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Log-concave random variables and their various properties play an increasingly important
role in probability, statistics, and other fields. For a distribution F , denote by DF the set
of distributions G such that the convolution of F and G has a log-concave probability
mass function or probability density function. In this paper, we investigate sufficient and
necessary conditions under which DF ⊆ DG, where F and G belong to a parametric family
of distributions. Both discrete and continuous settings are considered.
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1. INTRODUCTION

A sequence {h(n), n ∈ N} is said to be log-concave (LC), if h(n) ≥ 0 for n ∈ N ≡ {0, 1, . . .},
and

h2(n) ≥ h(n+ 1)h(n− 1), ∀ n ∈ N+ ≡ {1, 2, . . .}.
A LC sequence {h(n)} does not have internal zeros, that is, there does not exist i < j < k
such that h(i)h(k) �= 0 and h(j) = 0. A random variable X taking values in N is said to be
LC if its probability mass function (pmf), denoted by {f(n), n ∈ N}, is LC.

A random variable X taking value at R is said to be LC if its probability density
function (pdf), denoted by f(x), x ∈ R ≡ (−∞,∞), is LC, that is,

f2(x) ≥ f(x+ δ)f(x− δ), ∀ x ∈ R, δ ∈ R+ ≡ (0,∞).

A LC density f(x) does not have internal zeros.
Log-concavity distributions and their appealing properties have wide applications in

probability, statistics, combinatorics, econometrics, reliability, optimization, information,
and other fields of applied probability. Saumard and Wellner [14] is a comprehensive review
of log-concavity in the statistics literature, which also includes some connections between
log-concavity and other areas of mathematics and statistics (including concentration of
measure, MCMC algorithms, log-Sobolev inequalities, and machine learning). An [1] and
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Bagnoli and Bergstrom [2] are two other reviews of log-concavity in econometrics. For more
on log-concavity, we refer the reader to Efron [5], Finner and Roters [7,8], Liggett [13],
Sengupta and Nanda [15], Wang and Yeh [16], Kahn and Neiman [12], Yu [17], Bobkov and
Madiman [3], Fradelizi, Madiman, and Wang [9], and references therein.

It is well known that the convolution of two independent random variables with LC
pmfs or pdfs is still LC. To study preservation of log-concavity under convolution, for each
fixed distribution F , define a class of distribution functions, denoted by DF , such that their
convolutions with F have LC pmfs or pdfs. Specifically, DF is given by

DF = {G : Y +X is LC, Y ⊥ X, X ∼ F, Y ∼ G}, (1.1)

where “Y ⊥ X” represents that Y is independent of X, and “X ∼ F” means that F is the
distribution function of X. Throughout, in the discrete case, X and Y in (1.1) are assumed
to take values in N; while in the continuous case, X and Y are assumed to take values in
R. We call DF the attraction domain of log-concavity of distribution F .

Intuitively, for two distribution functions F and G, if DF ⊂ DG, then G is more LC
than F in some sense. The purpose of this paper is to investigate sufficient and necessary
conditions under which DF ⊆ DG, where F and G belong to a parametric family of dis-
tributions. Johnson and Goldschmidt [11] considered the family of geometric distributions;
see (2.1). The families considered in this paper are negatively binomial, Poisson, Bernoulli,
discrete uniform, exponential, and normal distributions. The results for discrete and con-
tinuous distributions are given in Sections 2 and 3, respectively. Such a study will provide
us a new sight on the properties of distribution functions.

2. DISCRETE DISTRIBUTIONS

2.1. Negatively Binomial Distribution

Let Geo(p) denote the distribution of a Geometric random variable X with parameter
p ∈ [0, 1], that is, P(X = k) = (1 − p)kp for k ∈ N. Johnson and Goldschmidt [11] showed
that

DGeo(p1) ⊆ DGeo(p2) ⇐⇒ p1 ≤ p2. (2.1)

From this equivalent characterization, we can give a similar characterization for the
negatively binominal (NB) distribution. To state the result, write NB(r, p) for the NB
distribution with pmf

P(X = k) =
(
k + r − 1

k

)
pr(1 − p)k, ∀ k ∈ N,

where p ∈ (0, 1) and r ∈ R+.

