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We investigate the influence of free-stream vortical disturbances on the evolution and
instability of an incompressible laminar boundary layer, focusing on components of
sufficiently long wavelength, which are known to penetrate into the boundary layer
to generate streamwise elongated streaks. The free-stream disturbance is assumed to
be sufficiently strong (but still of small amplitude) that the induced streaks acquire an
O(1) streamwise velocity in the region where the boundary-layer thickness becomes
comparable with the spanwise wavelength of the perturbation. The formation and
evolution of the streaks are governed by the nonlinear unsteady boundary-region
equations supplemented by appropriate upstream and far-field boundary conditions.
This initial-boundary-value problem is solved for the special case where the free-
stream disturbance is modelled by a pair of oblique vortical modes with the same
frequency but opposite spanwise wavenumbers. Nonlinearity is found to inhibit the
response. The nonlinear interaction alters the mean-flow profile appreciably, the shape
of which is in quantitative agreement with experimental measurements. Wall-normal
inflection points are detected in the instantaneous streamwise velocity profiles. The
secondary stability analysis indicates that in the presence of free-stream disturbance
with an intensity of 2.8 %, the resulting streaky boundary layer becomes inviscidly
unstable. The characteristic frequency, phase and group velocities, and growth rate of
unstable sinuous modes are found to be in broad agreement with recent experiments.
The present theoretical framework allows in principle a quantitative relation to be
established between the characteristics of free-stream turbulence and the secondary
instability, and this relation may be exploited to develop an efficient and physics-based
approach for predicting bypass transition.

Key words: boundary layer receptivity, boundary layer stability, transition to
turbulence

1. Introduction
Laminar-turbulent transition in a boundary layer is crucially influenced by free-

stream turbulence (FST). As the intensity of FST, T u, is increased, not only does
the transition location shift upstream significantly (Dryden 1958), the inherent
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mechanisms may be fundamentally different. When T u is relatively low (T u < 0.1 %),
transition is caused by the viscous Tollmien–Schlichting (T-S) instability (Schubauer &
Skramstad 1947; Kachanov 1994). In this case, FST affects transition primarily
through receptivity (Goldstein & Hultgren 1989; Saric, Reed & Kerschen 2002), in
which FST excites unstable modes either due to the adjustment by the non-parallelism
of the base flow near the leading edge (Goldstein 1983; Ricco & Wu 2007) or by
interacting with local or distributed steady inhomogeneity (Goldstein 1985; Ruban
1985; Duck, Ruban & Zhikharev 1996; Wu 2001a , b). The observed upstream shift of
the transition location with T u may be attributed to the increased initial amplitudes
of unstable modes. FST of moderate intensity may influence the growth rates of
T-S waves directly, but apparently contradictory findings have been reported. For
example, experimental studies of Kendall (1991, 1998) indicate that FST enhances
the amplification of T-S waves, and this destabilizing effect was demonstrated and
explained by the theory of Wu & Choudhari (2003). However, Boiko et al. (1994)
observed that T-S waves amplify at a reduced rate in a boundary layer perturbed
by FST. A similar stabilizing effect of roughness-induced steady streaks has been
reported by Fransson et al. (2006), and the theoretical support was provided by
Cossu & Brandt (2002, 2004).

In the presence of relatively high level of FST (T u > 1 %), transition apparently
occurs without involving T-S waves. Instead, low-frequency disturbances appear to
penetrate into the boundary layer and amplify significantly to distort the flow in a
three-dimensional manner (Dryden 1936; Taylor 1939). The resulting boundary layer
features streamwise elongated, and spanwise alternating low- and high-speed regions
(Klebanoff 1971), which are referred to as streaks or Klebanoff modes (Arnal &
Juillen 1978; Kendall 1991; Westin et al. 1994). Experiments indicate that streaks may
become unstable and break down to form sporadic turbulent spots (Matsubara &
Alfredsson 2001), which grow and merge, leading to fully developed turbulence. Streak
instability appears to be inviscid, developing over a length scale much shorter than that
pertaining to the viscous T-S instability. Quantitative data about the characteristics
of streak instability are however scarce because detailed measurements where free-
stream disturbances were introduced in a controlled manner have not yet been
conducted. Nevertheless, recent laboratory observations, carried out in uncontrolled
conditions, find that the propagation speed of unstable modes is about 0.8U∞,
and growth rates are about 0.01U∞/δ∗ (Mans, de Lange & van Steenhoven 2007),
where U∞ is the free-stream velocity and δ∗ is the local boundary-layer displacement
thickness.

On the basis of the discussions above, it may be concluded that a thorough
understanding and the eventual prediction of bypass transition require investigations
of three related processes: (a) the entrainment of FST into the boundary layer,
(b) amplification and formation of streaks and (c) the secondary instability of
streaks.

