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Topological bifurcations in the transition from
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We explore the two-dimensional flow past a cylinder undergoing forced transversal
oscillations with the aim of elucidating the evolution of the topology of the wake under
variation of the forcing amplitude at a Reynolds number of 100. In particular, we study
the change from two single vortices (2S mode) to a pair and a single vortex (P + S mode)
being shed per period. Matharu et al. (J. Fluid Mech., vol. 918, 2021, p. A21) showed that
a dynamical symmetry-breaking pitchfork bifurcation plays a key role in this transition.
We show that in addition to this bifurcation, a number of topological bifurcations in
the vorticity field occur, both on the symmetric 2S branch and on the asymmetric P + S
branch. The topological bifurcations are cusp bifurcations where an extremum of vorticity
is created or destroyed. To describe the effect of the topological bifurcations we introduce
an extended symbolic classification of the wake modes to account for the spatial variations
of the vortex patterns that occur in the transition process. We identify four amplitude values
that define critical stages in the transition, and provide a complete qualitative picture of the
transition from 2S to P + S mode. We confirm the robustness of the observed transition
process by simulations at Reynolds number 80.
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1. Introduction

In this paper, we draw attention to the classical fluid mechanical problem of the flow past
a circular cylinder undergoing forced transverse oscillations. The problem is considered
a basic case for bluff bodies with more complex geometries, and it contributes to the
understanding of vortex-induced vibrations. Periodic wakes behind oscillating bodies have
a structure that depends on the body shape as well as external parameters. For example,
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Schnipper, Andersen & Bohr (2009) demonstrated that for certain amplitudes and periods
of a flapping wing, very complex wake patterns with up to 16 vortices per oscillation cycle
can be observed. Further, in a landmark and much-cited paper, Williamson & Roshko
(1988) experimentally studied the flow past an oscillating cylinder. Their paper was the
first to provide a comprehensive study of the different wake patterns that arise through
a variation in the wavelength λ and the amplitude A of the cylinder oscillations. They
introduced a classification of the wakes based on the number of vortices that were shed
with each cylinder oscillation. With this terminology, S denotes a single vortex, P denotes
a pair of vortices of opposite signs, so a pattern such as P + S is one where a pair of
vortices and a single vortex are shed in each oscillation cycle. The classification can
be used for any periodic vortex wake, even if it is generated by a self-oscillation and
not by a periodic forcing. For instance, the well-known periodic Kármán vortex street
behind a stationary cylinder is referred to as a 2S wake. Williamson & Roshko (1988)
identified several vortex shedding patterns more complex than the 2S wake. In later studies,
these complicated wake patterns have become known as ‘exotic wakes’ (Aref, Stremler &
Ponta 2006; Ponta & Aref 2006). There are good reasons why the understanding of wake
patterns of a circular cylinder is important. The experiments by Williamson & Roshko
(1988) suggested that the variation of the force acting on the cylinder under variation of
the forcing frequency found by Bishop, Hassan & Saunders (1964) could be explained
by changes in the wake mode. This connection has subsequently been confirmed both
for forced oscillations of the cylinder we consider in the present paper (Blackburn &
Henderson 1999; Carberry, Sheridan & Rockwell 2001; Morse & Williamson 2009) and
for vortex-induced oscillations (Brika & Laneville 1993). For wakes of flapping foils, the
topological transition from a von Kármán vortex street to a reverse von Kármán vortex
street and its subsequent loss of stability is associated with a change of drag into thrust
(Godoy-Diana, Aider & Wesfreid 2008; Dynnikova et al. 2021). Furthermore, the wake
structure is decisive for transport of passive particles, which has mostly been studied in
the context of fixed cylinders. For example, Shariff, Pulliam & Ottino (1991) discuss the
connection between streaklines and the vorticity field, and Sandulescu et al. (2006) analyse
the flow of particles across a wake.

Any qualitative changes of structures in dynamical systems occur through bifurcations.
In this paper, we examine the bifurcation phenomena in play when the wake pattern
changes from a 2S to a P + S wake under a variation in the oscillation amplitude.
Bifurcations can occur at two different levels in fluid dynamical problems: at a dynamical
level or at a topological level. At a dynamical level, we consider the Navier–Stokes
equations as a dynamical system and the bifurcations of these equations occur in an
infinite-dimensional function space of velocity fields. A fixed point of this system
corresponds to a steady flow, and a limit cycle to a periodic flow. A classical example of
a dynamical bifurcation is the supercritical Hopf bifurcation that occurs when the steady
flow past a stationary cylinder loses its stability to a time-periodic solution at Re ≈ 46 (see,
e.g., Dusek, Le Gal & Fraunie 1994; Noack & Eckelmann 1994). The Hopf bifurcation is
an absolute instability, where the entire flow oscillates. A convective instability (Huerre &
Monkewitz 1990), where a localised disturbance is carried by the flow without decaying, is
also a bifurcation phenomenon on the dynamical level. At a topological level, we consider
a family of flow fields that are already available from solving Navier–Stokes equations at
different parameter values. Bifurcations at a topological level are not associated with any
loss of stability, but result in changes to the topology of a flow field such as velocity or
vorticity. An example of a topological bifurcation is the creation of the two symmetric
recirculation zones in the steady flow past a stationary cylinder when Re ≈ 5 (see, e.g.,
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Reverse cusp bifurcation (a vortex is destroyed)

Forward cusp bifurcation (a new vortex is created)

D E S

Figure 1. The vorticity topology during a cusp bifurcation when a parameter is varied. Going from left to
right, the level curves of vorticity deform to create an ordinary cusp singularity at the degenerate critical point
D. With a further change of the parameter a saddle S and an extremum E emerge which results in the formation
of a vortex. The process going right to left is the destruction of a vortex.

Brøns et al. 2007). Bifurcations can occur at both levels, but in general they are not
related. Heil et al. (2017) show that the formation of the Kármán-vortex street is a result of
both types of bifurcations occurring at two distinct, but very close values of the Reynolds
number; the transition from a steady to a time-periodic flow is a dynamical bifurcation,
and the transition of the shear layer into individual vortices is a topological bifurcation of
the vorticity field that occurs at a slightly higher Reynolds number.

