock formation distance as a function of the slope,
α, in a conical duct A0(y) = A0(0)(1 + αy)2. The value of |u1(0)| is 10 s−1. It is clear
that the shock formation distance increases as α increases.
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14 M. Tyagi and R. I. Sujith
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Figure 3. (a) The evolution of the slope of a compressive wave front for different values of
initial slope in a duct of area variation A0(y) =A0(0)(1 + y)4. (b) Plot of shock formation
distance ys/β as a function of n for polynomial area variation A0(y) =A0(0)(1 + y)n. (c) Plot
of shock formation distance ys/β in a conical duct as a function of slope α of the cone,
A0(y) =A0(0)(1 + αy)2. Here the speed of sound a0(0) = 300 m s−1, and the ratio of specific
heat of gas γ =1.4. The value of initial slope taken in (b, c) is 10 s−1.

Example (b)
Now consider an exponential horn duct, i.e. A0(x) = A0(0)eαx where α is the flare

constant of the horn. The horn is diverging for α > 0 and converging for α < 0. In
this case, the value of the required integral is∫ ∞

0

√
A0(0)

A0(y)
dy =

∫ ∞

0

1

eαỹ/2
dỹ, (4.22)

∫ ∞

0

1

eαy/2
dy = ∞, α < 0

=
2

α
, α � 0 (4.23)

Therefore, every compression wave front travelling in a converging horn (α � 0) will
steepen into a shock. In a diverging horn, a shock will form if

|u1(0)| >
αa0(0)

γ + 1
. (4.24)
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Distortion of travelling waves in variable-area ducts 15

The location of the shock in an exponential horn is

ys =
2

α
ln

[
1

/(
1 − αβ

2

)]
. (4.25)

4.1.2. Compression wave travelling in the presence of an entropy gradient
in a uniform-cross-section duct

In this subsection, the effect of a change in the entropy of the environment on
waveform distortion will be investigated. In the present analysis, the entropy is altered
by varying the speed of sound (3.15), which is in turn related to the temperature.
Hence, an entropy gradient is equivalent to a temperature gradient along the direction
of wave propagation. In order to understand the effect of an entropy gradient on the
waveform distortion, a duct with a constant cross-section area is considered. In this
case, the condition for shock formation, (4.12), for a compression wave becomes

|u1(0)| >
1

(γ + 1)

2a0(0)

∫ ∞

0

(
a0(0)

a0(y)

)3/2

dy

. (4.26)

The shock formation distance (4.9) is given by∫ ys

0

(
a0(0)

a0(y)

)3/2

dy = β. (4.27)

When a compression wave moves in an environment where the temperature is
decreasing, it can be shown that

∫ ∞
0

(a0(0)/a0(y))3/2 dy diverges. Consequently every
compression wave travelling in such an environment will blow up at some finite
distance. On the other hand, in the presence of a positive temperature gradient
the integral

∫ ∞
0

(a0(0)/a0(y))3/2 dy may diverge or converge. If it diverges, as usually
happens for low temperature gradients, every compression wave front will steepen
into shock at some finite distance. However in the presence of a very high temperature
gradient, it may converge. Under such a condition, the initial slope of the wave front
must exceed a minimum value in order to steepen into a shock.

Lin & Szeri (2001) predict that when a compression wave travels into a field with
a constant positive entropy gradient, the initial slope of the wave front must exceed
a critical value in order to steepen into a shock. However, as mentioned above, there
can be a field with a positive entropy gradient in which every compression wave will
evolve into a shock. The following example highlights such a field.

