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On the Inextendibility of Space-Time
John Byron Manchak*y

It has been argued that space-time must be inextendible—that it must be “as large as it
can be” in some sense. Here, we register some skepticism with respect to this position.
1. Introduction. A space-time is counted as inextendible if, intuitively, it
is “as large as it can be.” It has been argued that inextendibility is a “reason-
able physical condition to be imposed on models of the universe” (Geroch
1970, 262) and that a space-time must be inextendible if it is “to be a serious
candidate for describing actuality” (Earman 1995, 32). Here, in a variety of
ways, we register some skepticism with respect to such positions.

2. Preliminaries. We begin with a few preliminaries concerning the rele-
vant background formalism of general relativity.1 An n-dimensional, rela-
tivistic space-time (for n ≥ 2) is a pair of mathematical objects (M, gab),
whereM is a connected n-dimensional Hausdorff manifold (without bound-
ary) that is smooth and gab is a smooth, nondegenerate, pseudo-Riemannian
metric of Lorentz signature (2,1, . . . ,1) defined onM. We say two space-
times (M, gab) and (M 0, g 0

ab) are isometric if there is a diffeomorphism
J :M →M 0 such that J*gab 5 g0

ab. Two space-times (M, gab) and (M 0, g0
ab)

are locally isometric if, for each point p ∈ M , there is an open neighborhood
*To contact the author, please write to: Logic and Philosophy of Science, 3151 Social
Science Plaza A, University of California, Irvine, Irvine, CA 92697; e-mail: manchak
@gmail.com.

yThanks to Thomas Barrett, Ben Feintzeig, David Malament, Jim Weatherall, and Chris
Wüthrich for help with earlier versions of this document. Special thanks go to David
Malament for providing a sketch of the lemma 2 proof.

1. The reader is encouraged to consult Hawking and Ellis (1973), Wald (1984), and Mal-
ament (2012) for details. An outstanding (and less technical) survey of the global struc-
ture of space-time is given by Geroch and Horowitz (1979).
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O of p and an open subset O 0 of M 0 such that O and O 0 are isometric, and,
correspondingly, with the roles of (M, gab) and (M 0, g 0

ab) interchanged.
A space-time (M, gab) is extendible if there exists a space-time (M, gab)

and a proper isometric embedding J :M →M 0. Here, the space-time (M 0,
g0
ab) is an extension of (M, gab). A space-time is inextendible if it has no ex-

tension. A P-space-time is a space-time with property P. A P-space-time
(M 0, g0

ab) is a P-extension of a P-space-time (M, gab) if (M 0, g 0
ab) is an exten-

sion of (M, gab). A P-space-time is P-extendible if it has a P-extension and
is P-inextendible otherwise. We say (M, gab, F) is an n-dimensional framed
space-time if (M, gab) is an n-dimensional space-time and F is an orthonormal
n-ad of vectors {y1, . . . , yn} at some point p ∈ M . We say an n-dimensional
framed space-time (M 0, g 0

ab, F
0) is a framed extension of the n-dimensional

framed space-time (M, gab, F ) if there is a proper isometric embedding
J :M →M 0, which takes F into F 0.

For each point p ∈ M , the metric assigns a cone structure to the tangent
spaceMp. Any tangent vector ya inMp will be time-like if gaby

ayb < 0, null if
gaby

ayb 5 0, or space-like if gaby
ayb > 0. Null vectors create the cone struc-

ture; time-like vectors are inside the cone, while space-like vectors are out-
side. A time orientable space-time is one that has a continuous time-like
vector field on M. In what follows, it is assumed that space-times are time
orientable.

