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SUMMARY
In this paper, the robust, optimal, output control problem is dealt with for a 3-degree-of-freedom
laboratory helicopter. The control goal is to achieve the practical tracking of the desired elevation
and pitch angles without the angular velocity feedback. A nominal linear time-invariant system
is introduced and the real system is considered as the nominal one with uncertainties, including
parameter perturbations, nonlinear time-varying uncertainties, and external disturbances. An
observer is first used to estimate angular velocity. Then a nominal controller based on the optimal
control method is designed for the nominal system to achieve the desired tracking properties. Lastly,
a robust output compensator is added to restrain the effects of uncertainties in the real system. It is
shown that asymptotic tracking properties and robust stability can be achieved. Experimental results
on the laboratory helicopter are shown to verify the effectiveness of the proposed control method.

KEYWORDS: Robust control; Nonlinear control; Optimal control; Laboratory helicopter; Angular
velocity.

1. Introduction
Unmanned helicopters have received much attention in the last 20 years because of their versatile
civilian and military applications (see, e.g., refs. [1–6]). The motion control system design for the
helicopters is a challenge because of the uncertainties in their dynamical models. First, there exist
parameter pertubations and unmodeled uncertainties in the helicopter models. Second, the helicopters
are nonlinear systems with strong inter-axis couplings attributed to the generation process of the
forces and torques of flying robots. In addition, the flight qualities of the unmanned helicopters can
be influenced by external disturbances such as wind gusts.

The optimal control approach can find a control law to satisfy a certain optimality criterion for
a given system. It has been widely used in aerospace, marine, and defense industries because of
its simple structure in practical applications.7 But the helicopter models, based on which dynamical
characteristics are analyzed and controllers are designed, are generally the approximate descriptions
of the helicopter systems due to the uncertainties mentioned above. Therefore, it is almost impossible
for a helicopter system to respond exactly similar to the true system by the optimal control approach,
which needs an accurate model of the controlled plant. Then the uncertainty rejection problem has
been presented for the optimal control, and the robust optimal control method, which could achieve
the desired tracking properties and restrain the effects of the uncertainties, gains much attention.

Among early works on the robust optimal control problem, Petersen8 studied a class of linear
systems with uncertain parameters, and a feedback control law based on a quadratic Lyapunov
function was designed to achieve asymptotic stability of the closed-loop control system. Based on
Petersen’s8 Riccati equation approach, Douglas and Athans9 derived a linear quadratic regulation
(LQR) controller, which was robust against real parameter uncertainties. In addition, multi-objective
feedback control approaches were discussed by taking the optimal theory and the Riccati equation
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Fig. 1. The laboratory helicopter.

into account together. A mixed H2 and H∞ performance analysis under the structured uncertainty was
presented in Zhou et al.10 A control law based on the vector optimization technique was designed to
minimize multiple performance objectives for an uncertain linear plant in Dorato et al.11 In Trentini
and Pieper,12 the mixed-norm control methodology was applied to attenuate the effects of high-
order disturbances for a Bell helicopter in simulations. Most of the previous studies on the robust
optimal control problem mainly focused on one or several kinds of uncertainties such as parametric
uncertainties and external disturbances. But in this paper constant variations, nonlinear time-varying
uncertainties, and external disturbances are investigated together for the helicopter to achieve robust
stability and the desired dynamical and steady-state tracking performances simultaneously in actual
flight tests.

A laboratory-scale 3-degree-of-freedom (DOF) helicopter is used here, as shown in Fig. 1.
Its particular features, such as parameter perturbations and nonlinear time-varying uncertainties,
guarantee it as an ideal testbed to examine the effectiveness of control approaches, as witnessed by
many contributions in the last 10 years (see, e.g., refs. [13–17]). In Kutay et al.,13 a single-input–
single-output (SISO) controller was designed for the pitch angle, but the flight control problem
under coupling condition was not discussed fully. Adaptive feedback control laws were proposed
in Andrievsky et al.14 and Ishitobi et al.,16 but dynamical tracking performances of the closed-loop
system cannot be specified by these control approaches. In Kiefer et al.,15 the trajectory tracking
control was achieved by an optimal controller without discussing the influences of uncertainties on
the closed-loop system. The output regulation problem was studied in Zheng and Zhong,17 but an
exogenous system was required to generate references for elevation and pitch angles.