In order to describe the topological changes that occur in the wake, we require a clear
definition of the topological structures to be considered. Here, we analyse the topology of
the flow field in terms of the vorticity field ω. Since we consider a two-dimensional flow,
ω is a scalar field whose topology is described by the level curves and the critical points
at which ∂xω = ∂yω = 0. The type of a critical point is determined by the determinant of
the Hessian matrix

|Hω| = ∂xxω∂yyω − (∂xyω)2. (1.1)

If |Hω| > 0 the critical point is an extremum and if |Hω| < 0 it is a saddle point. An
extremum in the vorticity field is encircled by closed level curves, and such a region is
often identified as a vortex. As long as extrema or saddles are regular (i.e. |Hω| /= 0), they
are robust, and are advected with the flow; see Brøns & Bisgaard (2010) for a derivation of
their equations of motion. To locate any topological changes in the vorticity field we must
therefore locate the degenerate critical points where |Hω| = 0. Under generic assumptions
on higher-order derivatives of ω it can be shown (Brøns 2007) that the simplest possible
change in the topology is a cusp bifurcation (also known as a saddle-centre bifurcation).
A cusp bifurcation occurs when Hω has zero as a simple eigenvalue, that is, when
|Hω| = 0 and tr(Hω) /= 0. The level curves and the critical points of the vorticity field
during a cusp bifurcation are illustrated in figure 1. The bifurcation parameter can be any
parameter upon which the problem depends. In the present study, we find that several
vortices appear or disappear via cusp bifurcations in the flow when time is considered the
bifurcation parameter. In order to give an accurate description of the topology of the wake,
we introduce an extended symbolic classification which, in contrast to Williamson and
Roshko’s terminology, accounts for topological variations in the downstream wake. Our
extended classification is introduced in § 4.
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The 2S wake preserves a spatio-temporal Z2 symmetry (Blackburn, Marques & Lopez
2005), which means that if the flow is evolved forward in time by half a period, and is
reflected spatially about the wake centreline, then the original wake pattern is recovered.
In terms of the vorticity field, it implies

ω(x, y, t) = −ω(x, −y, t + 1/2), (1.2)

when the period of the cylinder oscillations is normalised to one. It is clear that a P + S
wake pattern cannot satisfy the same condition as it alternates between a single vortex or
a pair of vortices being shed in every half period.

In a very recent paper, Matharu, Hazel & Heil (2021) examined the dynamical
bifurcations that lead to symmetry breaking. They considered the fundamental lock-in
region where the cylinder oscillates with the Strouhal frequency of the cylinder and show
that, at Re = 100, the loss of symmetry is due to a subcritical pitchfork bifurcation at a
dynamical level. In § 5, we analyse the topological role of the symmetry-breaking pitchfork
bifurcation. We prove that the dynamical bifurcation relaxes the condition that two cusp
bifurcations must occur with an exact temporal spacing of half a period. This allows one of
the bifurcation points to move rapidly downstream. By monitoring the structural changes
of the vorticity field we show that the pitchfork bifurcation plays an important role in the
transition from 2S to P + S mode. However, it is also clear that it does not provide the
complete topological description. In this paper, we show that the transition is the result
of a sequence of topological bifurcations with some occurring while the wake remains
symmetrical. We confirm the robustness of the scenario at Re = 100 by simulations at
Re = 80.

2. Problem setup

We study the two-dimensional flow past a transversely oscillating cylinder in a finite-width
channel. The cylinder is prescribed to oscillate with period T and amplitude A for a
specified inflow velocity U. Instead of the period, we consider the wavelength λ = UT
as an equivalent parameter. Figure 2 shows a sketch of the setup. We non-dimensionalise
the velocity field u by rescaling with U. All lengths, including the amplitude A and the
wavelength λ, are non-dimensionalised on the diameter of the cylinder, D. The pressure p
is scaled on the associated viscous scale, μU/D, where μ is the dynamic viscosity of the
fluid, and time is scaled on the advective timescale, D/U. The flow (in the moving frame
of reference) is then governed by the non-dimensional Navier–Stokes equations

Re
(

∂u
∂t

+ (u · ∇)u
)

= −∇p + ∇2u and ∇ · u = 0, (2.1a,b)

where the Reynolds number is Re = ρUD/μ, with ρ being the density of the fluid. In the
moving frame of reference we use a Cartesian coordinate system, in which the centre of
the cylinder is located at

xcyl(t) = 0, ycyl(t) = A sin(2πt/λ). (2.2a,b)

On the surface of the moving cylinder we impose the no-slip condition

u = 0, v = dycyl

dt
= (2πA/λ) cos(2πt/λ). (2.3a,b)

We also impose the boundary conditions

u = 1, v = 0, at x = −Linlet and at y = ±H/2, (2.4)
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LoutletLinlet

H

u = ex

D = 1 ycyl(t) = A sin(2πt/λ)

u 
=

 e
x

�u
 –

 p
e x =

 0

u = ex

Figure 2. Sketch of the problem setup and the boundary conditions, all expressed in non-dimensional
variables. The setup is described by a Cartesian coordinate system where the origin coincides with the centre
of the cylinder at t = 0.

corresponding to a uniform inflow and a no-slip condition relative to the moving channel
walls. Furthermore we allow the outlet to remain (pseudo-)traction free, i.e.(−p + ∂u/∂x

∂v/∂x

)
=

(
0
0

)
at x = Loutlet. (2.5)

In the main computational part of this study we fix the Reynolds number to be 100, well
within the regime of two-dimensional flow for a stationary cylinder (Barkley & Henderson
1996). Furthermore, oscillations of the cylinder stabilise the two-dimensional flow (Gioria
et al. 2009), as also found experimentally by Griffin (1971). We have chosen to use a value
of Re = 100 so that we can directly compare our results with those by Matharu et al. (2021)
and Leontini et al. (2006).

Our aim is to find time-periodic solutions of (2.1a,b)–(2.5). For a given solution
u(x, y, t; A, λ) the corresponding vorticity field can be computed as

ω(x, y, t; A, λ) = ∇ × u(x, y, t; A, λ). (2.6)

To investigate topological bifurcations in the vorticity field, simulations have been
performed at four different values of the wavelength: λ = 5.5, 6.085, 6.5 and 6.7. The
value λSt = 6.085 is obtained from the relationship

T/TSt = λStSt = 1, (2.7)

where T is the period of the imposed cylinder oscillations and TSt is the period at which
vortices are shed in the same flow past a stationary cylinder, i.e. the Strouhal period.
The Reynolds number of Re = 100 corresponds to the Strouhal number St = 0.16434
when using the Reynolds–Strouhal number relationship given by Williamson (1988). The
results for λ = λSt can be compared directly with the studies by Matharu et al. (2021).
Having selected the values of the two free parameters, Re and λ, we consider time as
the bifurcation parameter and monitor the cusp bifurcations in the vorticity field during a
complete oscillation and repeat this as the amplitude is varied.