Proposition 2.1: For each r ∈ N+, we have

DNB(r,p1) ⊆ DNB(r,p2) ⇐⇒ p1 ≤ p2. (2.2)

Proof: We show the sufficiency “⇐” by induction. Suppose that p1 ≤ p2. (2.2) reduces to
(2.1) when r = 1. Assume that (2.2) holds for r = k. We aim to show that (2.2) holds for
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r = k + 1. For simplicity, we spoil the notation X ⊥ Y ⊥ Z, which represents that the three
random variables X, Y , and Z are jointly independent. Note that

DNB(k+1,p1) = {G : Y +X is LC, Y ⊥ X, X ∼ NB(k + 1, p1), Y ∼ G}
= {G : Y +X1 +X2 is LC, Y ⊥ X1 ⊥ X2, X1 ∼ NB(k, p1),

X2 ∼ Geo(p1), Y ∼ G}
= {G : Y +X1 ∈ DGeo(p1), Y ⊥ X1, X1 ∼ NB(k, p1), Y ∼ G}
⊆ {G : Y +X1 ∈ DGeo(p2), Y ⊥ X1, X1 ∼ NB(k, p1)), Y ∼ G}
= {G : Y +X1 +X2 is LC, Y ⊥ X1 ⊥ X2, X1 ∼ NB(k, p1),

X2 ∼ Geo(p2), Y ∼ G}
= {G : Y +X2 ∈ DNB(k,p1), Y ⊥ X2, X2 ∼ Geo(p2), Y ∼ G}
⊆ {G : Y +X2 ∈ DNB(k,p2), Y ⊥ X2, X2 ∼ Geo(p2), Y ∼ G}
= DNB(k+1,p2),

where the second equality is due to that X1 +X2 ∼ NB(k + 1, p) for X1 ∼ NB(k, p), X2 ∼
Geo(p) such that X1 ⊥ X2, the first inclusion follows from that DGeo(p1) ⊆ DGeo(p2) by
(2.1), and the second inclusion follows from that DNB(k,p1) ⊆ DNB(k,p2) by the induction
assumption.

To show the necessity “⇒”, assume that p1 > p2. Then it follows from the suffi-
ciency that DNB(r,p2) � DNB(r,p1) (we can find a distribution in DNB(r,p1) \ DNB(r,p2); see
Remark 2.2), yielding a contradiction. Hence, p1 ≤ p2. This completes the proof of the
proposition. �

Remark 2.2: Let Yη be a random variable with pmf

P(Yη = 0) = P(Yη = 1) =
1

η + 3
, P(Yη = 2) =

η + 1
η + 3

. (2.3)

Here η > 0 and Yη is not LC. Then

Yη ∈ DNB(r,p) ⇐⇒ p[(r − 1)p− 2r] ≥ 2η
r

− r − 1. (2.4)

To prove the necessity of (2.4), letX ∼ NB(r, p) andX ⊥ Yη. Define qi = P(X + Yη = i)
for i ∈ N. It is easy to see that

q0 =
pr

η + 3
, q1 = pr · r(1 − p) + 1

η + 3
, q2 = pr · r(r + 1)(1 − p)2/2 + r(1 − p) + η + 1

η + 3
.

Since X + Yη is LC, we have q21 ≥ q0q2, which is equivalent to the right-hand side of (2.4).
To prove the sufficiency of (2.4), it requires to prove that q2j ≥ qj−1qj+1 for j ≥ 2. Note

that qj = (pj + pj−1 + (η + 1)pj−2)/(η + 3). Then, for j ≥ 2 and r > 1,

1
r − 1

(η + 3)2(j + r − 2)2(j + r − 3)(j + 1)j2(1 − p)2 · (q2j − qj−1qj+1)

= (j+ r− 1)(j+ r− 2)2(j+ r− 3)(1− p)4 + 2j(j+ r− 1)(j+ r− 2)(j + r − 3)(1 − p)3

+ j(j + r − 2)[(2η + 3)(j + r)2 − (2η + 3)(r + 2)(j + r) + 6η + 3r + 3](1 − p)2

+ 2j(η + 1)(j + r − 2)(j2 − 1)(1 − p) + (η + 1)2j2(j2 − 1) > 0.