Example (a)
Consider a compression wave travelling in an environment where the speed of

sound has a polynomial variation: a0(x) = a0(0)(1 + αx)n, α > 0, n ∈ R. Note that
n> 0 corresponds to a positive entropy gradient and n< 0 corresponds to a negative
entropy gradient. In this case, the value of the integral of interest is∫ ∞

0

(
a0(0)

a0(y)

)3/2

dy =

∫ ∞

0

1

(1 + αy)3n/2
dy, (4.28)

∫ ∞

0

1

(1 + αy)3n/2
dy = ∞, n �

2

3

=
2

α(3n − 2)
, n>

2

3
. (4.29)
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Figure 4. (a) The evolution of the slope of a compression wave front for different values
of initial slope in an increasing temperature field, a0(y) = a0(0)(1 + y)4/3. (b) Plot of
shock formation distance ys/β as a function of n in a polynomial temperature variation,
a0(y) = a0(0)(1 + y)n. Here the speed of sound a0(0) = 300 m s−1, and the ratio of specific heat
of gas γ = 1.4. The value of the initial slope taken in (b) is 10 s−1.

Thus every compression wave travelling in an environment for which n � 2/3 (this
also includes a negative gradient) will blow up. For n> 2/3 a shock will form if

|u1(0)| > (3n − 2)αa0(0)

γ + 1
. (4.30)

The shock formation distance ys can be found from (4.27) as

ys =
1

α

[(
1 +αβ − 3

2
nαβ

)2/(2−3n)

− 1

]
, n 
= 2/3

=
eαβ − 1

α
, n= 2/3. (4.31)

Figure 4(a) shows the change in the slope of a compression wave front as it
propagates in an increasing temperature field given by a0(y) = a0(0)(1 + y)4/3 for
different values of the initial slope. In this example, compression waves steepen
into a shock for |u1(0)| > 250 s−1. Figure 4(b) shows the shock formation distance
as function of n for the polynomial temperature variation a0(y) = a0(0)(1 + y)n.
The value of |u1(0)| is 10 s−1. It can be seen that as the value of n increases, the
shock formation distance increases. The expression for shock formation distance in
example (a) in § 4.1.1 for n= 2 is the same as in this example for n= 2/3. Therefore
for the case of a temperature variation that leads to a sound speed profile of the form
a0(y) = a0(1 + αy)2/3, figure 3(c) shows the plot of ys as a function of α for the initial
slope |u1(0)| = 10 s−1.

Example (b)
Consider an exponentially varying sound speed profile in a quiescent field:

a0(x) = a0(0)eαx , α ∈ R. Note that α > 0 for positive entropy gradients and α < 0
for negative entropy gradients. The value of the integral of interest is∫ ∞

0

(
a0(0)

a0(y)

)3/2

dy =

∫ ∞

0

1

e3αỹ/2
dỹ, (4.32)
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Distortion of travelling waves in variable-area ducts 17∫ ∞

0

1

e3αỹ/2
dỹ = ∞, α < 0

=
2

3α
, α � 0. (4.33)

Thus every compression wave front travelling in a negative entropy gradient (α � 0)
will steepen into a shock. In a positive entropy gradient (α > 0), the condition for
shock formation is given by

|u1(0)| >
3αa0(0)

γ + 1
. (4.34)

The shock formation distance will be

ys =
2

3α
ln

[
1

/(
1 − 3

2
αβ

)]
. (4.35)

4.2. Expansion wave

The behaviour of an expansion wave is quite different from that of a compression
wave. For example, in a constant-area duct with uniform entropy, a compression wave
has the tendency to become discontinuous whereas an expansion wave tends to relax.

In this section, the behaviour of an expansion wave travelling in a varying-area
duct with entropy gradients will be investigated. For an expansion wave, the slope of
the wave front is positive, i.e. u1(0) > 0. Therefore (4.5) becomes

1

u1(y)
=

1

u1(0)

IF(0)

IF(y)
+

γ + 1

2IF(y)

∫ y

0

IF(y)

a0(y)
dy. (4.36)

As u1(0) is positive for the expansion wave front, it is self-evident that the right-
hand side of (4.36) is always positive. Now a shock can form only if the right-hand
side of (4.36) reduces to zero. When areas A0(y) and a0(y) are non-zero, which is
generally the case, for finite value of y, the right-hand side of (4.36) cannot vanish at
finite distance, and therefore an expansion wave will not form a shock. From (4.36),
it is also clear that an expansion wave front moving in a constant-area duct in a
homentropic environment will relax at infinity. In the rest of this section, the effect
of variations in entropy and cross-section of the duct on the shape of the expansion
wave front at infinity will be investigated.