3. Numerical method

We performed numerical simulations using the open-source finite-element library
oomph-lib (Heil & Hazel 2006). The Navier–Stokes equations were spatially discretised
with quadrilateral Taylor–Hood elements, within which the velocities and the pressure
are represented by quadratic and piecewise linear polynomials, respectively. For the
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Loutlet = 70Linlet = 10

H
 =

 2
0

Figure 3. Illustration of the computational domain. The thick black lines show the base mesh and the thin
black lines show the mesh after four uniform refinements. In the actual simulations the mesh was uniformly
refined five times in the central region (marked with a red box) and three times outside this region.

time-integration of the problem we employ the second-order accurate BDF2 scheme with
320 time steps per period of the imposed oscillations. The simulations were performed
on a computational domain with dimensions H = 20, Linlet = 10 and Loutlet = 70. The
mesh was built from a coarse base mesh and uniformly refined five times. The base mesh
is shown with thicker lines in figure 3. In the square central box the nodal positions in
the mesh are updated every time step according to the imposed cylinder oscillations.
The annular region with unit radius surrounding the cylinder hole is made rigid so that
no compression occurs in this part of the mesh as the cylinder oscillates. To reduce the
computational cost some of our simulations were performed on a mesh where only the
central downstream region and the square central box (highlighted in figure 3 with a
red box) were uniformly refined five times whereas the remainder was refined only three
times. Upon comparison of mesh types we find no qualitative difference in the vorticity
topology.

The simulations are initiated by computing the steady solution for a fixed cylinder at
Re = 0. We use this result as an initial condition to compute the solution for a slightly
higher Reynolds number and continue in this manner until we reach Re = 100. This
solution is used as an initial condition for the oscillating cylinder simulations where
the amplitude of the oscillations is gradually increased in the first two periods. The
time-periodicity of the solution is assessed by computing the L2-norm of the change
in the velocity components over one period of the cylinder oscillation. We deem the
solution to be time-periodic when the relative change in the L2-norm of the velocity
components drops below 10−6. We have chosen this threshold value by comparing with
simulations where the relative change has instead dropped below 10−8. In the cases
examined, we observe no topological difference between the two associated vorticity
fields, at least not to the level of precision at which we keep track of the cusp bifurcation
points.

To compute the vorticity field and its derivatives we first need the derivatives of
the velocity field. However, the solution computed via our simulations is only required
to be continuous between elements, therefore the derivatives between elements can be
discontinuous. To compute smooth approximations of the required derivatives we use
the patch-based flux-recovery technique implemented in oomph-lib, which is based on an
implementation of the Z2 error estimator (Zienkiewicz & Zhu 1992). For a validation of
the method in connection with topological bifurcations see Appendix A of Heil et al.
(2017). The extrema (and saddle points) are located at the intersections of the nullclines
∂xω = 0 and ∂yω = 0.
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4. An extended classification of wakes with topological variations downstream

When characterising a wake pattern, it is common to use the terminology introduced by
Williamson & Roshko (1988). The classification method assumes that the entire wake can
be classified as a single type of pattern. Hence, it is implicitly assumed that, once formed,
all vortices are translated downstream without any change in the topology. In this section,
we argue that a more detailed classification is necessary to be able to describe the wake
structure accurately and also to understand the topological changes in the transition from
2S to P + S.

Figure 4 contains snapshots of two different vorticity fields. The vorticity fields
have been computed for a cylinder oscillating with the same wavelength but different
amplitudes. The feature points for vortices, i.e. the vorticity extrema, are marked with
black dots. For A = 0.80, we see that two single vortices are shed in each oscillation cycle,
and this structure is preserved when the vortices are advected downstream. Therefore, we
classify the wake pattern as a full 2S wake. For a larger amplitude of A = 1.110 we see
a P + S wake pattern that is advected downstream with no topological change. In these
examples the terminology introduced by Williamson & Roshko (1988) is fully sufficient
for classifying the wake pattern. However, this is not always the case. Figure 5 shows four
snapshots of the vorticity field for A = 1.085, a value between the cases in figure 4. From
the number of vorticity extrema we observe that two pairs of vortices (black dots) are shed
during one oscillation cycle, producing a vortex shedding pattern that looks like a 2P mode
in the near wake. In each vortex pair one of the vortices is much weaker than the other, and
quickly disappears. The black curves in figure 5 encircle a set of vortices shed during an
oscillation cycle. In the first snapshot, the encircled region highlights two pairs of vortices.
Figure 5(b) shows the vorticity field in the last time step before one of the highlighted
vortices disappears via a cusp bifurcation with a saddle point. Exactly half a period later,
a second cusp bifurcation occurs, and the set of highlighted vortices then consists of two
single vortices. The snapshot in figure 5(b) shows the last time step before the second
cusp bifurcation occurs. Despite the fact that we observe topological bifurcations as the
vortices move downstream, the spatio-temporal Z2 symmetry is preserved throughout the
process. Therefore, we conclude that these topological bifurcations are not associated with
a loss of symmetry. In order to describe the topological variations of the vorticity field
downstream, we introduce an extended classification where we keep track of the pattern of
vortices that are created in one cycle, and indicate with a superscript n ∈ N how long the
pattern persists. If the pattern exists for more than n − 1 periods but less than n periods, we
designate the superscript n. In the example in figure 5(b), the vortices that originate from
the same cycle are grouped together with dashed and dotted lines. A dashed line indicates
that the group consists of two pairs of vortices, whereas a dotted line indicates that the
group consists of two single vortices. We observe that three groups with a 2P pattern are
present in the vorticity field just before the first of the two weaker vortices disappears.
Hence, we conclude that the vortices in a 2P group move downstream for between
two and three periods before any topological bifurcation occur. The wake in figure 5
therefore has a (2P)3(2S)∞ vortex pattern. Here ∞ denotes that no further bifurcations
are observed in the entire computational domain. In addition, we do not address the
changes in the wake structure that occur far downstream. It is well-known that the primary
vortex street breaks down into a nearly parallel shear flow with a Gaussian profile at
a certain downstream distance, before a secondary vortex street of larger scale may
appear further downstream (Karasudani & Funakoshi 1994). Note, that in the extended
classification, the standard 2S and P + S wakes are denoted (2S)∞ and (P + S)∞,
respectively.
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(b)

y

y

x

x

(a)

Figure 4. Snapshots of the vorticity field computed at Re = 100 for λ = 6.085 and (a) A = 0.80 and (b) A =
1.110. All extrema of vorticity are marked with black dots. The black curves encircle a set of vortices that are
shed in a single oscillation cycle. Only part of the computational domain is shown.