Also, for j ≥ 2 and r = 1, q2j − qj−1qj+1 = 0. Therefore, q2j ≥ qj−1qj+1 for j ≥ 2.
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Now, choose r = 1. Then

Yη ∈ DGeo(p) ⇐⇒ η ≤ 1 − p. (2.5)

For any N-valued random variable Z, denote its pmf by pZ(i). Lemma 4.3(1) in Johnson
and Goldschmidt [11] states that Z ∈ DGeo(p) if pZ(i+ 1)/pZ(i) ≤ p for all i ≥ 1. However,
the condition that pZ(i+ 1)/pZ(i) ≤ p is not necessary, which can be seen from (2.5) with
η = 1 − p since pYη

(2)/pYη
(1) = η + 1 > p.

Remark 2.3: Relation (2.2) does not hold when r is not an integer, as shown by the fol-
lowing counterexample. Let X1 ∼ NB(1/2, 1/3), X2 ∼ NB(1/2, 2/3) and Y ∼ NB(1/2, 1/3)
such that X1 ⊥ X2 ⊥ Y . Since X1 + Y ∼ NB(1, 1/3) = Geo(1/3), it follows that Y ∈
DNB(1/2,1/3). However, Y �∈ DNB(1/2,2/3). To see it, denote qn = P(X2 + Y = n). It can be
checked that

q0 =
√

2
3
, q1 =

√
2

3
· 1
2
, q1 =

√
2

3
· 19
72
,

and that q21 < q0q2. This means that qn is not LC on N. Therefore, DNB(1/2,1/3) �⊆
DNB(1/2,2/3). Also, noting that X2 �∈ DNB(1/2,1/3), we have DNB(1/2,2/3) �⊆ DNB(1/2,1/3).

Remark 2.4: In fact, for r1, r2 ∈ N+, if r1 ≤ r2 and p1 ≤ p2, we have that DNB(r1,p1) ⊆
DNB(r2,p2). To see it, it suffices to note that DNB(r1,p) ⊆ DNB(r2,p) for r1 < r2 since NB(r2 −
r1, p) is LC and X + Y ∼ NB(r2, p) for any X ∼ NB(r1, p) and Y ∼ NB(r2 − r1, p) such
that X ⊥ Y .

2.2. Poisson Distribution

A random variable X is said to have a Poisson distribution with parameter λ > 0, denoted
by X ∼ Poi(λ), if P(X = k) = e−λλk/k! for k ∈ N. It is well known that the Poisson dis-
tribution can be viewed as the limit of some sequence of NB distributions. Specifically, we
have that the pmf of NB(r, r/(r + λ)) converges to that of Poi(λ) as r → ∞. Hence, it is
reasonable to conjecture that a parallel result of (2.2) holds for the Poisson distribution.

Proposition 2.5: For λ1, λ2 > 0, we have

DPoi(λ1) ⊆ DPoi(λ2) ⇐⇒ λ1 ≤ λ2. (2.6)

Proof: Sufficiency : For λ1 < λ2, let G ∈ DPoi(λ1), that is, there exist X1 ∼ Poi(λ1) and
Y ∼ G such that Y ⊥ X1 and Y +X1 is LC. Take Z ∼ Poi(λ2 − λ1) such that Z is inde-
pendent of (X1, Y ). Then X2 := X1 + Z ∼ Poi(λ2). Observing that Z is LC and that the
convolution of two LC random variables is still LC, we have that Y +X2 = (Y +X1) + Z
is LC. This means G ∼ DPoi(λ2) and, thus, DPoi(λ1) ⊆ DPoi(λ2).

Necessity : It suffices to prove that if λ1 > λ2 then DPoi(λ1) �⊆ DPoi(λ2). Let X1 ∼ Poi(λ1)
and X2 ∼ Poi(λ2), and assume that X1 ⊥ Yη and X2 ⊥ Yη, where Yη is a random variable
with pmf given be (2.3). Here η is to be determined later. Define qi = P(X1 + Yη = i) for

https://doi.org/10.1017/S0269964817000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000389