In this paper, a nominal linear time-invariant helicopter model is obtained by the linearized
approximation whereas the real model is regarded as the nominal one with equivalent disturbances,
which contain parameter uncertainties, nonlinearities, coupling, and external disturbances. A new
robust optimal control strategy combining the optimal control method with the robust output
compensation technique is proposed for the attitude control of the laboratory helicopter without
angular velocity measurements. The designed controller consists of three parts: an observer, a
nominal controller, and a robust output compensator. The observer is applied to estimate the angular
velocity values of elevation and pitch angles; the nominal controller by the optimal control method
is designed for the nominal linear system to get the desired tracking performances; and the robust
output compensator is introduced to restrain the influences of equivalent disturbances. This paper is
different from refs. [17–19], where the designed robust controllers depend on the angular velocity
measurements. Actually, the angle positions are measured from the encoders and the angle speeds
cannot be obtained directly. In the current paper, the designed output controller does not depend on
the angular velocity feedback. Furthermore, the stability of the whole closed-loop control system,
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Fig. 2. A 3-DOF laboratory helicopter.

including the helicopter dynamical system and the robust optimal controller, is analyzed by the
Lyapunov method, but the discussions on the controller stability were ignored in our previously
published papers.

One advantage of this robust optimal control strategy is that the resulted controller does not
require the feedback of angular velocities. Moreover, the desired tracking properties and the robust
stability can be achieved simultaneously under the effects of various uncertainties. The desired
tracking performances can be specified by the nominal LQR controller, and the robust stability can
be guaranteed by the robust compensation technique. It is proven that the attitude tracking errors of
the closed-loop system can asymptotically converge to the neighborhood of the origin with the given
boundary in a finite time for the given initial conditions. In addition, the proposed robust optimal
controller is realized with a linear time-invariant structure, which guarantees its easy implementation
in practical applications.

The paper is organized as follows. Section 2 presents the system and uncertainty description of a 3-
DOF laboratory helicopter. Section 3 formulates the design procedure of the robust optimal controller.
The asymptotical tracking properties and robust stability are proven in Section 4. Experimental results
are shown in Section 5, and conclusions are drawn in Section 6.

Notations: For p ∈ Rn×1 and D ∈ Rm×n, we denote that ‖p‖ =
√

pT p and ‖D‖ =
√

λmax(DT D).

2. Problem Statement
As shown in Fig. 2, the laboratory helicopter from Quanser Consulting Inc. has 3 rotational DOFs:
to elevate, travel, and pitch. Two DC motors are installed at two ends of the helicopter frame to drive
two propellers. This helicopter is an underactuated mechanical system, that is, a system possessing
more degrees of freedom than independent control inputs. Therefore, one can select two of the three
angles as outputs. In this paper, the attitude controller focuses on tracking the references of elevation
and pitch angles.

As shown in ref. [15], the motions of the elevation and pitch channels can be described by the
following equations:

q̈1(t) = ã1 sin q1(t) + ã3 cos q1(t) + b̃1 cos q2(t)(uf (t) + ub(t)) + d1(t),
q̈2(t) = ã2 cos q1(t) sin q2(t) + b̃2(uf (t) − ub(t)) + d2(t),

where q1(t) and q2(t) are the elevation angle and the pitch angle respectively, uf (t) and ub(t) are the
control voltages of the front motor and the back motor respectively, di(t) (i = 1, 2) is the external
disturbance, and ãi (i = 1, 2, 3) and b̃i (i = 1, 2) are the helicopter parameters. The nominal values
of the helicopter parameters are denoted by ai (i = 1, 2, 3) and bi (i = 1, 2), and the dynamical
model of the elevation and pitch angles can be rewritten as

q̈1(t) = a1q1(t) + a3 + b1u1(t) + �12(t),
q̈2(t) = a2q2(t) + b2u2(t) + �22(t), (1)
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where u1(t) = uf (t) + ub(t), u2(t) = uf (t) − ub(t), and �i2(t) (i = 1, 2) are called the equivalent
disturbances and take the following forms:

�12(t) = ã1 sin q1(t) − a1q1(t) + ã3 cos q1(t) − a3 + (b̃1 cos q2(t) − b1)u1(t) + d1(t),
�22(t) = ã2 cos q1(t) sin q2(t) − a2q2(t) + (b̃2 − b2)u2(t) + d2(t).

(2)

This paper will investigate the problem of designing a robust optimal controller to achieve the
practical tracking of references r1(t) and r2(t) for elevation and pitch channels respectively.

Let xi(t) = [xi1(t) xi2(t) ]T and �i(t) = [ 0 �i2(t) ]T (i = 1, 2), then the dynamical model can be
described in a state-space form as

ẋi(t) = Aixi(t) + Bi (ui(t) − zi(t)) + �i(t),
yi(t) = Cixi(t), i = 1, 2,

(3)

where xi1(t) = qi(t) − ri(t), xi2(t) = ẋi1(t), and

z1(t) = (r̈1(t) − a1r1(t) −a3) /b1, z2(t) = (r̈2(t) − a2r2(t)) /b2,

Ai =
[

0 1
ai 0

]
, Bi =

[
0
bi

]
, Ci =

[
1
0

]T

.

Assumption 2.1 The uncertain parameters ãi (i = 1, 2, 3) are bounded, and b̃i (i = 1, 2) satisfy
that |b̃i − bi | < bi, where the nominal parameters bi (i = 1, 2) are positive.

Assumption 2.2 There exists a mechanical limit on the pitch angle so that q2(t) ∈
[−π/2 + δq2,π/2 − δq2] with δq2 a positive constant.

Define ρ1 = max |b̃1 cos q2(t) − b1|/b1 and ρ2 = |b̃2 − b2|/b2.

Remark 1. Under Assumptions 2.1 and 2.2, one can obtain 0 ≤ ρi < 1 (i = 1, 2).

Assumption 2.3 The external disturbances di(t) (i = 1, 2) are bounded.

Assumption 2.4 The references of elevation and pitch angles and their derivatives r
(k)
1 and r

(k)
2

(k = 0, 1, 2) are piecewise uniformly bounded.

3. Robust Optimal Controller Design
Based on the optimal feedback control method and the output signal compensation technique,20 the
robust optimal control inputs are constructed by two parts: the nominal control inputs uN

i (t) (i = 1, 2)
and the robust compensating inputs vi(t) (i = 1, 2); that is, the control inputs ui(t) (i = 1, 2) have
the following forms:

ui(t) = uN
i (t) + vi(t), i = 1, 2. (4)

Step 1: Consider the following nominal systems,

ẋi(t) = Aixi(t) + Bi (ui(t) − zi(t)),
yi(t) = Cixi(t), i = 1, 2.

The nominal control inputs for this system are designed by the LQR method for the following cost
function:

Ji =
∫ ∞

0
e2θi t

[
σiy

2
i (t) + (ui (t) − zi (t))2

]
dt (i = 1, 2),

where σi (i = 1, 2) are positive constants and θi (i = 1, 2) are non-negative constants, which
determine the minimum decaying rates of the outputs yi (t) (i = 1, 2). Let ηi = diag(θi, 0) (i = 1, 2).
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By obtaining the positive definite solutions Pi (i = 1, 2) to the following Riccati equation,

Pi(Ai + ηi) + (Ai + ηi)
T Pi − PiBiB

T
i Pi + σiC

T
i Ci = 0, i = 1, 2,

one can obtain the feedback gains Ki = [ ki1 ki2 ] (i = 1, 2) by Ki = BT
i Pi . Thus, the nominal

controller can be given as

uN
i (t) = −Kixi (t) + zi(t), i = 1, 2. (5)