Figure 6 shows a snapshot of a vorticity field computed for an oscillating cylinder with
λ = 6.7 and A = 1.140. This vorticity field is an example of another wake pattern with
topological variations downstream. The snapshot is taken at the last time step before the
weaker vortex in the lower pair disappears in a cusp bifurcation. Since this is the only
topological bifurcation that occurs, the wake is classified as mode (2P)2(P + S)∞. One
could argue that the wake patterns in figures 5 and 6 are really just 2S and P + S modes,
and the extra vortices that our classification detect in the shear layers have no significant
impact. However, as we show in § 5, it is precisely these vortices that become important
when describing the topological development from a 2S to a P + S wake.

5. Topological bifurcations of the vorticity field at the symmetry-breaking pitchfork
bifurcation point

As mentioned in the introduction, a very recent paper by Matharu et al. (2021) showed that
the symmetry breaking that occurs in the transition from 2S to P + S mode at Re = 100
is due to a dynamical bifurcation, namely a subcritical pitchfork bifurcation. The vorticity
field of the 2S wake pattern preserves the spatio-temporal symmetry condition

ω(x, y, t) = −ω(x, −y, t + 1/2). (5.1)

Matharu et al. (2021) analysed simulations with increasing amplitude values and
construct a bifurcation diagram by measuring the magnitude of the symmetry breaking
in the computed solutions. For the vorticity field, the magnitude of the symmetry breaking
is given by the norm of the difference between ω(x, y, t) and −ω(x, −y, t + 1/2), i.e.

ε = 1
2‖ω(x, y, t) + ω(x, −y, t + 1/2)‖. (5.2)

A sketch of their bifurcation diagram is shown in figure 7. At A = A2, a subcritical
pitchfork bifurcation occurs, creating two branches of asymmetric time-periodic solutions
ω+, ω−. Each of these branches subsequently gain stability via fold bifurcations at A = A1.
The stable branch associated with ε = 0 corresponds to time-periodic solutions for which
the vorticity field satisfies the symmetry condition (5.1), e.g. the 2S wake pattern shown in
figure 4(a). On the two outer branches of the pitchfork the symmetry condition is broken,
meaning that ε /= 0. The vorticity field of a solution on the positive branch ω+ has a
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y

t = 0.325

t = 0.575

t = 0.825

t = 0.075

x

y

x

y

x

y

x

(b)

(a)

(d)

(c)

Figure 5. Four snapshots of a vorticity field computed at Re = 100 for λ = 6.085 and A = 1.085. The times
shown indicate when the snapshots were taken during a single cylinder oscillation with a normalised period
of one. All extrema of vorticity are marked with black dots and saddle points are marked with white dots.
The black curves highlight how the vortices that are shed in one oscillation cycle move downstream during a
period of oscillation. The vortices that originate from the same cycle are grouped together in (b). A dashed line
indicates that the group consists of two pairs of vortices, whereas a dotted line indicates that the group consists
of two single vortices.

conjugate solution on the negative branch ω− satisfying

ω+(x, y, t) = −ω−(x, −y, t + 1/2). (5.3)

We distinguish the bifurcating branches by parameterising ω+ by ε, and ω− by −ε. The
P + S wake pattern shown in figure 4(b) is an example of a wake pattern on the stable
part of the ω− branch, which corresponds to the branch of solutions for which the vortex
pair sheds below the centreline. In the conjugate time-periodic solution, which lies on the
ω+ branch, the pair of vortices are instead shed above the centreline. The history of the
cylinder motion determines which of the two conjugate solutions a simulation converges
to. By reversing the initial motion of the cylinder, we obtain the solution belonging to the
opposite branch in the bifurcation diagram. These conjugate solutions correspond to two
solutions that satisfy (5.3) on the outer (stable) branches of the pitchfork. As the pitchfork
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y

t = 0.150

x

Figure 6. A snapshot of a vorticity field computed at Re = 100 for λ = 6.7 and A = 1.140. All extrema of
vorticity are marked with black dots and saddle points are marked with white dots. The snapshot is taken at
the last time step before a cusp bifurcation occurs. The vortices that originate from the same cycle are grouped
together. A dashed line indicates that the group consists of two pairs of vortices, whereas a dash-dotted line
indicates that the group consists of a pair and a single vortex.

AA2

ω–

ω+ε

A1

Figure 7. A sketch of the bifurcation diagram illustrating the subcritical pitchfork bifurcation at A = A2 and
secondary fold bifurcations at A = A1. In the specific case where the cylinder oscillates with λ = 6.085,
Matharu et al. (2021) determined the bifurcation parameter values to be A1 ≈ 1.0680 and A2 ≈ 1.0855.

is subcritical, three stable periodic solutions exist for amplitudes in the range A1 ≤ A ≤ A2,
however, the solutions on the branches ω+ and ω− are related through the relationship in
(5.3) and are identical from a topological point of view; hence we refer to the region as
‘bistable’ in the following.

In this section, we analyse the topological bifurcations of the vorticity field that occur
as a direct result of the dynamical bifurcation. As a starting point for the analysis, we
introduce a parameter σ moving along the outer branches in the bifurcation diagram
as illustrated in figure 8(a). For the sake of simplicity we let σ = 0 correspond to the
symmetric vorticity field located at the pitchfork bifurcation point. As the two outer
branches correspond to the two conjugate solutions it follows that

ω(x, y, t, σ ) = −ω(x, −y, t + 1/2, −σ). (5.4)
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ε

X̂ (σ) X̃ (σ)

x* xA

σ

σ

(b)(a)

Figure 8. (a) A bifurcation diagram illustrating the subcritical pitchfork bifurcation. The branches of stable
and unstable solutions are represented by thick lines and dashed lines, respectively. (b) The bifurcation diagram
in a neighbourhood of (x, σ ) = (x∗, 0). Two different cusp bifurcation curves are parameterised by X̂ and X̃.

We start by considering a non-degenerate critical point in the vorticity field for σ = 0, i.e.
a point (x∗, y∗, t∗) satisfying

∂xω(x∗, y∗, t∗, 0) = 0,

∂yω(x∗, y∗, t∗, 0) = 0,

|Hω(x∗, y∗, t∗, 0)| /= 0.

⎫⎪⎬
⎪⎭ (5.5)

The implicit function theorem ensures that the critical point is preserved for sufficiently
small values of |σ |. Furthermore, the continuity of Hω guarantees that |Hω| will not change
sign, which means that a critical point identified as a vortex will persist. In the case where
all critical points in the symmetric vorticity field are non-degenerate, the vortices persist
when the symmetry is broken and no topological bifurcations occur as a direct result of
the dynamical bifurcation.