For some connected interval I ⊆R, a smooth curve g : I →M is time-like
if the tangent vector ya at each point in g[I ] is time-like. Similarly, a curve is
null (respectively, space-like) if its tangent vector at each point is null (re-
spectively, space-like). A curve is causal if its tangent vector at each point is
either null or time-like. A causal curve is future directed if its tangent vector
at each point falls in or on the future lobe of the light cone. We say a time-
like curve g : ½s, s 0�→M is closed if g(s) 5 g(s0). A space-time (M, gab) sat-
isfies chronology if it does not contain a closed time-like curve. For any two
points p, q ∈ M , we write p ≪ q if there exists a future-directed time-like
curve from p to q. This relation allows us to define the time-like past of a
point p: I2( p) 5 fq : q ≪ pg. We say a space-time (M, gab) satisfies past
distinguishability if there do not exist distinct points p, q ∈ M such that
I2( p) 5 I2(q). We say a set S ⊂ M is achronal if there do not exist p, q ∈ S
such that p ∈ I2(q).

An extension of a curve g : I →M is a curve g0 : I 0 →M such that I is a
proper subset of I 0 and g(s) 5 g0(s) for all s ∈ I . A curve ismaximal if it has
no extension. A curve g : I →M in a space-time (M, gab) is a geodesic if
ya ∇a y

b 5 0, where ya is the tangent vector and ∇a is the unique derivative
operator compatible with gab. A point p ∈ M is a future endpoint of a future-
directed causal curve g : I →M if, for every neighborhood O of p, there ex-
ists a point t0 ∈ I such that g(t) ∈ O for all t > t0. A past endpoint is defined
similarly. A causal curve is inextendible if it has no future or past endpoint.
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A causal geodesic g : I →M in a space-time (M, g) is past incomplete if it is
maximal and there is an r ∈ R such that r < s for all s ∈ I .

For any set S ⊆M , we define the past domain of dependence of S, written
D2(S ), to be the set of points p ∈ M such that every causal curve with past
endpoint p and no future endpoint intersects S. The future domain of depen-
dence of S, written D1(S ), is defined analogously. The entire domain of de-
pendence of S, written D(S), is just the set D2 (S ) [ D1 (S ). The edge of an
achronal set S ⊂ M is the collection of points p ∈ S such that every open
neighborhood O of p contains a point q ∈ I1(p), a point r ∈ I2( p), and a
time-like curve from r to q that does not intersect S. A set S ⊂ M is a slice
if it is closed, achronal, and without edge. A space-time (M, gab) that con-
tains a slice S such that D(S ) 5 M is said to be globally hyperbolic.

Given a space-time (M, gab), let Tab be defined by (1=8p)(Rab 2 1
2 Rgab),

where Rab is the Ricci tensor and R the scalar curvature associated with gab.
We say that (M , gab) satisfies the weak energy condition if, for each time-
like vector ya, we have Taby

ayb ≥ 0. We say that (M, gab) is a vacuum solu-
tion if Tab 5 0.

Let S be a set. A relation ≤ on S is a partial order if, for all a, b, c ∈ S,
(i) a ≤ a; (ii) if a ≤ b and b ≤ c, then a ≤ c; and (iii) if a ≤ b and b ≤ a, then
a 5 b. If ≤ is a partial ordering on a set S, we say a subset T ⊆ S is totally
ordered if, for all a, b ∈ T , either a ≤ b or b ≤ a. Let ≤ be a partial ordering
on S, and let T ⊆ S be totally ordered. An upper bound for T is an element
u ∈ S such that for all a ∈ T , a ≤ u. A maximal element of S is an element
m ∈ S such that for all c ∈ S, if m ≤ c, then c 5 m. Zorn’s lemma (which is
equivalent to the axiom of choice) is as follows: Let ≤ be a partial order on
S. If each totally ordered subset T ⊆ S has an upper bound, there is a max-
imal element of S.

3. Definition. Recall the standard definition of space-time inextendibility.
86/6940
Definition. A space-time (M, gab) is inextendible if there does not exist
a space-time (M 0, g0

ab) such that there is a proper isometric embedding
J :M →M 0.
The definition requires that an inextendible space-time be “as large as it can
be” in the sense that one compares it to a background class of all “possible”
space-times. Standardly, one takes this class to be the set of all (smooth,
Hausdorff ) Lorentzian manifolds as defined in the previous section. But
what should this class be? The answer is unclear.