PRESERVATION OF LOG-CONCAVITY UNDER CONVOLUTION 571

i ∈ N. Then

qi =
1

η + 3
[pi + pi−1 + (η + 1)pi−2], i ∈ N,

where pi is the pmf of X1. Observe that pi−1 = i
λ1
pi, pi−2 = (i(i− 1)/λ2

1)pi, pi−3 =
(i(i− 1)(i− 2)/λ2

1)pi and pi+1 = (λ1/i+ 1)pi. Then, for i ∈ N,

(λ1 + 3)2λ4
1(i+ 1)

p2
i

(
q2i − qi−1qi+1

)
= λ4

1 + 2i(i− 1)λ3
1 + i(i3 + 2i2 + 2i− 5)λ2

1

+ 2i(i2 − 1)(i+ 1) + i2(i2 − 1). (2.7)

Clearly, q2i − qi−1qi+1 > 0 for i ∈ N+. For i = 1, (2.7) reduces to

q21 − q0q2
sgn
=

1
2
λ2

1 + λ1 − η,

where
sgn
= means equality in sign. Now, choose η = λ2

1/2 + λ1. Then X1 + Yη is LC. However,
X2 + Yη is not LC. �

Remark 2.6:

(i) Define the set of all LC random variables generated by convolution with Poi(λ)-
distributed random variable as follows:

HPoi(λ) = {X + Y : X ∼ Poi(λ), Y ∼ G, G ∈ DPoi(λ), X ⊥ Y }.

It is easy to verify that

λ1 ≤ λ2 =⇒ HP(λ2) ⊆ HP(λ1).

To see it, denote by HLC the set of all N-valued random variables with LC pmfs.
Note that for λ1 < λ2,

HPoi(λ2) = {X + Y : X ∼ Poi(λ2), Y ∼ G, G ∈ DPoi(λ2), X ⊥ Y }
= {X + Y : X ∼ Poi(λ2), X ⊥ Y } ∩ HLC

= {X1 +X2 + Y : X1 ∼ Poi(λ1), X2 ∼ Poi(λ2 − λ1), X1 ⊥ X2 ⊥ Y } ∩ HLC

⊆ {X1 + Z : X1 ∼ Poi(λ1), X1 ⊥ Z} ∩ HLC

= HPoi(λ1).

This means that although the set of distributions whose convolutions with Poi(λ)
are LC is non-decreasing in λ ∈ R+, the set of all LC distributions generated by
convolution with Poi(λ) is non-increasing in λ ∈ R+.

(ii) If we define a partial order �Poi on R+ by

λ1 �Poi λ2 ⇐⇒ DPoi(λ1) ⊆ DPoi(λ2).

Then, by Proposition 2.5, we have that �Poi is a total order on R+. Similar result
holds for the negative binomial distribution.
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2.3. Bernoulli Distribution

Let Ber(p) denote the distribution of a Bernoulli random variable Ip with P(Ip = 1) = p ∈
[0, 1]. It is natural to consider the sufficient and necessary conditions under which DBer(p1) ⊆
DBer(p2). However, we could not find out the general condition. In fact, we can show that
DBer(p1) and DBer(p2) do not contain each other for any distinct p1 < p2.

To see it, let Yη be a random variable with pmf given by (2.3). Throughout, assume
that Ip ⊥ Yη for all p ∈ (0, 1) and η > 0. Define qi = P(Ip + Yη = i). Then

q21 ≥ q0q2 ⇐⇒ η ≤ p

(1 − p)2
. (2.8)

Choose η = p/(1 − p)2. It is easy to see that q22 ≥ q1q3. Then Ip + Yη is LC, that is, Yη ∈
DBer(p).

For p1 < p2, set η2 = p2/(1 − p2)2. Then Yη2 ∈ DBer(p2). However, Yη2 �∈ DBer(p1) in view
of (2.8) and the fact η2 > p1/(1 − p1)2. Thus, DBer(p2) �⊆ DBer(p1).

On the other hand, note that Ip2 + Yη2 is LC. Then 3 − (Ip2 + Yη2) = (1 − Ip2) + (2 −
Yη2) is LC. Since 1 − Ip ∼ Ber(1 − p), it follows that 2 − Yη2 ∈ DBer(1−p2). Similarly, 2 −
Yη2 �∈ DBer(1−p1). Thus, DBer(1−p2) �⊆ DBer(1−p1). Since p1 and p2 are arbitrary, we have
DBer(p1) �⊆ DBer(p2).

2.4. Discrete Uniform Distribution

Let Unif(n) denote the distribution of a random variable Xn uniformly distributed on the
set {1, . . . , n} for n ∈ N+, that is, P(Xn = k) = 1/n for k = 1, . . . , n. In general, DUnif(m)

and DUnif(n) do not contain each other for any distinct 1 ≤ m < n, as shown by the following
counterexample (m = 2, n = 3).