If, on the other hand, the symmetric vorticity field at σ = 0 has topological variations
downstream, then there exists a cusp bifurcation point (x∗, y∗, t∗) satisfying

∂xω(x∗, y∗, t∗, 0) = 0,

∂yω(x∗, y∗, t∗, 0) = 0,

|Hω(x∗, y∗, t∗, 0)| = 0,

tr(Hω(x∗, y∗, t∗, 0)) /= 0.

⎫⎪⎪⎬
⎪⎪⎭

(5.6)

To characterise the topological changes that occur at σ = 0 we need to assume some
regularity at the cusp bifurcation point (x∗, y∗, t∗). Consider the following Jacobian

J∗ =
⎛
⎝ ∂xxω ∂xyω ∂xtω

∂xyω ∂yyω ∂ytω
∂x|Hω| ∂y|Hω| ∂t|Hω|

⎞
⎠

∣∣∣∣∣∣
(x∗,y∗,t∗,0)

. (5.7)

If the determinant of J∗ is non-zero, i.e.
(

−
∣∣∣∣
(

∂xxω ∂xyω
∂x|Hω| ∂y|Hω|

)∣∣∣∣ ∂ytω +
∣∣∣∣
(

∂xyω ∂yyω
∂x|Hω| ∂y|Hω|

)∣∣∣∣ ∂xtω

)∣∣∣∣
(x∗,y∗,t∗,0)

/= 0, (5.8)
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it follows from the implicit function theorem that there exist unique local functions
x = X̂(σ ), y = Ŷ(σ ), t = T̂(σ ) satisfying

X̂(0) = x∗, Ŷ(0) = y∗, T̂(0) = t∗, (5.9a–c)

and

∂xω(X̂(σ ), Ŷ(σ ), T̂(σ ), σ ) = 0,

∂yω(X̂(σ ), Ŷ(σ ), T̂(σ ), σ ) = 0,

|Hω(X̂(σ ), Ŷ(σ ), T̂(σ ), σ )| = 0.

⎫⎪⎬
⎪⎭ (5.10)

The functions X̂, Ŷ and T̂ provide a parametric representation of a curve of topological
cusp bifurcations. The shape of the bifurcation curve is given by the derivatives of X̂, Ŷ
and T̂ at the bifurcation point σ = 0. By implicit differentiating the equations in (5.10) we
obtain the following system of equations,

J∗

⎛
⎝X̂′(0)

Ŷ ′(0)

T̂ ′(0)

⎞
⎠ =

⎛
⎝ ∂xσω(x∗, y∗, t∗, 0)

∂yσω(x∗, y∗, t∗, 0)

∂σ |Hω(x∗, y∗, t∗, 0)|

⎞
⎠ . (5.11)

As J∗ is non-singular the explicit expressions of X̂′(0), Ŷ ′(0) and T̂ ′(0) are well-defined
as a combination of the elements in the Jacobian and the right-hand side of (5.11). Rather
than computing the explicit expressions, we consider a second bifurcation point that is a
necessary result of the symmetry for σ = 0. From the condition in (5.4) it follows that

∂xω(x∗, −y∗, t∗ + 1/2, 0) = −∂xω(x∗, y∗, t∗, 0) = 0,

∂yω(x∗, −y∗, t∗ + 1/2, 0) = ∂yω(x∗, y∗, t∗, 0) = 0,

|Hω(x∗, −y∗, t∗ + 1/2, 0)| = |Hω(x∗, y∗, t∗, 0)| = 0,

tr(Hω(x∗, −y∗, t∗ + 1/2, 0)) = −tr(Hω(x∗, y∗, t∗, 0)) /= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.12)

and
(

−
∣∣∣∣
(

∂xxω ∂xyω
∂x|Hω| ∂y|Hω|

)∣∣∣∣ ∂ytω +
∣∣∣∣
(

∂xyω ∂yyω
∂x|Hω| ∂y|Hω|

)∣∣∣∣ ∂xtω

)∣∣∣∣
(x∗,−y∗,t∗+1/2,0)

=
(

−
∣∣∣∣
(−∂xxω ∂xyω

∂x|Hω| −∂y|Hω|
)∣∣∣∣ ∂ytω +

∣∣∣∣
(

∂xyω −∂yyω
∂x|Hω| −∂y|Hω|

)∣∣∣∣ (−∂xtω)

)∣∣∣∣
(x∗,y∗,t∗,0)

=
(

−
∣∣∣∣
(

∂xxω ∂xyω
∂x|Hω| ∂y|Hω|

)∣∣∣∣ ∂ytω +
∣∣∣∣
(

∂xyω ∂yyω
∂x|Hω| ∂y|Hω|

)∣∣∣∣ ∂xtω

)∣∣∣∣
(x∗,y∗,t∗,0)

/= 0.

(5.13)

As expected, we can therefore conclude that (x∗, −y∗, t∗ + 1/2) is a cusp bifurcation
point satisfying all the same conditions as (x∗, y∗, t∗). By a similar argument, there exist
functions x = X̃(σ ), y = Ỹ(σ ) and t = T̃(σ ) that provide a parametric representation of a
topological cusp bifurcation curve through the point (x, y, t, σ ) = (x∗, −y∗, t∗ + 1/2, 0).
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By implicit differentiation we obtain the following system of equations
⎛
⎝ ∂xxω ∂xyω ∂xtω

∂xyω ∂yyω ∂ytω
∂x|Hω| ∂y|Hω| ∂t|Hω|

⎞
⎠

⎛
⎝X̃′(0)

Ỹ ′(0)

T̃ ′(0)

⎞
⎠ =

⎛
⎝ ∂xσω

∂yσω

∂σ |Hω|

⎞
⎠

∣∣∣∣∣∣
(x∗,−y∗,t∗+1/2,0)

, (5.14)

which, by the symmetry condition in (5.4), can be rewritten as
⎛
⎝−∂xxω ∂xyω −∂xtω

∂xyω −∂yyω ∂ytω
∂x|Hω| −∂y|Hω| ∂t|Hω|

⎞
⎠

⎛
⎝X̃′(0)

Ỹ ′(0)

T̃ ′(0)

⎞
⎠ =

⎛
⎝ ∂xσω

−∂yσω

−∂σ |Hω|

⎞
⎠

∣∣∣∣∣∣
(x∗,y∗,t∗,0)

. (5.15)

Upon comparison with the system of equations in (5.11), we note that the only difference
is the sign of some elements of the Jacobian and the right-hand side. Hence, it is
straightforward to show that the parametric representations of the two bifurcation curves
are related in the following way,

X̃′(0) = −X̂′(0),

Ỹ ′(0) = Ŷ ′(0),

T̃ ′(0) = −T̂ ′(0).