Consider Misner space-time (Hawking and Ellis 1973). Let Misner* be
the globally hyperbolic “bottom half ” of Misner space-time. By the stan-
dard definition of inextendibility, Misner* is extendible and cannot be ex-
tended and remain globally hyperbolic (see below). But suppose that a ver-
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sion of the cosmic censorship conjecture is correct and all physically rea-
sonable space-times are globally hyperbolic (Penrose 1979). Then should
Misner* not be considered “as large as it can be”? It follows that whether
Misner* space-time should count as inextendible depends crucially on the
outcome of this version of the cosmic censorship conjecture—a conjecture
that is far from settled (Earman 1995; Penrose 1999) and perhaps may never
be settled (Manchak 2011).

Because of examples like these, one is tempted to revise the definition of
inextendibility.2 But Geroch (1970, 278) has argued that a revision is less
urgent if one can show, for a variety of physically reasonable properties
P, that the following statement is true.
2. Se

5 Publ
(*) Every P-inextendible P-space-time is inextendible.
The significance of (*) is this: if a property P satisfies (*), then any
P-space-time is inextendible if and only if it is P-inextendible. Effectively,
it makes no difference in such cases whether one defines inextendibility rel-
ative to the standard class of all space-times or a revised class of all
P-space-times. Accordingly, one would like to investigate (*) with respect
to a variety of properties P. Already from the Misner* example above, we
have the following proposition (a proof is provided in the appendix).
Proposition 1. If P is global hyperbolicity, (*) is false.
Are there physically reasonable properties P that render (*) true? Geroch
(1970, 289) has suggested a number of good candidates, including being
a vacuum solution, satisfying chronology, and satisfying an energy condi-
tion. The first two cases are still open. Here, we settle the case in which P is
the weak energy condition (a proof is provided in the appendix).
Proposition 2. If P is the weak energy condition, (*) is false.
We see that the prospect of avoiding the need to revise to the definition of
inextendibility does not look good. In the meantime, we may conclude that
it is not yet clear that the standard definition captures the intuitive idea that
an inextendible space-time is “as large as it can be.”

4. Metaphysics. A number of experts in general relativity (Penrose 1969;
Geroch 1970; Clarke 1976) seem to be committed to the following state-
e Manchak (2016a) for an extended discussion.
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ment. “Metaphysical considerations suggest that to be a serious candidate
for describing actuality, a spacetime should be [inextendible]. For example,
for the Creative Force to actualize a proper subpart of a larger spacetime
would seem to be a violation of Leibniz’s principles of sufficient reason and
plenitude. If one adopts the image of spacetime as being generated or built
up as time passes then the dynamical version of the principle of sufficient rea-
son would ask why the Creative Force would stop building if it is possible
to continue” (Earman 1995, 32).

These metaphysical views are underpinned by an important result due to
Geroch (1970).
86/6940
Proposition 3. Every extendible space-time has an inextendible exten-
sion.
The result (which makes use of Zorn’s lemma) seems to show that the Cre-
ative Force can always build space-time until it is no longer possible to build.
But of course, this interpretation presupposes that we have beenworkingwith
the proper definition of inextendibility. And as we have noted, it is not yet
clear that we are. Accordingly, one would like to know, for a variety of phys-
ically reasonable properties P, whether the following version of the Geroch
(1970) result is true.
(**) Every P-extendible P-space-time has a P-inextendible P-extension.
With a bit of work (and Zorn’s lemma), one can show the following prop-
osition (a proof is provided in the appendix).
Proposition 4. If P is chronology, (**) is true.
We see that if we revise the definition of inextendibility to be relative to the
class of all chronological space-times (rather than the standard class of all
space-times), we have an analogue of the Geroch (1970) result. This is cer-
tainly good news for those committed to the metaphysical views expressed
above. But are there physically reasonable properties P that render (**)
false? There are.