The value of the slope of the wave front at infinity will depend upon the following
limit:

lim
y→∞

u1(y) =
1

lim
y→∞

[
1

u1(0)

IF(0)

IF(y)
+

γ + 1

2IF(y)

∫ y

0

IF(y)

a0(y)
dy

] . (4.37)

However, it should be noted that if the area of the duct vanishes at some finite point
(for example a wave travelling in a converging cone), the slope is to be calculated at
the zero-area location instead of infinity.

4.2.1. Expansion wave travelling in a varying-cross-section duct
in a homentropic environment

Diverging duct
In this subsection, the behaviour of an expansion wave travelling in a diverging

duct is investigated. In a homentropic environment (4.37) reduces to
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Figure 5. Plots of the cross-section radii for the different classes of ducts considered in § 4.2.1.
(a) Class 1: area variation A(y) =A(0)(1 + x)−2. (b) Class 2: area variation A(y) =A(0)(1 + e−x).
(c) Class 3: area variation A(y) =A(0)(1 − y/y∗).

lim
y→∞

u1(y) =
1[

1

u1(0)
lim
y→∞

√
A0(y)

A0(0)
+

γ + 1

2a0(0)
lim
y→∞

√
A0(y)

∫ y

0

1√
A0(y)

dy

] . (4.38)

For a diverging duct A0(y) is an increasing function; it may be of two types: either
monotonically increasing, i.e. limy→∞A0(y) = ∞ or having an asymptote parallel to the
y-axis, i.e. limy→∞A0(y) = Γ (a finite number). In the former case, it is obvious that
the right-hand side of (4.38) vanishes at infinity. In the latter case, the denominator
of the right-hand side becomes

1

u1(0)

√
Γ√

A0(0)
+

γ +1

2a0(0)
lim
y→∞

√
A0(y)

∫ y

0

1√
A0(y)

dy.

The value of the limit is

lim
y→∞

√
A0(y)

∫ y

0

1√
A0(y)

dy =
√

Γ lim
y→∞

∫ y

0

1√
A0(y)

dy =
√

Γ

∫ ∞

0

1√
A0(y)

dy. (4.39)

Since A0(y) < Γ ⇒ 1/
√

A0(y) > 1/
√

Γ , the integral
∫ ∞

0
1/

√
A(y) dy is divergent. Con-

sequently, the right-hand side of (4.38) vanishes in this case as well. Thus, in a
diverging duct, the slope of an expansion wave approaches zero as it moves.

It should be noted that a duct will have infinite cross-sectional area as y → ∞
and the pressure amplitude goes to zero at infinity. However, at this point the wave
front will no longer be planar. Nevertheless, the above analysis gives the trend of an
expansion wave front as the wave moves in a diverging duct.

Converging duct
The behaviour of an expansion wave in a converging duct is not unique as in a

diverging duct. For simplicity, converging ducts can be divided in three classes (see
figure 5a–c). Each class of duct will be investigated separately. In the first class, the
function A0(y) starts from some finite initial value A0(0) and approaches zero at
infinity (with the y-axis as an asymptote), i.e. limy→∞A0(y) = 0. In real situations, any
converging duct falls into this class. In the second class of ducts, A0(y) starts from
a finite initial value A0(0) and attains a finite value l (less than A0(0)) at infinity, i.e.
limy→∞A0(y) = l (asymptote parallel to the y-axis). Physically this class may represent
a duct system in which a converging duct is attached to a duct of constant cross-
sectional area. In the third class of ducts, A0(y) starts from some finite initial value
A0(0) and crosses the y-axis at some point y∗, i.e. limy→y∗A0(y) = 0. A converging
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Distortion of travelling waves in variable-area ducts 19

cone is a common example of this class. In this type of duct, the wave cannot go
beyond y∗.