⎫⎪⎬
⎪⎭ (5.16)

There are no conditions on the derivatives of ω that make us expect that the explicit
expressions of X̂′(0), Ŷ ′(0) and T̂ ′(0) are zero. Therefore, we assume that this is not the
case in general. In figure 8(b) the two parametric representations of the x-coordinates of
the bifurcation curves are illustrated in a neighbourhood of (x, σ ) = (x∗, 0). As shown in
the figure, the x-coordinates of the cusp bifurcation points separate as σ is increased (or
decreased) from zero. To summarise: for the symmetric vorticity field cusp bifurcations
come in pairs, one at a point (x∗, y∗), the other at (x∗, −y∗), exactly half a period later.
Moving along one of the asymmetric branches and away from the symmetric branch,
one bifurcation point moves upstream, and one moves downstream, Furthermore, the time
separation between the two bifurcations is no longer exactly half a period.

6. Numerical results

6.1. Re = 100
With the numerical method described in § 3 we perform simulations where the cylinder
oscillates with an amplitude in the range 0.8 ≤ A ≤ 1.2 and with one of the four selected
wavelengths λ = 5.5, 6.085, 6.5 and 6.7. In each simulation we keep track of the vorticity
extrema during a complete oscillation cycle, and each time we observe a cusp bifurcation,
we record the coordinate set of the bifurcation point (x∗, y∗, t∗). For each of the four
selected wavelengths we perform simulations with more than 30 different amplitudes. We
show the most interesting feature of the cusp bifurcation, i.e. its downstream location x∗,
in (x, A) bifurcation diagrams in figure 9(c)–9(j). From Matharu et al. (2021) we know
that a bistable region exists for λ = 6.085. To resolve both of these topologically different
solutions, we construct two bifurcation diagrams for each of the four wavelengths. To
construct the diagrams in the left column, we use a solution obtained for A < A1 as the
initial condition for the solution at a slightly larger A, as illustrated in figure 9(a). By
repeating this process we can locate A2 as the value of A where the solution jumps from
the symmetric branch to the asymmetric branch. The diagrams in the right column are
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constructed in a similar way but from simulations where the amplitude is decreased, as
illustrated in figure 9(b). This yields the value A1 when the solution jumps from the
asymmetric branch to the symmetric branch. In all four cases, the bifurcation diagrams
in the left and right columns differ in a small region, implying that a bistable region exists
for all the four wavelengths. In other words, the dynamical bifurcation remains subcritical
for all wavelengths considered. The red lines at A1 and A2 mark the lower and upper limits
of the bistable regions. For λ = 6.085, we found that A1 ≈ 1.078 and A2 ≈ 1.093. These
values are comparable to, but not exactly the same as, those determined by Matharu et al.
(2021), i.e. A1 ≈ 1.068 and A2 ≈ 1.086. This discrepancy may be due to the difference in
the numerical method used and the fact that we use a domain of different length: Matharu
et al. (2021) used Loutlet = 30 rather than Loutlet = 70 in the present study. However, the
very small variations between the values of A1 and A2 obtained in the two studies is an
indication that the subcritical pitchfork bifurcation has been identified correctly.

As expected, each pair of bifurcation diagrams are identical outside the bistable region.
That is, the curves separating the 2P and the 2S regions below A1 and the curves separating
the 2P from the P + S region above A2 are pairwise identical. We recall that the solutions
for A < A1 satisfy the symmetry condition (5.1). This implies that two cusp bifurcations
occur with exactly half a period in between at the same downstream position at bifurcation
points marked in the (x, A) parameter plane. For the solutions which form the basis of the
diagrams in the left column, the symmetry condition is satisfied for amplitude values up
to A = A2.

As illustrated in figure 3 we use a non-uniformly refined mesh in the region close to the
cylinder. The derivative recovery method we employ, as described in § 3, is only accurate
on a uniform mesh (Zienkiewicz & Zhu 1992). Therefore, we cannot resolve the cusp
bifurcations that occur for x < 5 where the vortices are initially created. We only show the
region for x < 40, as no topological bifurcations are observed beyond that limit.

The four pairs of bifurcation diagrams in figure 9 are qualitatively very similar. We
start by considering the case where the cylinder oscillates with the Strouhal frequency,
i.e. λ = 6.085, and describe in detail the corresponding pair of bifurcation diagrams in
figure 9(e, f ). The bifurcation curves and the upper/lower limits of the bistable region
separate the (x, A) parameter plane into three distinct regions. The labels indicate whether
a specific part of the wake has a 2S, 2P or a P + S topology. Let us describe the
transition we observe for increasing amplitude values, as illustrated in figure 9(e). For
amplitude values below the dashed blue line at A0 we observe a 2S pattern that persists
in the downstream wake and, hence, we classify the wake mode as (2S)∞. At A = A0, a
degenerate critical point appears at x ≈ 16, marked with a blue cross, which immediately
disappears again. As a consequence of the symmetry condition in (5.1) a degenerate
critical point also appears and disappears at the same downstream position half a period
later. For amplitude values slightly larger than A0, two cusp bifurcations occur every half
period. In the first bifurcation a vortex is created, and in the other the vortex is destroyed.
Because these vortices persist for less than a period, we classify the wake pattern as
(2S)2(2P)1(2S)∞. As we increase the amplitude further, the first cusp bifurcation point
moves upstream and eventually out of the domain we consider. This implies that the
two extra vortices in the 2P group are created further upstream and, hence, they persist
longer. When they persist for more than an entire period, the local pattern changes from
(2P)1 to (2P)2, and when the amplitude increases further, it changes to a (2P)3 pattern.
For A = 1.05, the extra vortices in the 2P group are created upstream of the domain
we consider and they move downstream for between two and three periods before they
disappear again in a cusp bifurcation. We therefore classify the topological structure of
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Figure 9. For caption see next page.

the wake as (2P)3(2S)∞. At an amplitude A = A2, we observe a jump from one solution
branch to another accompanied by a discontinuous change in the topology to a wake that
we classify as (P + S)1(2P)1(P + S)∞. As we increase the amplitude further and reach
A = A3, the two cusp bifurcation points that bound the 2P region merge and disappear at
the point marked with a green cross at x ≈ 10. For amplitude values above A3, we observe
a P + S pattern that persists in the downstream wake. Hence, we classify the wake mode
as (P + S)∞.