Of course, space-time properties may be considered physically reason-
able in various senses. Let us conservatively restrict attention to a property
usually taken to be satisfied by models of our own universe: the property of
having every inextendible time-like geodesic be past incomplete. Let us call
this the big bang property, given that it is satisfied by all of the standard
“big bang” cosmological models. We are now in a position to state the fol-
lowing proposition (Manchak 2016b).
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Proposition 5. If P is the big bang property, (**) is false.
We see that if we revise the definition of inextendibility to be relative to the
class of all space-times with the big bang property (rather than the standard
class of all space-times), we do not have an analogue of the Geroch (1970)
result. It is not yet clear that the Creative Force always has the option of
building space-time to be “as large as it can be.”

5. Epistemology. What observational evidence is there (or could there be)
in support of the position that space-time is “as large as it can be”? Follow-
ing Malament (1977), let us say that a space-time (M, gab) is observationally
indistinguishable from another space-time (M 0, g0

ab) if, for every point p ∈ M ,
there is a point p0 ∈ M 0 such that I2( p) and I2( p0) are isometric. One can
show the following proposition (Manchak 2011).
Proposition 6. Every chronological space-time is observationally indistin-
guishable from some other (nonisometric) space-time that is extendible.
Under the standard definition of inextendibility, it seems that any observer
in a chronological space-time is not in a position to know that her space-time
is “as large as it can be.” But this interpretation presupposes that we have
been working with the proper definition of inextendibility. And as we have
noted, it is not yet clear that we are. Accordingly, one would like to know,
for a variety of physically reasonable properties P, whether the following
version of the Manchak (2011) result is true.
(***) Every chronological P-space-time is observationally indistinguish-
able from some other (nonisometric) P-space-time that is P-extendible.
It turns out that a large class of physically reasonable properties render (***)
true. FollowingManchak (2011), let us say that a propertyP on a space-time
is local if, given any two locally isometric space-times (M, gab) and (M 0, g0

ab),
(M, gab) has P if and only if (M 0, g0

ab) has P. Local properties include being
a vacuum solution and satisfying the weak energy condition. We are now in
a position to state the following proposition (a proof is provided in the ap-
pendix).
Proposition 7. If P is a local property, (***) is true.
We see that, whenever P is a local property, if we revise the definition of
inextendibility to be relative to the class of all P-space-times (rather than
the standard class of all space-times), we have an analogue of the Manchak
ished online by Cambridge University Press
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(2011) result. It is not yet clear that we can ever have observational evi-
dence that space-time is “as large as it can be.”

6. Conclusion. We have registered some skepticism with respect to the po-
sition that space-time must be inextendible—that it must be “as large as it
can be” in some sense. We have done this in a variety of ways. First we have
shown that it is not yet clear that the standard definition of inextendibility
captures the intuitive idea that an inextendible space-time is “as large as it
can be.” Second, we have shown, by exploring some plausible revisions
to the definition of inextendibility, that it is not yet clear that a space-time
can always be extended to be “as large as it can be.” Finally we have shown,
by exploring a class of plausible revisions to the definition of inextendibility,
that it is not yet clear that we can ever know that space-time is “as large as it
can be.”
Appendix

Proposition 1. If P is global hyperbolicity, (*) is false.

Proof. Let (N, gab) be Misner space-time. So, N 5 R � S and gab 5
2 ∇(a t ∇b) J 2 t ∇a J ∇b J, where the points (t, J) are identified with the
points (t, J 1 2pn) for all integers n. Now, let M 5 f(t, J) ∈ N : t < 0g
and consider the space-time (M, gab). Clearly, it is extendible. It is also
globally hyperbolic since the slice S 5 f(t, J) ∈ M : t 5 21g is such that
D(S ) 5 M . We need only show that any extension to (M, gab) fails to be
globally hyperbolic.