However, since the angular velocities q̇i(t) (i = 1, 2) cannot be measured directly, redesign the
nominal control laws as

uN
i (t) = − (ki1xi1(t) + ki2x̂i2(t)) + zi(t), i = 1, 2, (6)

where x̂i2(t) (i = 1, 2) are the estimation values of xi2(t) (i = 1, 2) respectively. x̂i2(t) (i = 1, 2) can
be obtained by the reduced-order observers as

ẇxi(t) = −lxiwxi(t) + bi

(
uN

i (t) − zi(t)
) − (

l2
xi − ai

)
xi1(t),

x̂i2(t) = wxi(t) + lxixi1(t), i = 1, 2,
(7)

where lxi is a positive constant. It follows that

˙̂xi2(t) = lxixi2(t) − lxi x̂i2(t) + aixi1(t) − biki1xi1(t) − biki2x̂i2(t), i = 1, 2. (8)

From (3) and (6), one can obtain that

ẋi2(t) = aixi1(t) − biki1xi1(t) − biki2x̂i2(t) + bivi(t) + �i2(t), i = 1, 2. (9)

If one defines the estimation errors x̃i2(t) (i = 1, 2) as x̃i2(t) = xi2(t) − x̂i2(t) (i = 1, 2), then one
can have

˙̃xi2(t) = −lxi x̃i2(t) + bivi(t) + �i2(t), i = 1, 2. (10)

Define x̃i(t) = [xi1(t) xi2(t) x̃i2(t) ]T (i = 1, 2), and

Ãic =
⎡
⎣ 0 1 0

ai − biki1 −biki2 biki2

0 0 −lxi

⎤
⎦ , B̃i =

⎡
⎣ 0

bi

bi

⎤
⎦ , C̃i =

⎡
⎣1

0
0

⎤
⎦

T

,

where Ãic(t) (i = 1, 2) are Hurwitz matrices. Then, from (3), (4), (6), and (10), one can obtain

˙̃xi(t) = Ãicx̃i(t) + B̃ivi(t) + �̃i(t),
yi(t) = C̃i x̃i(t), i = 1, 2,

(11)

where �̃i(t) = [ 0 �i2(t) �i2(t) ]T .

Step 2: In order to restrain the influences of the equivalent disturbances �̃i(t) (i = 1, 2), a robust
compensator is designed. Define

G̃i(s)
�= C̃i(sI − Ãic)−1B̃i = M̃−1

i (s)Ñi(s), i = 1, 2,

where s is the Laplace operator, I is a unit matrix, and M̃−1
i (s)Ñi(s) is the left matrix fraction

descriptions of G̃i(s), which is irreducible. It follows that

yi(s) = M̃−1
i (s)Ñi(s)vi(s) + C̃i(sI − Ãic)−1�̃i(s), i = 1, 2.
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Fig. 3. The block diagram of a robust optimal control system.

Then the robust compensating inputs vi(s) (i = 1, 2) can be given as

vi(s) = −Fi(s)Ñ−1
i (s)M̃i(s)C̃i(sI − Ãic)−1�̃i(s), i = 1, 2, (12)

where Fi(s) is the robust filter and has the form

Fi(s) = fi

s(pis + 1) + fi

,

with positive constants pi and fi (i = 1, 2) to be determined. If p−1
i and fi (i = 1, 2) are sufficiently

large and satisfy p−1
i � fi > 0, the robust filter would have sufficiently large bandwidths, and thus

the effects of �̃i(s) (i = 1, 2) could be reduced.
As one can obtain from (11),

�̃i(s) = (sI − Ãic)x̃i(s) − B̃ivi(s), i = 1, 2,

it follows that

vi(s) = −(1 − Fi(s))−1Fi(s)Ñ−1
i (s)M̃i(s)yi(s), i = 1, 2. (13)

Therefore, the robust compensating inputs vi(s) (i = 1, 2) can be implemented as follows:

vi(s) = −fi(lxi + s)(s2 + biki2s + biki1 − ai)

bis(pis + 1)(s + biki2 + lxi)
yi(s), i = 1, 2.