For decreasing amplitude values, the transition from (P + S)∞ to (2S)∞ is illustrated
in figure 9( f ). The transition is essentially the reverse of the process described previously.
The only difference is that the discontinuous change in the topology occurs at A = A1 and,
hence, the (P + S)n(2P)m(P + S)∞ patterns exist only above that value of A.
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Figure 9 (cntd). (a), (b) A sketch of the dynamical bifurcation diagram illustrating one of the solution branches
in the subcritical pitchfork bifurcation: (a) increasing A; (b) decreasing A. The solid black lines highlight the
section of the solution curve that we explore with the simulations obtained by either increasing or decreasing the
amplitude from a previous simulation. (c)–(j) Four pairs of bifurcation diagrams constructed from simulations
with different wavelengths. The significance of the various elements are shown in (e): (c) λ = 5.5, increasing A;
(d) λ = 5.5, decreasing A; (e) λ = 6.085, increasing A; ( f ) λ = 6.085, decreasing A; (g) λ = 6.5, increasing A;
(h) λ = 6.5, decreasing A; (i) λ = 6.7, increasing A; and (j) λ = 6.7, decreasing A. The black dots, connected by
solid lines, mark the downstream location of the topological bifurcation points x∗ observed in the simulations.
The upstream bifurcations are vortex creation, the downstream bifurcations are vortex destruction. The curves
meet at degenerate critical points marked by a blue and a green cross. The dashed blue line at A0 indicates the
limit below which we observe a (2S)∞ pattern. The dashed green line at A3 indicates the limit above which we
observe a (P + S)∞ pattern. The red lines at A1 and A2 indicate the boundaries of the bistable region.

The remaining three pairs of bifurcation diagrams in figure 9 are constructed from
simulations where the wavelength is either decreased or increased from λ = 6.085. In
all four cases we observe similar wake patterns with the same topological transitions. In
general, there is an A0 such that the wake pattern is (2S)∞ for A < A0 and an A3 such that
the wake pattern is (P + S)∞ for A > A3. For λ = 6.7, A3 is beyond the amplitude range
we consider but from a few additional simulations, we have established that A3 in this case
is somewhere between A = 1.27 and A = 1.30.

The quantities we depict in figure 9(c–j), i.e. A0, A1, A2, A3 and the topological
bifurcation points x∗ which define the boundaries between different wake regions for
each A, all depend continuously on λ. The bifurcation diagrams in figure 9 for λ =
6.085, 6.5, 6.7 are qualitatively identical. In particular, A3 > A2 in all cases. However, as λ
decreases, A3 decreases as well, and at λ = 5.5 we find that A3 is between A1 and A2. This
means that wakes with patterns (P + S)n(2P)m(P + S)∞ are not observed in figure 9(c).
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Figure 10. (a) A region of the parameter space explored by Leontini et al. (2006). The solid black lines are the
boundaries of the primary synchronisation region and the boundary defining the transition from 2S to P + S,
as identified by Leontini et al. (2006). The four characteristic amplitude values, A0, A1, A2 and A3 are marked
with colors corresponding to the colors in figure 9. (b) A close-up of the grey region in (a).

These patterns only exist for A < A3 on the asymmetric branch; when A is increased the
jump to the asymmetric branch occurs at A2 which for λ = 5.5 is beyond A3. As A is
decreased, however, one does reach A3 on the asymmetric branch before jumping down
to the symmetric branch at A1. Hence, figure 9(b) is qualitatively identical to the other
bifurcation diagrams for decreasing A.

In previous studies, where the overall pattern is determined from visual inspection,
the transition between different wake modes are typically marked with a single critical
boundary, indicating that there is a sharp change from one mode to another (Williamson
& Roshko 1988; Leontini et al. 2006). Matharu et al. (2021) argued that for Re = 100 and
λ = λSt, this cannot be the correct interpretation because the symmetry-breaking pitchfork
bifurcation is subcritical. It is, however, natural that the transition has been interpreted in
this way previously, because a discontinuous jump in the vorticity topology is observed
through simulations based on time-integration. In figure 10(a), we show a region of the
parameter space explored by Leontini et al. (2006). The sharp boundary that the authors
used to demarcate the transition between the 2S and P + S wake mode is drawn with a
solid black line. In our search for a complete topological description of the transition,
we have found that four characteristic amplitude values play an important role: the limit
A0 below which we observe (2S)∞, the lower and upper limits A1, A2 of the bistable
region and the limit A3 above which we observe (P + S)∞. As the results of Leontini et al.
(2006) also derive from simulations at Re = 100, they should be directly comparable to
ours. In figure 10(a) we have marked the four characteristic amplitude values for each of
our wavelength values (or, equivalently, the corresponding periods). The coloured dots,
connected by solid or dashed lines, defines a region of the parameter space in which the
transition occur. It is only above and below all these lines that we can classify the pattern
as a full P + S or 2S pattern.

As the symmetry-breaking pitchfork bifurcation at A2 is subcritical, we do not observe a
simple stepwise evolution of the vorticity field in the transition from 2S to P + S where the
indices of the elements 2P, 2S and P + S are increased or decreased by one. This is because
part of that evolution takes place along the unstable part of ω+ (or equivalently ω−).
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Figure 11. (a) A sketch of the dynamical bifurcation diagram near A = A2 reparameterised by the parameter
γ . (b) A bifurcation diagram in the (x, γ ) parameter plane. The black dots, connected by solid lines, mark the
bifurcation points observed in the simulations with λ = 6.085. The dashed lines in the range γA2 < γ < γA1
are examples of how the bifurcation curves could evolve along the unstable solution branch.

However, based on the theoretical considerations in § 5, we can still give a complete
qualitative picture of the topological changes in the transition from 2S to P + S. We
introduce a path parameterised by a parameter γ that switches from the stable symmetric
branch onto the unstable asymmetric branch when reaching the pitchfork bifurcation
point at A = A2, see figure 11(a). In figure 11(b) we illustrate the (x, γ ) parameter plane
for λ = 6.085. The solutions for γ < γA2 and γ > γA1 lie on the stable branches and
are topologically described by the preceding analysis of the numerical simulations. The
bifurcation curves drawn as solid lines in figure 11(b) are therefore identical to those shown
in figures 9(e) and 9( f ). The time-periodic solutions in the region γA2 < γ < γA1 lie on
the unstable branch. Based on the result in § 5, we know that as soon as the symmetry
is broken at γ = γA2 , one of the cusp bifurcation points moves upstream and the other
moves downstream. These bifurcations occur at the two dashed black curves in figure 11(b)
that split at γ = γA2 . The left bifurcation curve separates a 2P region upstream from a
P + S region downstream. The right bifurcation curve separates a P + S region upstream
from a 2S region downstream. When γ is increased beyond γA1 , and the periodic solution
becomes stable, the simulations show a cusp bifurcation curve that separates a 2P region
from a P + S region; this bifurcation curve must be connected to the left dashed bifurcation
curve emanating from γA2 . In the stable regime γ > γA1 no bifurcations separating P + S
from 2S are observed. Therefore, the right dashed curve must leave the domain we consider
for γ < γA1 , as indicated in figure 11(b). Hence, when γ is increased from γA2 to γA1

there must be a succession of patterns (2P)3(P + S)n(2S)∞ where n grows rapidly with γ ,
pushing the (2S)∞ part out into the very far wake which we do not consider here.