Class 1
It is clear that for ducts of class 1 the integral

∫ ∞
0

1/
√

A(y) dy is divergent. Therefore
the denominator of the right-hand side of (4.38) becomes

γ + 1

2a0(0)
lim
y→∞

√
A0(y)

∫ y

0

1√
A0(y)

dy.

This is an indeterminate form of the type 0 × ∞. Evaluating the limit using L ’Hopital’s
rule gives

lim
y→∞

√
A0(y)

∫ y

0

1√
A0(y)

dy = lim
y→∞

∫ y

0

1√
A0(y)

dy

1√
A0(y)

= lim
y→∞

−2A0(y)

A′
0(y)

. (4.40)

Now the limit
2a0(0)

(γ + 1) lim
y→∞

[−2A0(y)/A′
0(y)]

will give the slope of the expansion wave front at infinity. It should also be noted that
the slope of the expansion wave front at infinity is independent of the initial slope of
the wave.

Example (a)
Consider an expansion wave travelling in a converging duct, whose cross-section

varies as A0(y) = A0(0)(1 + αy)n, n< 0, α > 0. Clearly, such a duct belongs to class 1.
The value of the limit is

lim
y→∞

−2A0(y)

A′
0(y)

=
−2(1 + αy)

αn
= ∞.

Hence in such a duct every expansion wave will relax at infinity.

Example (b)
Consider another duct of class 1: a converging exponential horn A0(y) = A0(0)e−αy

where α > 0. In this case, the value of the limit is

lim
y→∞

−2A0(y)

A′
0(y)

=
2

α
⇒ lim

y→∞
u1(y) =

a0(0)α

γ + 1
.

Thus, in a converging exponential horn every expansion wave tends to attain a fixed
value of slope a0(0)α/(γ + 1).

The above two examples show that if a duct is converging rapidly (as in the case
of an exponentially converging horn), all the expansion wave fronts may approach
some finite value which is independent of the initial slope.

Class 2
For ducts of class 2, the denominator on the right-hand side of (4.38) becomes

1

u1(0)

√
l√

A0(0)
+

γ + 1

2a0(0)
lim
y→∞

√
A0(y)

∫ y

0

1√
A0(y)

dy.
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In this case also
∫ ∞

0
1/

√
A(y) dy is divergent and hence the limit contains an

indeterminate form of the type 0 × ∞. Evaluating the limit using L ’Hopital’s rule
gives

lim
y→∞

√
A0(y)

∫ y

0

1√
A0(y)

dy = lim
y→∞

∫ y

0

1√
A0(y)

dy

1√
A0(y)

= lim
y→∞

−2A0(y)

A′
0(y)

=
−2l

0
= ∞.

Consequently, every expansion wave front in ducts of class 2 will relax at infinity.

Class 3
In ducts belonging to class 3, the wave front cannot travel beyond y∗. Therefore

the slope of the wave is calculated as y → y∗, i.e.

lim
y→y∗

u1(y) =
1[

1

u1(0)
lim
y→∞

√
A0(y)

A0(0)
+

γ + 1

2a0(0)
lim
y→∞

√
A0(y)

∫ y

0

1√
A0(y)

dy

] . (4.41)

It is clear that limy→y∗
√

A0(y) = 0. Now there are two possible cases. If the integral∫ y∗

0
1/

√
A(y) dy converges, the denominator on the right-hand side of (4.41) will vanish.

Consequently, the expansion wave will try to attain an infinite value of its slope as

y → y∗. But if
∫ y∗

0
1/

√
A(y) dy diverges, the following limit is to be evaluated, using

L’Hopital’s rule:

lim
y→y∗

√
A0(y)

∫ y

0

1√
A0(y)

dy = lim
y→y∗

∫ y

0

1√
A0(y)

dy

1√
A0(y)

= lim
y→y∗

−2A0(y)

A′
0(y)

= 0.

Hence in this case also, an expansion wave will tend to blow up as y → y∗. This
situation is similar to the finding of Lin & Szeri (2001) that a spherical expansion
wave moving toward the centre blows up at the centre. However, as stated earlier,
this kind infinitesimal expansion shock is mechanically unstable and diffuses out very
quickly.