To see it, let Yη be a random variable with pmf given by (2.3) where η ≥ 0. Throughout,
assume that Xn ⊥ Yη for all n ∈ N+ and η ≥ 0. Denote by qn(i) = P(Xn + Yη = i) for i ∈ N.
It can be checked that

X2 + Yη 1 2 3 4

prob.
1

2(η + 3)
2

2(η + 3)
η + 2

2(η + 3)
η + 1

2(η + 3)

and
X3 + Yη 1 2 3 4 5

prob.
1

3(η + 3)
2

3(η + 3)
η + 3

3(η + 3)
η + 2

3(η + 3)
η + 1

3(η + 3)

Then

[q2(2)]2 − q2(1)q2(3) =
2 − η

4(η + 3)2
, [q2(3)]2 − q2(2)q2(4) =

η2 + 2η + 2
4(η + 3)2

> 0;

and

[q3(2)]2 − q3(1)q3(3) =
1 − η

9(η + 3)2
, [q3(3)]2 − q3(2)q3(4) =

η2 + 4η + 5
9(η + 3)2

> 0,

[q3(4)]2 − q3(3)q3(5) =
1

9(η + 3)2
> 0.

Thus, for η ∈ (1, 2), Yη +X2 is LC, while Yη +X3 is not LC. This means that DUnif(2) �

DUnif(3).
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On the other hand, let Zη be a random variable, independent of (X2,X3), with pmf

Zη 0 1 2 3

prob.
1

η + 4
1

η + 4
1

η + 4
η + 1
η + 4

Here η > 0 and Zη is not LC. Then

X2 + Zη 1 2 3 4 5

prob.
1

2(η + 4)
2

2(η + 4)
2

2(η + 4)
η + 2

2(η + 4)
η + 1

2(η + 4)

and

X3 + Zη 1 2 3 4 5 6

prob.
1

3(η + 4)
2

3(η + 4)
3

3(η + 4)
η + 3

3(η + 4)
η + 2

3(η + 4)
η + 1

3(η + 4)

It can be checked that X2 + Zη is not LC for any η > 0, and that X3 + Zη is LC for
η ∈ (0, 3/2]. Therefore, DUnif(3) � DUnif(2).

Similar examples can be given to shown that DUnif(m) and DUnif(n) do not contain each
other for any m < n.

3. CONTINUOUS DISTRIBUTIONS

3.1. Exponential Distribution

A random variable X is said to have an exponential distribution, if it has density function
f(x, λ) = λe−λx for x ∈ R+. We write X ∼ Exp(λ). To state the following proposition, we
define DExp(λ) by (1.1) with F replaced by the exponential distribution with parameter λ.

Proposition 3.1: For λ1, λ2 > 0, we have that

DExp(λ1) ⊆ DExp(λ2) ⇐⇒ λ1 ≥ λ2. (3.1)

Proof: Sufficiency. For λ1 > λ2, let f be a density function in DExp(λ1), that is,

q1(x) =
∫ ∞

0

f(x− s)λ1e
−λ1sds = λ1e

−λ1x

∫ x

−∞
eλ1sf(s)ds

is LC. Note that q1(x) is LC if and only if

p1(x) :=
∫ x

−∞
eλ1sf(s)ds

is LC in x ∈ R. We aim to show that

p2(x) :=
∫ x

−∞
eλ2sf(s)ds

is LC in x ∈ R. Note that f(x) = p′1(x)e
−λ1x and denote Δ = λ1 − λ2. It follows that

p2(x) =
∫ x

−∞
e−Δsdp1(s) = e−Δxp1(x) +

∫ x

−∞
Δe−Δsp1(s)ds. (3.2)
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On the other hand, note that for any δ > 0,

p2(x) = p2(x− δ) +
∫ x

x−δ

eλ2sf(s)ds

with ∫ x

x−δ

eλ2sf(s)ds =
∫ x

x−δ

eλ2se−λ1sdp1(s)

= e−Δxp1(x) − e−Δ(x−δ)p1(x− δ) + Δ
∫ x

x−δ

e−Δsp1(s)ds.