With this extended bifurcation diagram we have a complete qualitative picture of the
topological changes in the transition from 2S to P + S, despite a significant part of the
transition being invisible due to the topological changes taking place along the unstable
branch.

6.2. Re = 80
The analysis at Re = 100 in the previous subsection shows that the transition of the wake
from a 2S to a P + S pattern goes through a series of topological bifurcations both at
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Figure 12. Topological bifurcation diagrams for Re = 80 at the Strouhal wavelength λ = 6.5437. (a) The
symmetric branch below the bistable range. (b) The asymmetric branch for A just above the first dynamical
cusp bifurcation point AF1. As in figures 9(c)–9(j), the black curves mark topological cusp bifurcations.

the symmetric and the asymmetric branch. To investigate the robustness of this scenario,
we briefly consider Re = 80 at the Strouhal wavelength λ = 6.544. Matharu et al. (2021)
show that there is no dynamical pitchfork bifurcation here; the symmetric state is stable
for all values of A. However, two branches of asymmetric solutions, one branch stable,
one branch unstable, with no connection to the symmetric branch, exist for A between AF1
and AF2 with AF1 ≈ 1.3145 and AF2 ≈ 1.4988. At AF1 and AF2 the two branches merge
in dynamical fold bifurcations, forming a so-called isola. Hence, for AF1 < A < AF2 the
system is bistable. Here we explore the topological bifurcations of the wake as A is varied
up to and above AF1.

Figure 12 shows topological bifurcation diagrams similar to those in figure 9. Figure
12(a) shows bifurcations at the symmetric branch below AF1. As for Re = 100, we
see there is an A0 ≈ 1.003 below which the wake pattern is 2S∞. Above A0, local
patterns (2P)n appear and disappear through topological cusp bifurcations. The first
cusp bifurcation moves upstream as A is increased, finally yielding patterns of the form
(2P)n(2S)∞. Figure 12(b) shows the asymmetric branch just above AF1. As for Re = 100 at
the asymmetric branch above A1, there are local patterns both of type (2P)n and (P + S)m.
As A is increased, the (2P)n region shrinks and, finally, disappears at A3 ≈ 1.381.

Even if the symmetric branch is stable for all values of A, the rate of attraction is very
small in the bistable range A > AF1, requiring prohibitively long computations to resolve
the flow completely. Except for A very close to AF1, the convergence to the asymmetric
branch is much faster, and it appears from simulations that the asymmetric branch attracts
solutions with initial conditions even very close to the symmetric branch. This implies that,
for any practical purpose, in the bistable range only the asymmetric branch will be actually
be attained after transients. To reach the symmetric branch here, the initial condition must
be very close to the limit cycle, and even very small perturbations will drive the solution
away to the asymmetric branch. Hence, in practice, the symmetric branch is unstable
for A > AF1, and AF1 will act as a bifurcation point where the solution jumps from the
symmetric branch to the asymmetric branch as A is increased. Decreasing A for a solution
on the asymmetric branch, the solution will jump to the symmetric branch at AF1.

In summary, as for Re = 100 we find two key topological bifurcation points: A0, below
which the wake pattern is (2S)∞ and A3, above which the pattern is (P + S)∞. For A
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between these values there are mixed patterns. In addition, there is a dynamical bifurcation
point AF1 between A0 and A3 where the periodic solution switches between the symmetric
and the asymmetric branch. For Re = 100 there are two such points, A1 and A2, which
leads to hysteresis not present at Re = 80, but otherwise the transition scenarios at Re =
100 and Re = 80 are qualitatively identical.

7. Summary

We have investigated the topological changes of the vorticity field in the transition from
2S to P + S wake mode at Re = 100. The transition cannot be fully described with
a single critical boundary. Instead of a sharp change from one mode to another, we
determine a range of amplitude values where the corresponding wake has a mixed pattern
with topological variations downstream. We show that the symmetry-breaking pitchfork
bifurcation identified by Matharu et al. (2021) plays an important role in the transition, but
at the same time it does not provide the complete description, as topological changes occur
even before this bifurcation point. In general, the transition can be described as follows:
through a continuous evolution of the vorticity field, a 2P-like pattern arises in near wake.
The extra two vortices that we detect in the shear layers arise through cusp bifurcations
and move downstream for up to three periods before disappearing again in two reverse cusp
bifurcations separated by a half period. We prove that the topological role of the pitchfork
bifurcation is to relax the condition that these two cusp bifurcations must occur with a
temporal spacing of exactly half a period. The breaking of symmetry allows one of the
cusp bifurcations to move rapidly downstream, implying that only one of the extra vortices
persists in the downstream wake. As the second cusp bifurcation moves upstream the
2P-like pattern in the near wake disappears and the wake has a clear P + S structure. As the
symmetry-breaking pitchfork bifurcation is subcritical, a significant part of the continuous
evolution of the vorticity field takes place along the unstable solution branch. This part of
the evolution is not visible in our simulations, but based on the theoretical considerations
in § 5 we are still able to give a complete qualitative picture of the continuous transition
from 2S to P + S.

In all four cases we have examined, the bistable region is so narrow that the criticality of
the pitchfork bifurcation may change from subcritical to supercritical when the wavelength
increases further, the Reynolds number changes or the shape of the cylinder changes. If it
turns out that there are situations where the transition is supercritical, then the qualitative
description will be the same and the entire continuous evolution will be visible in the
simulations.

The robustness of the described scenario is confirmed by simulations performed at
Re = 80. Although the dynamical bifurcation structure is different here, we find again a
sequence of topological bifurcations in the wake leading from 2S to P + S over an interval
of amplitude values. In addition, both the symmetric and asymmetric solutions exhibit
wakes with topological variations.
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