The configuration of this robust optimal control system is depicted in Fig. 3.

Remark 2. One can see that the robust optimal controller given by (4), (6), and (13) is a
linear time-invariant one. In addition, no information about equivalent disturbances is needed in the
controller design, which guarantees that the proposed controller is easy to be realized in practical
applications.

4. Robust Optimal Control Properties
In this section, the asymptotical tracking properties and robust stability of the closed-loop control
system will be proved.
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One can obtain from (12) that

vi(s) = − fi�i2(s)

bi(pis2 + s + fi)
, i = 1, 2. (14)

Then combining (11) with (14), one has

x̃i(s) = (sI − Ãic)−1e2f
−1
i sgi(s), i = 1, 2,

where e2 = [ 0 1 1 ]T and gi(s) = fi(pis + 1)�i2(s)/(pis
2 + s + fi). Consider the systems with

inputs �i2(t) (i = 1, 2) and outputs gi(t) (i = 1, 2), which can be realized as

ẋiu1(t) = (−p−1
i + fi

)
xiu1(t) − fixiu2(t) + √

fi�i2(t),

ẋiu2(t) = fixiu1(t) − fixiu2(t) + √
fi�i2(t),

gi(t) = √
fixiu2(t), i = 1, 2.

(15)

Define xic(t) = [xic1(t) xic2(t) xic3(t) ]T = [xi1(t) xi2(t) − f −1
i gi(t) x̃i2(t) − f −1

i gi(t) ]T and B̃ic =
[ 1 0 −lxi ]T , then one has

ẋic(t) = Ãicxic(t) + B̃icf
−1
i gi(t),

yi(t) = C̃ixic(t), i = 1, 2.
(16)

Theorem 1. If the helicopter is controlled by the robust optimal controller designed in the
previous section with Assumptions 2.1, 2.2, 2.3, and 2.4 satisfied, then for the given bounded initial
conditions and the given constant ε > 0, there exist sufficiently large controller parameters fi and
p−1

i (i = 1, 2) satisfying p−1
i � fi > 0 and a positive constant T such that the states x̃i(t), xiu1(t),

and xiu2(t) (i = 1, 2) are bounded and |yi(t)| < ε (i = 1, 2), ∀t > T .

Proof. From (4), (6), (14), and (15), one can obtain that

|ui | ≤ Kmax ‖x̃i‖ + |zi | + b−1
i

√
fi (|xiu1| + |xiu2|), i = 1, 2,

where Kmax = |ki1| + 2 |ki2|. Substituting the above expression into (2), one can find positive
constants ζxi and ζci (i = 1, 2) such that

|�i2| ≤ ζxi ‖x̃i‖ + ρi

√
fi (|xiu1| + |xiu2|) + ζci, i = 1, 2. (17)

Since Ãic (i = 1, 2) are stable matrices, one can find positive definite matrices Pic (i = 1, 2) such
that PicÃic + ÃT

icPic = −I . Consider the following Lynapunov function candidate:

V =
2∑

i=1

(
xT

icPicxic + 0.5
(
x2

iu1 + x2
iu2

) /
fi

)
.

Its derivative can be given by

V̇ =
2∑

i=1

(
−xT

icxic + 2xT
icPicB̃icf

−1
i gi + (

1 − p−1
i f −1

i

)
x2

iu1 − x2
iu2 + (xiu1 + xiu2)�i2/

√
fi

)

≤
2∑

i=1

(−‖xic‖2 − (
p−1

i f −1
i − 1 − ρi

) |xiu1|2 − (1 − ρi)|xiu2|2 + 2ρi |xiu1| |xiu2|
)
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+
2∑

i=1

(
2

∥∥PicB̃ic

∥∥ ‖xic‖ |xiu2| + ζxi ‖x̃i‖ (|xiu1| + |xiu2|) + ζci (|xiu1| + |xiu2|)
)
/
√

fi

≤
2∑

i=1

(
−‖xic‖2 −

(
p−1

i

fi

− 1 − ρi − αρi

)
|xiu1|2 −

(
1 − ρi − αρi − ζxi

fi

)
|xiu2|2 + ζ 2

cif
−1
i

2αρi

)