Let (M 0, g0
ab) be any extension of (M, gab), and let p be a point in ∂M \

M 0. In any neighborhood of p, there will be a point q ∈ ∂M \ M 0 such that
q ≠ p. One can verify that I2( p) 5 M 5 I2(q). Thus, (M 0, g0

ab) is not past
distinguishing and therefore not globally hyperbolic (Hawking and Ellis
1973). QED

Proposition 2. If P is the weak energy condition, (*) is false.

Proof. Consider Minkowski space-time (R4, hab) in standard (t, x, y, z)
coordinates, where hab 5 2 ∇a t ∇b t 1 ∇ax ∇b x 1 ∇ay ∇b y 1 ∇az ∇b z.
Let Q :R4 →R be the function defined by Q(t, x, y, z) 5 exp(t3). Consider
the space-time (R4, gab), where gab 5 Q2hab. Associated with gab we have
(Wald 1984, 446)
86/694085 Published online by Cambridge University Press
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Rab 5 22 ∇a ∇bt
3 2 habh

cd ∇c ∇dt
3 1 2 ∇at

3ð Þ ∇bt
3ð Þ

22habh
cd ∇ct

3ð Þ ∇dt
3ð Þ

R 5
1

Q2 26hab ∇a ∇bt
3 2 6hab ∇at

3ð Þ ∇bt
3ð Þ� �

:

We note that ∇a t3 5 3t2 ∇a t and ∇a ∇bt3 5 6t(∇at)(∇bt). Of course,
hab(∇at)(∇bt) 5 21. Simplifying, we have

Rab 5 18t4 2 12tð Þ ∇atð Þ ∇btð Þ 1 18t4 1 6tð Þhab

R 5
1

Q2 36t 1 54t4½ �:

Einstein’s equation Rab 2 (1=2)Rgab 5 8pTab requires that

Tab 5
1

8p
18t4 2 12tð Þ ∇atð Þ ∇btð Þ 2 9t4 1 12tð Þhab½ �:

In (R4, gab), consider any time-like vector ya 5 k0(∂=∂t)a 1 k1(∂=∂x)a 1
k2(∂=∂y)a 1 k3(∂=∂z)a, where k0, k1, k2, k3 ∈ R and k2

0 > k2
1 1 k2

2 1 k2
3 . We

have

Taby
ayb 5

1

8p
18t4 2 12tð Þk2

0 1 9t4 1 12tð Þ k2
0 2 k2

1 2 k2
2 2 k2

3ð Þ½ �

5
1

8p
t4 27k2

0 2 9 k2
1 1 k2

2 1 k2
3ð Þð Þ 2 12t k2

1 1 k2
2 1 k2

3ð Þ½ �:

Because k2
0 > k2

1 1 k2
2 1 k2

3 , we know t4(27k2
0 2 9(k2

1 1 k2
2 1 k2

3 )) ≥ 0.
And for t ≤ 0, we know 212t(k2

1 1 k2
2 1 k2

3 ) ≥ 0. It follows that Taby
ayb ≥

0 for t ≤ 0.
Let M 5 f(t, x, y, z) ∈ R4: t < 0g. We have shown that the space-time

(M, gabjM ) is such that it satisfies the weak energy condition and is extend-
ible. It remains for us to show that any extension to (M, gabjM ) fails to satisfy
the weak energy condition.

Let (M 0, g0
ab) be any extension to (M, gabjM ). Let p be a point in ∂M \ M 0.

Let (O, J) be a chart with p ∈ O such that we can extend the coordinates
(t, x, y, z) on M to M [ O ⊂ M 0. So, for some p1, p2, p3 ∈ R we have p 5
(0, p1, p2, p3). Find some d > 0 such that (d, p1, p2, p3) ∈ O. For t ∈ (2d, d),
let p(t) 5 (t, p1, p2, p3) ∈ M 0.