It follows that

p2
2(x) − p2(x+ δ)p2(x− δ)

= p2(x)
∫ x

x−δ

eλ2sf(s)ds− p2(x− δ)
∫ x+δ

x

eλ2sf(s)ds

=
(
e−Δxp1(x) +

∫ x

−∞
Δe−Δsp1(s)ds

)∫ x

x−δ

eλ2sf(s)ds

−
(
e−Δ(x−δ)p1(x− δ) +

∫ x−δ

−∞
Δe−Δsp1(s)ds

)∫ x+δ

x

eλ2sf(s)ds

=
(
e−Δxp1(x) +

∫ x

−∞
Δe−Δsp1(s)ds

)

×
([
e−Δxp1(x) − e−Δ(x−δ)p1(x− δ)

]
+ Δ

∫ x

x−δ

e−Δsp1(s)ds
)

−
(
e−Δ(x−δ)p1(x− δ) +

∫ x−δ

−∞
Δe−Δsp1(s)ds

)

×
([
e−Δ(x+δ)p1(x+ δ) − e−Δxp1(x)

]
+ Δ

∫ x+δ

x

e−Δsp1(s)ds

)

def= (I1 + I2)(J1 + J2) − (I∗1 + I∗2 )(J∗
1 + J∗

2 ). (3.3)

Next, we investigate the sign of IiJj − I∗i J
∗
j for i, j ∈ {1, 2}. Note that

I1J1 − I∗1J
∗
1 = e−2Δx

{
p1(x)

[
p1(x) − eΔδp1(x− δ)

]− p1(x− δ)
[
p1(x+ δ) − eΔδp1(x)

] }
sgn
= p2

1(x) − p1(x− δ)p1(x+ δ) ≥ 0, (3.4)

and

I1J2 − I∗1J
∗
2 = e−ΔxΔ

(
p1(x)

∫ x

x−δ

e−Δsp1(s)ds− eΔδp1(x− δ)
∫ x+δ

x

e−Δsp1(s)ds
)

sgn
=
∫ x

x−δ

e−Δsp1(s)p1(x)ds−
∫ x

x−δ

e−Δsp1(x− δ)p1(s+ δ)ds

=
∫ x

x−δ

e−Δs
[
p1(s)p1(x) − p1(x− δ)p1(s+ δ)

]
ds ≥ 0, (3.5)
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where the last inequality follows from that p1(s)p1(x) − p1(x− δ)p1(s+ δ) ≥ 0 for s ∈ (x−
δ, x) by the log-concavity of p1. For I2J1 − I∗2J

∗
1 , we have that

I2J1 − I∗2J
∗
1 = e−Δx

∫ x

−∞
Δe−Δsp1(s)ds ·

[
p1(x) − eΔδp1(x− δ)

]

− e−Δx

∫ x−δ

−∞
Δe−Δsp1(s)ds ·

[
e−Δδp1(x+ δ) − p1(x)

]
sgn
=
∫ x

−∞
e−Δsp1(s)ds ·

[
p1(x) − eΔδp1(x− δ)

]

−
∫ x

−∞
e−Δsp1(s− δ)ds · [p1(x+ δ) − eΔδp1(x)

]

=
∫ x

−∞
e−Δs

(
p1(s)

[
p1(x) − eΔδp1(x− δ)

]

− p1(s− δ)
[
p1(x+ δ) − eΔδp1(x)

])
ds ≥ 0, (3.6)

where the last inequality follows from that for s ≤ x and δ > 0,

p1(s)
p1(s− δ)

≥ p1(x)
p1(x− δ)

≥ p1(x+ δ) − eΔδp1(x)
p1(x) − eΔδp1(x− δ)

.