4.2.2. Expansion wave travelling in the presence of a temperature gradient
in uniform-cross-section duct

Positive entropy gradient
A positive entropy gradient has a similar effect as duct divergence. It can be easily

proved that every expansion wave front with some finite initial value of its first
derivative will finally disappear in an increasing entropy field. For a wave travelling
in constant-cross-section duct (4.37) becomes

lim
y→∞

u1(y) =
1[

1

u1(0)a0(0)
lim
y→∞

√
a0(y) +

γ +1

2
lim
y→∞

√
a0(y)

∫ y

0

1

a
3/2
0 (y)

dy

] = 0. (4.42)

Negative entropy gradient
The negative entropy gradients can been classified into different classes similar

to the diverging ducts. However, an entropy gradient corresponding to class 3 for
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diverging ducts, where the cross-sectional area reduces to zero, does not exist in the
real world and therefore is not discussed here.

Class 1
In class 1, the speed of sound, a0(y), starts from some finite initial value a0(0)

and becomes zero at infinity (y-axis as asymptote), i.e. limy→∞a0(y) = 0. Using the

properties of improper integrals it can be shown that integral
∫ ∞

0
(1/a

3/2
0 (y)) dy diverges

for this class of entropy gradient. Evaluating the limit, limy→∞
√

a0(y)
∫ y

0
(1/a

3/2
0 (y)) dy

by L’Hopital’s rule gives

lim
y→∞

∫ y

0

1

a
3/2
0 (y)

dy

1√
a0(y)

=
−2

lim
y→∞

a′
0(y)

= ∞

because the y-axis is an asymptote to the curve. Hence every expansion wave travelling
in an entropy gradient of class 1 will relax at infinity.

Class 2
In entropy gradients of class 2, the function a0(y) starts from a finite initial value,

a0(0) and attains a finite value l (less than a0(0)) at infinity, i.e. limy→∞a0(y) = l. Such

a curve will have an asymptote parallel to the y-axis. Now, limy→∞
√

a0(y) =
√

l. Again

the integral
∫ ∞

0
(1/a

3/2
0 (y)) dy is divergent for this class. Therefore evaluating the limit,

limy→∞
√

a0(y)
∫ y

0
(1/a

3/2
0 (y)) dy by L’Hopital’s rule gives

lim
y→∞

∫ y

0

1

a
3/2
0 (y)

dy

1√
a0(y)

=
−2

lim
y→∞

a′
0(y)

= ∞.

Hence every expansion wave travelling in an entropy gradient of this type will relax
at infinity.

5. Conclusions
In this paper, the wave front expansion is used to investigate the effect of varying

cross-section and entropy gradient on a travelling wave. Pure compression and
expansion waves have been considered. These waves have a discontinuity in the first
derivative of the wave front. An evolution equation for the slope of the wave front
is obtained. It is found that in converging ducts, all compression waves, irrespective
of the values of their initial slope, steepen into a shock at some finite distance. If a
converging duct reaches zero area at some point, a shock will form before this point.
The shock formation distance in a converging duct is always less than the shock
formation distance in a constant-area duct with homentropic flow. On the other
hand, in the case of diverging ducts, compression waves may or may not become
shocks depending upon the area variation of the duct. In some diverging ducts every
compression wave front blows up and in other diverging ducts (highly diverging like
exponential horns), only those compression wave fronts with initial slopes greater than
a critical value will steepen into shocks. An expansion wave moving in a diverging
duct always relaxes. In a converging duct, an expansion wave front either relaxes or
tends toward a permanent form independent of its initial slope.
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22 M. Tyagi and R. I. Sujith

For a compression wave front, the effect of the entropy gradient is similar to that
of area variation. Increasing entropy gradients oppose shock formation (similar to
the diverging duct) and decreasing entropy gradients favour shock formation (similar
to the converging duct). An expansion wave front always relaxes in entropy gradients
whether it is increasing or decreasing.
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