Consider the smooth function f : (2d, d)→R given by f (t) 5 g0
abz

az b
jp(t),

where z a 5
ffiffiffi
2

p
(∂=∂t)a 1 (∂=∂x)a. Of course, for all t < 0, we have

g0
abz

azb 5 gabz
azb 5 Q2habz

azb 5 2Q2 5 2exp 2t3ð Þ:
5 Published online by Cambridge University Press
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Smoothness requires that f (0) 5 21. This allows us to find an ε ∈ (0, d)
such that f (t) < 0 for all t ∈ (2ε, ε). So z a is time-like at p(t) for all t ∈
(2ε, ε).

Consider the smooth function g : (2ε, ε)→R given by g(t) 5 T 0
abz

azb
jp(t),

where T 0
ab is defined on M 0 in the natural way (using the metric g0

ab and
Einstein’s equation). Of course, for all t < 0, we have

T 0
ab 5 Tab 5

1

8p
18t4 2 12tð Þ ∇atð Þ ∇btð Þ 2 9t4 1 12tð Þhab½ �:

Because ∇a t ∇b tzazb 5 2 and habz
az b 5 21, we have for all t < 0

T 0
abz

azb 5 Tabz
azb 5

1

8p
36t4 2 24tð Þ 1 9t4 1 12tð Þ½ � 5 1

8p
45t4 2 12t½ �:

Smoothness requires that g(0) 5 0 and (d=dt)g(0) 5 2(3=2p). This al-
lows us to find a g ∈ (0, ε) such that g(t) < 0 for t ∈ (0, g). Thus, the weak
energy condition is violated at p(t) for all t ∈ (0, g). QED

Definition. Let F denote the set of framed space-times. Let ≤ denote the re-
lation on F such that (M , gab, F ) ≤ (M 0, g0

ab, F
0) if and only if (M 0, g0

ab, F
0) is a

framed extension of (M, gab, F ).

Lemma 1. The relation ≤ is a partial ordering on F.

Proof. See Geroch (1969, 188–89). QED

Lemma 2. Let C denote the set of framed space-times that satisfy chronol-
ogy. C is partially ordered by ≤. Every subset T ⊂ C that is totally ordered
by ≤ has an upper bound in C.

Proof. Since C ⊂ F, it follows from lemma 1 that C is partially ordered
by ≤. Let T 5 f(Mi, gi, Fi)g be a subset of C that is totally ordered by ≤.
Following Hawking and Ellis (1973, 249), let M be the union of all the
Mi, where, for (Mi, gi, Fi) ≤ (Mj, gj, Fj), each pi ∈ Mi is identified with Jij

( pi), where Jij :Mi →Mj is the unique isometric embedding that takes Fi

into Fj. The manifoldMwill have an induced metric g equal to Ji* gi on each
Ji[Mi], where Ji :Mi →M is the natural isometric embedding. Finally, take
F to be the result of carrying along a chosen Fi using Ji :Mi →M . Consider
the framed space-time (M, g, F).We claim it is an upper bound forT. Clearly,
for all i, we have (Mi, gi, Fi) ≤ (M , g, F). We need only show that (M ,
g, F) ∈ C.

Suppose (M , g, F) ∉ C, and let g ⊂ M be (the image of ) a closed time-
like curve. As a topological space (with induced topology from M ), g is
compact. For all i, let gi be g \ Mi. So, A 5 fgig is an open cover of g.
86/694085 Published online by Cambridge University Press
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By compactness, there must be a finite subset A0 ⊂ A that is also a cover of
g. One can use the relation ≤ on T to order the finite number of elements in
A0 into a nested sequence of subsets gj ⊆ ::: ⊆ gk . It follows that gk 5 g. So,
(Mk , gk , Fk) ∉ C: a contradiction. QED

Proposition 4. If P is chronology, (**) is true.

