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ABSTRACT. This paper develops a simple method for the detection of ‘vegetation anomalies’, locations where the
amount of vegetation, estimated through the use of the normalised difference vegetation index (NDVI), is significantly
lower than expected on the basis of topographic factors alone. The method is developed and tested using satellite
imagery from the area around the town of Monchegorsk on the Kola Peninsula, Russia. This area has been subject
to heavy levels of airborne industrial pollution for many years and the intended purpose of the method is to allow
the extent of pollution damaged vegetation to be estimated with as few operational decisions as possible by the data
analyst, thus suiting it for automation and for the analysis of time-series of satellite images. While the work described in
this paper is to some extent preliminary, it does establish that spatial variations in the NDVI of undisturbed vegetation
can, at least in the study area, be modelled satisfactorily using topographic variables, and that negative departures from
this modelled variation are very strongly associated with industrially mediated damage.

Introduction

Industrialisation of the Arctic and sub-Arctic region is far
from uniform but, in some locations, rather significant.
One particular problem, that has received considerable
attention over the last few decades, is the atmospheric
emission of sulphur dioxide and heavy metals as a result
of the smelting of nickel and other non-ferrous metals.
These emissions can produce significant disturbance of
vegetation at the local and regional scales. Particular
problems are noted in Russia, around the smelters at
Monchegorsk and Nikel’-Zapolyarniy on the Kola Pen-
insula (Rees and Rigina 2003), and especially around
Noril’sk in Siberia (Toutoubalina and Rees 1999), and all
of these sites have been the subject of considerable study.

Monitoring of pollution impacts by the use of space-
borne remote sensing methods is favourable in these
locations (Johansen and others 1995; Rigina 2002;
Tømmervik and others 1998). The sensitivity of images
acquired in the visible and near-infrared part of the elec-
tromagnetic spectrum to the distribution and physiolo-
gical state of vegetation, especially vascular plants, is
well established (Goetz and others 1985), and spaceborne
remote sensing offers the possibility of obtaining data
from locations that may be difficult to reach for one
reason or another, and also of detecting change through
the analysis of time series of satellite data that can poten-
tially extend back to the early 1970s. Change-detection
methods frequently make use of post-classification ana-
lyses (Lunetta and Elvidge 1999), in which each of a
series of satellite images is first classified to show the
distribution of land cover, including classes representing
damaged vegetation, and the classified images are then
compared. This approach, however, often encounters a
problem in the unavailability of suitable training or val-
idation data from earlier dates. Assumptions about the
stability of spectral signatures corresponding to particular
land cover types are less likely to hold good at high
latitudes than in temperate regions, mainly as a result of

the very rapid phenological progression during the short
summer, and the difficulty is often circumvented in other
ways, for example by making certain assumptions about
the kind of changes that can and cannot take place in the
land cover (Rees and Williams 1997). It can be difficult
to ensure that such approaches are robust.

The aim of this paper is to develop an approach to
the identification of degraded vegetation around a source
of atmospheric pollution that is robust in the sense that
it requires minimal decision making by the data analyst,
and does not require that training data be available. Such
a technique would be potentially well suited to investig-
ating the changing distribution of pollution impact over
time, using historical satellite data.

Study area

The study area is based around the city of Monchegorsk
(67◦.9 N, 32◦.9 E, 132 metres a.s.l.), in the Murmansk
Oblast, Russia (Fig. 1). Monchegorsk (population ca
50,000 at 2002 census) is situated near the northern end
of Lake Imandra, in the west-central part of the Kola
Peninsula. The area is mountainous, with the Monchet-
undra ridge to the west and the Khibiny laccolith to the
east of Lake Imandra (Fig. 2). These reach elevations
of 1000 m and 1300 m respectively. The climate of the
Kola Peninusla is determined by atmospheric processes
over the Atlantic Ocean. Prevailing winds are from the
north in summer, from the south in winter. The mean
temperature in the coldest months (January and February)
is around –9◦C and in the warmest month (August)
+12◦C; the average annual precipitation is around 500–
600 mm (Rees and Kapitsa 1994). Local vegetation is
strongly dependent on altitude. The treeline is at around
400 m, below which is boreal forest consisting mainly of
fir, spruce and pine. Above the boreal forest is a subalpine
zone occupied by birch. The alpine zone consists of dwarf
birch (Betula nana), lichens, dwarf shrubs and some moss
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Fig. 1. Location of the study area on the Kola Peninsula,
Russia. Green colour denotes forest areas.