Similarly, we have that

I2J2 − I∗2J
∗
2

sgn
=
∫ x

−∞
e−Δsp1(s)ds

∫ x

x−δ

e−Δsp1(s)ds

−
∫ x−δ

−∞
e−Δsp1(s)ds

∫ x+δ

x

e−Δsp1(s)ds

=
∫ x

−∞
e−Δsp1(s)ds

∫ x

x−δ

e−Δsp1(s)ds

−
∫ x

−∞
e−Δsp1(s− δ)ds

∫ x

x−δ

e−Δsp1(s+ δ)ds

=
∫ x

−∞

∫ x

x−δ

e−Δ(s + t)
[
p1(s)p1(t) − p1(s− δ)p1(t+ δ)

]
dsdt ≥ 0, (3.7)

where the last inequality follows from the log-concavity of p1, and that t+ δ = max{s, t,
s− δ, t+ δ}, s+ t = (s− δ) + (t+ δ). Substituting (3.4)–(3.7) into (3.3) yields that p2 is
also LC. This implies that

q2(x) =
∫ ∞

0

f(x− s)λ2e
−λ2sds = λ2e

−λ2xp2(x)

is LC in x ∈ R, that is, f ∈ DExp(λ2).
Necessity : It suffices to prove that if λ1 < λ2 then there exists a distribution function

G such that G ∈ DExp(λ1) but G �∈ DExp(λ2). Let X ∼ Exp(λ) and X ⊥ Yη, where Yη is a
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random variable with pmf given be (2.3). Here η > 0 is to be determined later. The pdf of
X + Yη is given by

h(x, λ, η) =
λ

3 + η

[
e−λx1{x>0} + e−λ(x−1)1{x>1} + (1 + η)e−λ(x−2)1{x>2}

]

=
λ

3 + η

[
e−λx1{x∈(0,1]} + (1 + eλ)e−λx1{x∈(1,2]}

+ (1 + eλ + (η + 1)e2λ)e−λx1{x∈(2,∞)}
]
.

It is easy to see that h(·, λ, η) is LC on R if and only if ηeλ ≤ 1. Now, choose η = e−λ1 and
denote Yη ∼ Gη. Then Gη ∈ DExp(λ1) but Gη �∈ DExp(λ2). This completes the proof of the
proposition. �

Having Proposition 3.1, we can immediately obtain the following proposition for the
Gamma distribution by the same arguments as in the proof of Proposition 2.1. To state the
proposition, we write Γ(α, λ) for the Gamma distribution with shape and scale parameters
α, λ ∈ R+, that is, its density function is given by f(x;α, λ) = λαxα−1e−λx/Γ(α), x ∈ R+.
Define DΓ(α,λ) by (1.1) with F replaced by Γ(α, λ).

Proposition 3.2: For r ∈ N+ and λ1, λ2 ∈ R+, we have that

DΓ(r,λ1) ⊆ DΓ(r,λ2) ⇐⇒ λ1 ≥ λ2.

It is still unknown whether DΓ(r,λ) is increasing in r ∈ R+ for any fixed λ, that is,
DΓ(r1,λ)⊆DΓ(r2,λ)

whenever 0 < r1 < r2 and rj ∈ R+.

3.2. Normal Distribution

Let DN(μ,σ2) be defined by (1.1) with F replaced by the normal distribution with mean
μ ∈ R and variance σ2 ∈ R+.

Proposition 3.3: For any μ1, μ2 ∈ R, we have that

DN(μ1,σ2
1) ⊆ DN(μ2,σ2

2) ⇐⇒ σ2
1 ≤ σ2

2 . (3.8)

Proof: Sufficiency. The sufficiency is trivial since the normal distribution is LC and
N(0, σ2

2) distribution is the convolution of N(0, σ2
1) and N(0, σ2

2 − σ2
1) distributions for

σ2
1 < σ2

2 .
Necessity : Without loss of generality, assume that μ1 = μ2 = 0. It suffices to prove

that if σ2
1 < σ2

2 then there exists a distribution function G such that G ∈ DN(0,σ2
2) but

G �∈ DN(0,σ2
1). Let X ∼ N(0, σ2) and X ⊥ Ip, where Ip ∼ Ber(p). We first show that

X + Ip is LC for all p ∈ (0, 1) ⇐⇒ σ2 ≥ 1
4
. (3.9)

To this end, define ψ(x) = exp{−x2/(2σ2)} for all x ∈ R. Then X + Ip is LC if and
only is the function �p(x) = log(pψ(x) + p̄ψ(x− 1)) is concave, where p̄ = 1 − p. Note that
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ψ′(x) = −(x/σ2)ψ(x) for all x, and

�′p(x) = − 1
σ2

· pxψ(x) + p̄(x− 1)ψ(x− 1)
pψ(x) + p̄ψ(x− 1)

= − 1
σ2

(
x− p̄ψ(x− 1)

pψ(x) + p̄ψ(x− 1)

)
,

σ2�′′p(x) = −1 + pp̄ · ψ
′(x− 1)ψ(x) − ψ(x− 1)ψ′(x)

(pψ(x) + p̄ψ(x− 1))2

= −1 +
pp̄

σ2
· ψ(x− 1)ψ(x)
(pψ(x) + p̄ψ(x− 1))2

= −1 +
pp̄

σ2
·
[(
p

ψ(x)
ψ(x− 1)

+ p̄

)(
p̄
ψ(x− 1)
ψ(x)

+ p

)]−1

.