+
2∑

i=1

((
2ρi + ζxi

fi

)
|xiu1| |xiu2| + ζxi√

fi

‖xic‖ |xiu1| + 2
∥∥PicB̃ic

∥∥ + ζxi√
fi

‖xic‖ |xiu2|
)

,

where the constants αρi (i = 1, 2) are chosen such that 0 < αρi < 1 − ρi (i = 1, 2). Then defining
x̄i = [‖xic‖ |xiu1| |xiu2| ]T (i = 1, 2), one has

V̇ ≤ −τV −
2∑

i=1

(
x̄T

i Rix̄i − ζ 2
ci

2αρifi

)
, (18)

where τ is a positive constant and satisfies that τ ‖Pic‖ < 1 (i = 1, 2) and

Ri =

⎡
⎢⎢⎢⎢⎣

1 − τ ‖Pic‖ − ζxi

2
√

fi
− 2‖PicB̃ic‖+ζxi

2
√

fi

− ζxi

2
√

fi

2p−1
i −τ

2fi
− 1 − ρi − αρi −ρi − ζxi

2fi

− 2‖PicB̃ic‖+ζxi

2
√

fi
−ρi − ζxi

2fi
1 − ρi − αρi − 2ζxi+τ

2fi

⎤
⎥⎥⎥⎥⎦ .

If p−1
i and fi (i = 1, 2) are parameters with sufficiently large values satisfying p−1

i � fi > 0, one
can see that Ri > 0 (i = 1, 2). Then it follows that

V (t) ≤ V (t0)e−τ (t−t0) +
∑
i=1,2

ζ 2
ci

2ταρifi

. (19)

In addition, from (15), one has

|xi2| ≤ |xic2| + |xiu2| /
√

fi, |x̃i2| ≤ |xic3| + |xiu2| /
√

fi. (20)

Hence, from (19) and (20), one can see that for the given bounded initial conditions, and the
given positive constant ε, if fi (i = 1, 2) are sufficiently large, then the states x̃i(t), xiu1(t), and
xiu2(t) (i = 1, 2) are bounded and there exists a positive constant T such that |yi(t)| < ε (i = 1, 2),
∀t ≥ T . �

Remark 3. One can see that only the bounds of the uncertainties of the 3-DOF helicopter system
are necessary for the robust controller design. However, in practical applications, the bounds of the
disturbances may not be known. In this case, the robust compensator parameters can be determined
by an on-line tuning way. One can set fi and p−1

i (i = 1, 2) to some certain initial values and satisfy
p−1

i � fi > 0 and run the helicopter system. If the tracking performances are not satisfactory, then
one can tune fi and p−1

i (i = 1, 2) to large values satisfying p−1
i � fi > 0 until the desired tracking

performances are achieved.

5. Experimental Results and Discussions
The attitude angles are measured by two encoders with effective position resolution of 0.0879o.21 The
encoder data are transmitted to a dSPACE System, where the robust control scheme is implemented.
The control signals are outputted to the front and back motors. The desired elevation and pitch
angles are obtained by ri(s) = �i(s)/(φis + 1) (i = 1, 2), where �i (i = 1, 2) are the reference input
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Table I. Nominal parameters of a 3-DOF helicopter.

Parameter Value Parameter Value Parameter Value

a1 0 a2 0 a3 –2.53
b1 0.0858 b2 0.581

Table II. Controller parameters.

Parameter Value Parameter Value Parameter Value

σ1 1000 f1 5 p1 0.0278
θ1 0 φ1 1 lx1 10
σ2 1000 f2 3.33 p2 0.0417
θ2 0.67 φ2 0.7 lx2 10
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Fig. 4. Responses of the two channels in case 1.

commands for the elevation and pitch channels respectively. Table I presents the nominal values of
the helicopter parameters. In order to obtain the desired output tracking performances, the controller
parameters are selected as in Table II. Actually, there exist control input constraints on the front and
back motors. The control inputs ui(t) (i = f, b) are required to satisfy ui(t) > 0 to avoid rotations
of the two rotors in an opposite direction. Furthermore, there exist upper bounds on control inputs as
ui(t) < 22 (i = f, b).