Fig. 2. Landsat-7 Enhanced Thematic Mapper image
of the Monchegorsk study area, draped over a Digital
Elevation Model. The towns of Monchegorsk, Apatity and
Kirovsk are identified, as well as Lake Imandra, the Khib-
iny mountains, and the mountain ridge Monchetundra.
The extensive light areas near Apatity and Kirovsk are
industrial tailing ponds. The image was acquired in July
2000.

tundra, while areas above about 800 m are generally
devoid of vegetation (Rees and Kapitsa 1994).

Monchegorsk is the site of the Severonikel’ nickel
smelter, which has been in operation since 1938 and is
a major source of acidifying atmospheric emissions and
heavy metal pollution (Rees and Rigina 2003). It has
been the focus of numerous studies of industrial impact
on high latitude vegetation, including by the present
author and his colleagues from the Geography Faculty of
Moscow State University since 1993.

Fig. 2 shows a satellite image of the study area draped
over a Digital Elevation Model of the terrain. The image
is a true-colour Landsat-7 image, and it clearly shows the
altitudinal zonation of vegetation, especially on the flanks
of the Khibiny mountains. In the vicinity of the major
source of pollution at Monchegorsk this relationship
between elevation and vegetation is perturbed, and this
forms the basis of the method developed in this paper.

Proposed method of detecting degraded vegetation

The proposed method is based on the use of the normal-
ised difference vegetation index (NDVI). This is a simple
mathematical operation performed on suitable calibrated
imagery, and it is essentially a transformed ratio of the
scene reflectances rr and ri in the red and near-infrared
regions of the electromagnetic spectrum (1):

N = ri − rr

ri + rr

(1)

The NDVI is well known (van Wijk and others 2004)
to be strongly correlated to the amount of vascular
vegetation (for example the above-ground phytomass)
present at a location, as a result of the positive correlation
of infrared reflectance and the negative correlation of
red reflectance, mediated by cellular structure and the
presence of chlorophyll respectively (Tucker and others
1986). It has often been used as a means of identifying
vegetation damage (Pitblado and Amiro 1982; Litinksy
1996). The hypothesis tested in the present paper can
be stated in two parts: (1) in areas where vegetation is
not significantly affected by air pollution, the NDVI of
vegetated areas is controlled principally by topographic
variables, especially elevation; (2) pollution impact on
vegetation is manifested as a lowering of the NDVI
relative to the value that would be expected on the
basis of the topographic variables. If this hypothesis is
substantiated, it offers the promise of a rather simple
objective technique for identifying degraded vegetation.