Proof. Let P be chronology, and let (M, gab) be a P-space-time that
is P-extendible. Let F be an orthonormal n-ad at some point p ∈ M . So,
(M , gab, F) ∈ C, where C is the set of framed space-times that satisfy chro-
nology. By lemma 2 and Zorn’s lemma, there is a maximal element
(M 0, g0

ab, F
0) ∈ C such that (M , gab, F) ≤ (M 0, g0

ab, F
0). It follows that (M 0,

g0
ab) is a P-inextendible P-extension of (M, gab). QED

Proposition 7. If P is a local property, (***) is true.

Proof. Let P be any local property, and let (M, gab) be any chronolog-
ical P-space-time. Now construct (M 0, g0

ab) according to the method out-
lined in Manchak (2009). Note that (M 0, g0

ab) is a P-space-time by construc-
tion. Next, remove any point in theM(1, b) portion of the manifoldM 0, and
call the resulting space-time (M 00, g00

ab). One can verify that (i) (M, gab) is ob-
servationally indistinguishable from (M 00, g00

ab), (ii) (M
00, g00

ab) is a P-space-
time, and (iii) (M, gab) is not isometric to (M 00, g00

ab). Since (M 0, g0
ab) is a

P-extension to (M 00, g00
ab), the latter is P-extendible. QED
REFERENCES

Clarke, C. 1976. “Spacetime Singularities.” Communications in Mathematical Physics 49:17–23.
Earman, J. 1995. Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Rel-

ativistic Spacetimes. Oxford: Oxford University Press.
Geroch, R. 1969. “Limits of Spacetimes.” Communications in Mathematical Physics 13:180–93.
———. 1970. “Singularities.” In Relativity, ed. M. Carmeli, S. I. Fickler, and L. Witten, 259–91.

New York: Plenum.
Geroch, R., and G. Horowitz. 1979. “Global Structure of Spacetimes.” In General Relativity: An

Einstein Centenary Survey, ed. S. W. Hawking and W. Israel, 212–93. Cambridge: Cambridge
University Press.

Hawking, S., and G. Ellis. 1973. The Large Scale Structure of Space-Time. Cambridge: Cambridge
University Press.

Malament, D. 1977. “Observationally Indistinguishable Space-Times.” In Foundations of Space-
Time Theories, ed. J. Earman, C. Glymour, and J. Stachel, 61–80. Minnesota Studies in the
Philosophy of Science 7. Minneapolis: University of Minnesota Press.

———. 2012. Topics in the Foundations of General Relativity and Newtonian Gravitation Theory.
Chicago: University of Chicago Press.

Manchak, J. 2009. “CanWe Know the Global Structure of Spacetime?” Studies in History and Phi-
losophy of Modern Physics 40:53–56.

———. 2011. “What Is a Physically Reasonable Spacetime?” Philosophy of Science 78:410–20.
5 Published online by Cambridge University Press

https://doi.org/10.1086/694085


INEXTENDIBILITY OF SPACE-TIME 1225

https://doi.org/10.10
———. 2016a. “Epistemic ‘Holes’ in Spacetime.” Philosophy of Science 83:265–76.
———. 2016b. “Is the Universe as Large as It Can Be?” Erkenntnis 81:1341–44.
Penrose, R. 1969. “Gravitational Collapse: The Role of General Relativity.” Revisita del Nuovo

Cimento, 1st ser., 1:252–76.
———. 1979. “Singularities and Time-Asymmery.” In General Relativity: An Einstein Centenary

Survey, ed. S. Hawking and W. Israel, 581–638. Cambridge: Cambridge University Press.
———. 1999. “The Question of Cosmic Censorship.” Journal of Astrophysics and Astronomy

20:233–48.
Wald, R. 1984. General Relativity. Chicago: University of Chicago Press.
86/694085 Published online by Cambridge University Press

https://doi.org/10.1086/694085