Case 1: Aggressive missions are taken in serious coupling condition for the laboratory helicopter.
The tracking responses of two interacting channels are presented in Fig. 4. Note that in ref. [14], the
motion control for one channel was considered while other angles were required to be stabilized at
0o . Only the pitch angle motion control was discussed in ref. [13]. One can see that by the proposed
robust optimal control approach, the closed-loop system has good attitude tacking properties under
aggressive maneuvers with strong coupling. The control inputs in the mission are shown in Fig. 5,
and one can observe that uf (t) and ub(t) do not reach the upper or lower bounds of control inputs.

Case 2: In this experiment, the step response performances are evaluated with comparison. The
reference input commands �1 and �2 are step signals in this case, and the responses are shown in
Figs. 6 and 7 respectively. Steady-state errors, 5%-zone setting time, and overshoots are about 0.1o

and 0.2o, 2.82 s and 1.65 s, and 0.44% and 2.64% for the elevation and pitch channels respectively.
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Fig. 5. Control inputs in case 1.
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Fig. 6. Step response of the elevation channel.

In contrast, the tracking performances of 10 s settling time with 10% overshoot and 1o state error
with 10% overshoot were achieved for the elevation angle in refs. [14] and [21] respectively. In
ref. [17], 5%-zone setting time and steady-state errors were 4.6 s and 3.8 s, and 0.2o and 0.4ofor the
elevation channel and pitch channel respectively. One can see that both dynamical and steady-state
performances are improved by our proposed control method.

Case 3: In order to check the dynamical tracking performances of the closed-loop system, a 3-
DOF helicopter is required to track non-stationary sinusoidal signals for elevation and pitch angles
simultaneously as shown in ref. [17]. The corresponding control input commands can be expressed

https://doi.org/10.1017/S0263574714000319 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000319


292 Robust optimal attitude control of a laboratory helicopter

0 5 10 15 20
0

10

20

30

Time (s)
(a) Response of the pitch angle.

P
itc

h 
an

gl
e 

(d
eg

)
 

 
Reference input command
Pitch angle

20 25 30 35 40
19.8

19.9

20

20.1

20.2

Time (s)
(b) Steady−state response of the pitch angle.

P
itc

h 
an

gl
e 

(d
eg

)

Fig. 7. Step response of the pitch channel.
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Fig. 8. Responses of two channels in case 3.

as follows:

�̇1(t) = −(0.25 + 0.15 sin t)�2(t),

�̇2(t) = (0.25 + 0.15 sin t)�1(t),

where �1(0) = −5 and �2(0) = 0. Figure 8 presents the responses of the two channels with the
designed robust optimal controllers. The tracking errors and control inputs in this case are depicted in
Figs. 9 and 10. One can see that the tracking errors are guaranteed to be less than 0.4o and 0.3ofor the
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Fig. 9. Tracking errors in case 3.
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Fig. 10. Control inputs in case 3.

elevation and pitch channels respectively. Compared with the experimental results in ref. [17], which
achieved tracking errors of 0.5o and 1.1o for the two angles, this output control method improves the
dynamical tracking performances of the closed-loop system.
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6. Conclusions
A robust output control approach combining the optimal method with the robust compensation
technique was proposed to address the attitude control problem for a 3-DOF laboratory helicopter
without angular velocity measurements. This robust control scheme results in a linear time-invariant
controller consisting of an observer, a nominal optimal controller, and a robust output compensator
which is easy to be implemented in practical applications. The asymptotical tracking properties
and robust stability of the closed-loop system were proved. Experimental results on the laboratory
helicopter showed good dynamical and steady-state tracking performances for elevation and pitch
channels.
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