Analysis

The satellite image analysed in this work was an extract
of a Landsat-7 Enhanced Thematic Mapper (ETM+)
image acquired from path 186 row 013 on 28 July
2000. The image was downloaded as a georeferenced
orthoimage (WGS84 datum, UTM zone 36) from the
Global Land Cover Facility at the University of Mary-
land, and trimmed to the region 477888 ≤ x ≤ 555037.5,
7482162 ≤ y ≤ 7541983.5, where x and y are the UTM
coordinates (pixel centres) in metres, that is to an extract
2708 pixels wide and 2100 pixels high (the image pixels
were 28.5 m square). The NDVI was calculated from
bands three and four of this image using the calib-
ration constants, obtained from the Landsat-7 science
data users’ handbook (NASA 2011), and the dark-object
subtraction method (Vincent 1972) to correct the data for
atmospheric effects. This method assumes that the effect
of propagation through the atmosphere is simply to add a
constant radiance, dependent on the wavelength band, to
the detected signal. The appropriate quantity to subtract
from the measured radiance is estimated by searching for
the pixels contributing least to the at-satellite radiance
and assuming that they contribute nothing to the surface-
leaving radiance so that what is detected at the satellite
is all contributed by the atmosphere. In practice this is a
good assumption for pixels corresponding to clear deep
water, especially in areas of deep shadow. Such pixels
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Fig. 3. Above: Calculated NDVI image. Monchegorsk
and Monchetundra are towards the top left; the Khibiny
mountains are the large, approximately circular feature
at right centre. Below: Vegetated areas included in the
analysis (white). The ‘Monchegorsk box’ is shown at the
top left.

are not hard to find in this study area. The corresponding
NDVI image is shown in Fig. 3.

In order to test the hypothesis, it was necessary first
to restrict the analysis only to vegetated, or formerly
vegetated, areas. This required the identification of pixels
corresponding to water, snow, shadow and tailing ponds,
as well as the exclusion of the polluted area around
Monchegorsk. Urban areas and roads were not masked.
The mask for water, snow etc was generated by perform-
ing a 60-cluster unsupervised (ISODATA) classification
of the entire image extract and then inspecting each
cluster in turn to determine whether it corresponded to
one of the classes to be masked. This was straightforward
and reasonably objective given the highly distinctive
spectra of water, snow and tailings, and only the shadow
class presented some ambiguity. This problem was re-
solved by including any doubtful clusters within the
mask, which is shown in Fig. 3. This figure also shows
a rectangular region towards the top left of the image
extract, centred on Monchegorsk. This has coordinates
486780 ≤ x ≤ 503880, 7520095.5 ≤ y ≤ 7541983.5

(that is it is 17.1 × 21.9 km) and will be referred to as
the ‘Monchegorsk box’. A rectangular region was chosen
for simplicity of definition and also having regard to the
elongation of the pollution affected region along a north-
south axis, presumably as a consequence of the direction
of the prevailing wind and also of the constraints on
the atmospheric transport of pollutants imposed by the
surrounding terrain. The appropriate dimensions of the
Monchegorsk box were judged by eye. Data from within
the Monchegorsk box were excluded from the determin-
ation of the relationship between NDVI and topographic
variables for undamaged vegetation. The mean NDVI
within the unmasked areas, excluding the data from the
Monchegorsk box, was 0.609 with a standard deviation
of 0.185.

Topographic variables were derived from Advanced
Spaceborne Thermal Emission and Reflection Spectro-
meter (ASTER) Global Digital Elevation Model (GDEM)
data for the study area. ASTER GDEM data are
freely available (see Acknowledgements; also Rees (in
press)) and are gridded at a sampling interval of one
second of arc (approximately 31 m in latitude and 11 m
in longitude at the latitude of Monchegorsk), although
the effective spatial resolution is around 100 m with an
elevation accuracy of around ten m (Rees in press). The
data were resampled to the same resolution and projec-
tion as the Landsat imagery. Two topographic variables
were derived for each pixel in the DEM: the elevation,
and the aspect of the slope. Elevation was binned in
five m intervals and aspect was binned into the eight
cardinal and ordinal directions (north, north-east and so
on) relative to grid north.

The NDVI data from the presumed undamaged areas
were used to define the variation of the mean NDVI
with elevation as a single explanatory variable (Fig. 4).
This relationship is as expected in the sense that NDVI
decreases almost monotonically with increasing elevation
once the elevation exceeds about 300 m. The data plotted
in Fig. 4 were not used to define the parameters of a best
fitting model of any particular kind, although in fact it
was noted that a fourth-order polynomial function gives
a reasonable fit.