Set z = ψ(x)/ψ(x− 1) = exp{−(2x− 1)/(2σ2)} ∈ R+. Then

σ4�′′p(x) =
pp̄

(pz + p̄)(p+ p̄/z)
− σ2 def=

1
hp(x)

− σ2,

where

hp(x) =
(

1 +
pz

p̄

)(
1 +

p̄

pz

)
= 2 +

pz

p̄
+

p̄

pz
≥ 4,

and the last equality holds for z = p̄/p. Therefore, for σ2 ≥ 1/4, �′′p(x) ≤ 0 for all x ∈ R and,
hence, X + Ip is LC; while for σ2 < 1/4, there exists an x0 ∈ R such that �′′p(x0) > 0, which
implies that X + Ip is not LC. This proves (3.9).

For σ1 < σ2, let X1 ∼ N(0, σ2
1), X2 ∼ N(0, σ2

2), and Ip ∼ Ber(p) with Ip ⊥ Xi for i =
1, 2. Denote by Gp the distribution function of 2σ2Ip. From (3.9), it follows that X2/(2σ2) +
Ip and hence X2 + 2σ2Ip is LC for all p. This means Gp ∈ DN(0,σ2

2) for all p ∈ (0, 1). Also,
from (3.9), it follows that X1/(2σ2) + Ip and hence X1 + 2σ2Ip is not LC for any p. This
means Gp �∈ DN(0,σ2

1) for any p ∈ (0, 1). This completes the proof of the proposition. �

Remark 3.4: The implication (3.9) states that whether X + Ip is LC does not depend upon
p. This is interesting. LC functions are unimodal. Figure 1 plots the density functions of
X + Ip for p = 1/2 and different σ2, which gives us some feeling about the critical value
1/4 of σ2.

Remark 3.5: It is well known that the convolution of two LC functions is also LC (see, for
example, Dharmadhikari and Joag-dev [4], p. 17). However, when we state this assertion, we
should pay more attention to the assumption that these two LC functions are both defined
on the set of (positive) integers or on the set of (positive) real numbers. For example,

• The convolution of two LC pmfs defined on N is also LC on N (Fekete [6]);
• The convolution of two LC pdfs defined on R is also LC on R (Ibragimov [10]).

If f is a LC pmf on N and g is a LC pdf on R, then we can not conclude that the convolution
f ∗ g of f and g is also LC. A counterexample can obtained easily from (3.9).
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Figure 1. Densities of X + I0.5, where X ∼ N(0, σ2), I0.5 ∼ Ber(0.5) and X ⊥ I0.5. (a)
σ2 = 0.2, (b) σ2 = 0.25, (c) σ2 = 0.3.

Remark 3.6: LetX be a random variable with distribution function F , and denote by Fθ the
distribution function of θX, where θ ∈ R+. Propositions 3.1–3.3 state that, for F = Exp(λ),
Γ(r, λ) with r ≥ 1, or N(μ, σ2),

DFa
⊆ DFb

, whenever 0 < a < b. (3.10)

Note that Exp(λ), γ(r, λ) with r ≥ 1 and N(μ, σ2) all have LC density functions. One may
wonder whether (3.10) holds for the general case that X is LC. However, this is not true as
shown by the following counterexample.

Let X ∼ U(0, 1), uniformly distributed over interval (0, 1). Then X is v. Let I0.5 ∼
Ber(0.5) and I0.5 ⊥ X. It is seen that X + I0/5 ∼ U(0, 2) is LC, that is, Ber(0.5) ∈ DU(0,1).
However, 2X + I0.5 is not LC, that is, Ber(0.5) �∈ DU(0,2). Therefore, (3.10) does not hold
when F is a uniform distribution.
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