The root mean square residual of the NDVI data,
after subtracting the empirical relationship represented by
Fig. 4a, is defined by

〈(N − N̄ (h))2〉1/2, (2)

where N is the observed value of the NDVI at a particular
location at elevation h, and N̄ (h) is the empirical rela-
tionship, that is the mean value of N for all undamaged
areas with the same elevation. The angle brackets denote
averaging over all undamaged areas. This quantity was
found to have a value of 0.112. Comparing this to the
standard deviation of the NDVI, already noted as 0.185,
implies a pseudo-r2 value of 0.631 (1-(0.112/0.185)2),
that is that around 63% of the variance in the NDVI is
explained by this empirical model. Including the effect
of aspect as well as elevation increases the pseudo-r2
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Fig. 4. Dependence of mean NDVI on elevation (above)
and on elevation and aspect (below) for presumed un-
damaged areas.

slightly, to 0.641, and the effect of varying aspect is again
as expected, in the sense that south facing slopes have
higher values of mean NDVI than north-facing slopes
(Fig. 4). However, the differences are not large compared
with the rms residual, so the effect of aspect was ignored
in subsequent analysis. The NDVI anomaly was thus
defined as

�N = N − N̄ (h). (3)

An NDVI anomaly image was created for all un-
masked areas, including the Monchegorsk box.

Results

The NDVI anomaly image resulting from this procedure
is shown in Fig. 5. Where there are significant anomalies
(|�N | > 0.2) these are almost always negative. Strong
negative anomalies (�N < −0.4) are, without exception,
associated with urban areas, quarries, tailings or the
region close to the smelter at Monchegorsk, and it seems
very likely that these strong negative anomalies can be
identified as areas of significantly degraded vegetation.
Negative anomalies as strong as –0.6 are observed close
to Monchegorsk. The weaker negative anomalies also
appear to be associated with the degradation of vegetation
around Monchegorsk, but they are also less believably as-
sociated with the lower slopes of the Khibiny mountains.

Fig. 5. NDVI anomaly relative to the elevation-dependent
model of figure 4. Black: �N < −0.4; red: −0.4 ≤ �N <

−0.2; yellow: −0.2 ≤ �N < +0.2; green: �N ≥ +0.2. The
location of the Monchegorsk box is shown.

Some positive anomalies occur in the southern part of the
Khibiny mountains.

Discussion

The method developed in this paper appears to have
successfully identified the distribution of degraded ve-
getation around the smelter at Monchegork on the basis
that the value of the NDVI in the damaged area are
significantly lower than would be expected in the absence
of disturbance. The method relies on the fact that the
value of the undisturbed NDVI is strongly controlled
by the elevation, presumably reflecting the fact that the
study site is close to the treeline. Confirmation that
it is reasonable to associate negative NDVI anomalies
with degraded vegetation was provided by some in situ
verification. Twenty locations were visited during field-
work between 2001 and 2009. At each location, site de-
scriptions were completed and photographs were taken.
Fig. 6 shows photographs from four of these locations,
chosen to illustrate two locations at similar elevation (and
hence having similar values of N̄ ) but with substantially
different values of N, and two locations having similar
values of N at substantially different elevations.

The top two photographs in Fig. 6 show two sites that
would be expected to have similar NDVI values. The first
is from a location about 20 km south of Monchegorsk,
with largely undamaged pine and spruce forest, while
the second is from a location about 10 km south of
Monchegorsk showing heavily damaged forest with a
small amount of birch scrub. The NDVI anomalies at
these two locations are +0.08 and –0.52 respectively. The
bottom two photographs show two sites with very similar
values of the observed NDVI. The first of these is at
an elevation of 547 m and is a healthy mixed tundra of
dwarf shrubs and lichens in the Khibiny mountains, while
the second is of moderately damaged forest about 30 km
south of Monchegorsk.
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Fig. 6. Field photographs of sites having the following characteristics, in each case presented as elevation
in metres, followed by modelled NDVI N̄ and observed NDVI N̄. Top left: 207, 0.70, 0.78; top right: 205,
0.70, 0.18; bottom left: 547, 0.44, 0.48; bottom right: 160, 0.71, 0.47.

The methodology developed in this paper has used
calibrated satellite imagery to calculate the NDVI. How-
ever, it would be possible to apply a variant of the
method even if the calibration data were not known.
Specifically, we suppose that a ‘pseudo-NDVI’ N′ is cal-
culated from uncalibrated reflectance or radiance data as
follows:

N ′ = r ′
i − r ′

r

r ′
i + r ′

r

(4)

where r ′
i and r ′

r are monotonic functions of the calibrated
reflectances ri and rr respectively, and r ′

i = 0 when r ′
i = 0

and r ′
r = 0 when r ′

i = 0. In this case, which requires only
that dark-object subtraction is carried out correctly on the
uncalibrated data, it can be shown that N′ is related mono-
tonically, although not linearly, to N. Thus, provided
a monotonic relationship is found between the mean
pseudo-NDVI N′ and the elevation, anomalous values of
N′ can be interpreted as though the vegetation cover is
unexpected for the elevation at which they occur, and they
can be expressed as elevation anomalies. This principle
could of course equally well be applied to calibrated data.
For example, the field location shown at the top right
of figure 6 has an actual value of NDVI (0.18) that is,
according to Fig. 4, expected for an elevation of above
1165 m, while the actual elevation of the location is
205 m, so the elevation anomaly is greater than +945 m.

The field location shown at the bottom left of Fig. 6 has
an actual value of NDVI (0.48) which corresponds to an
elevation of 515 m. Since the actual elevation is 547 m,
the elevation anomaly is –32 m.

The use of the ‘Monchegorsk box’ to eliminate most
of the area of degraded vegetation from the character-
isation of the relationship between elevation and NDVI
relied on prior knowledge of the study area. However,
this step could be omitted if the data met certain con-
ditions. What is needed is to be able to identify the
NDVI corresponding to undamaged vegetation at each
elevation, in the presence of NDVI values correspond-
ing to degraded vegetation. Provided that undamaged
vegetation is substantially more common than dam-
aged vegetation at every elevation considered in the
analysis, the problem can be addressed by statistical
means. One obvious possibility would be to estimate the
modal value of the NDVI in each range of elevation;
another would be to fit a suitably chosen function with
parameters representing both undamaged and degraded
vegetation.

There is a relevant sense in which the vegetation in
the study area is rather uniform. Although an increase in
elevation from 300 to 1200 m sees a series of transitions
in the baseline vegetation, from boreal forest, to forest
tundra, to dwarf-shrub-lichen tundra and ultimately to
predominantly bare ground, Fig. 4 strongly suggests that
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these transitions can all be regarded as part of a continu-
ous decrease in the amount of vascular vegetation. This
is probably in part a consequence of the relatively coarse
spatial resolution of the satellite imagery, so that all
pixels are mixed and most contain at least some vascular
plant material, but it is perhaps also a consequence of
the relative simplicity of the ecosystems. Phenological
considerations may also be important: the image analysed
here may by chance have been acquired during the
optimum point in the phenological cycle, with maximum
greenness of the vegetation enhancing the elevational
differences and those attributable to industrial impact
(Tutubalina and Rees 2001). These points could be tested
by analysing images from other test sites and also by
analysing a time-series of images from the same site:
these analyses are currently being undertaken.

Conclusions

The data analysed in this paper strongly suggest that (a)
the spatial variation in the NDVI of relatively undisturbed
vegetation can be explained rather satisfactorily using el-
evation as a single explanatory variable, and (b) negative
departures from this relationship can be used to identify
areas in which vegetation is notably degraded. The ap-
proach developed here has considerable potential for
investigating the development of the region of damaged
vegetation around the nickel smelter at Monchegorsk
over the past few decades, and may also be extensible
to other sites.
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