Much effort in the last few decades has been directed to (b). The central mechanism
is the so-called transient growth. The idea originated from the observation of
Ellingsen & Palm (1975) that in the inviscid limit three-dimensional disturbances of
infinite streamwise wavelength on a shear flow may amplify algebraically in that
the streamwise velocity grows proportionally to time; see also Landahl (1980).
When the viscous effect is included, three-dimensional disturbances may undergo
considerable transient growth before being attenuated by viscosity, provided that
their streamwise wavelength is sufficiently long (Hultgren & Gustavson 1981; Butler &
Farrell 1992). Standing waves consisting of pairs of such disturbances with opposite
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Evolution and instability of nonlinear unsteady streaks 3

spanwise wavenumbers manifest as streaks. Mathematically, the transient growth may
be attributed to the non-normality of the linear operator governing the evolution of
the perturbation (Trefethen et al. 1993). More recently, it was shown that three-
dimensional disturbances of a similar form may exhibit substantial spatial transient
growth with the downstream distance in boundary layers (Luchini 1996, 2000; Tumin
2001). Initial or inflow perturbations that give rise to maximum linear transient
growth have been identified, and the induced boundary-layer signature is referred
to as the optimal disturbance (Andersson, Berggren & Henningson 1999). Zuccher,
Bottaro & Luchini (2006) used a nonlinear optimization procedure to select the initial
disturbance which leads to maximum nonlinear growth. Optimal disturbances offer
an upper bound of possible growth, but it should be recognized that they are not
streaks generated by physically realizable external disturbances. Non-optimal steady
or nearly steady three-dimensional disturbances are likely to be amplified by a factor
of similar order of magnitude since transient growth is due to the generic and robust
mathematical property (i.e. non-normality) of the operator governing the perturbation
rather than to a delicate dependence on the initial condition.

Secondary instability of steady streaks has been considered by several investigators.
Andersson et al. (2001) analysed the stability of streaks modelled by an optimal
disturbance. They find that streaks may support both sinuous and varicose modes.
The sinuous mode instability was found to be more dangerous, and occurs when the
streak amplitude, measured by its streamwise velocity, exceeds a threshold 0.26U∞.
The instability has been shown to be of convective nature (Brandt et al. 2003).

Bypass transition has also been studied by means of direct numerical simulations
(DNS). Brandt & Henningson (2002) simulated breakdown of streaks developed
from an optimal disturbance. Jacobs & Durbin (2001) performed DNS of bypass
transition triggered by FST, which was represented by superposition of continuous
spectra of the Orr–Sommerfeld and Squire operators. They found that streaks are
generated within the boundary layer but remain stable, and breakdown does not
occur until streaks are lifted up to the edge of the boundary layer. Using a similar
model for FST, Brandt, Schlatter & Henningson (2004) investigated the influence
of the length scale and spectral property of FST on streak formation. Their work
indicates that sinuous and varicose instabilities operate to cause transition. The
respective roles of low- and high-frequency components of FST in bypass transition
were studied by Zaki & Durbin (2006). Their simulations show that transition does
not take place when the free-stream disturbance is composed solely of a low- or
a high-frequency component even though streaks are generated in the former case.
Transition occurs only when both components are simultaneously present in the FST,
suggesting that low-frequency components play the role of distorting and destabilizing
the boundary layer, while high-frequency components are required to trigger unstable
modes. Nagarajan, Lele & Ferziger (2007) and Ovchinnikov, Choudhari & Piomelli
(2008) performed DNS of bypass transition in boundary layers over plates with an
elliptic leading edge, focusing respectively on the role of the bluntness and the integral
length scale of FST. It was found that bypass transition was indeed associated with
streak breakdown when the FST intensity is low and the leading edge is relatively
sharp, or when the integral length scale (normalized by the length of the major axis of
the ellipse) is small. However, when either of the FST intensity, bluntness and integral
length is increased sufficiently, turbulent spots form spontaneously apparently without
exhibiting any connection with streaks. The underlying physical mechanisms of the
alternative processes remain a mystery, but see Goldstein & Sescu (2008), where a
possible explanation for the observation was proposed.
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In summary, it may be concluded that the transient growth theory, secondary
instability analysis and related DNS have shed important light on various aspects of
bypass transition. However, the current understanding and description of transition
remain incomplete and inadequate for achieving the ultimate goal of studying bypass
transition, which is to predict (i) the quantitative relation between the transition
location and the intensity (and other relevant statistical properties) of FST, and (ii)
the threshold of FST which delineates the usual T-S and bypass transition routes. The
theory of transient growth provides a mathematical explanation for the development
of streamwise vortices which are already present within the boundary layer, but
the vital link of these perturbations with FST is missing since FST, which causes
bypass transition in the first place, is not accounted for in the formulation. Use
of optimal disturbances as a model for streaks in secondary instability calculations
cannot possibly provide an answer to the central question of practical interest, which is
how streak instability or bypass transition is quantitatively related to FST. Modelling
FST as a superposition of continuous spectra of the Orr–Sommerfeld and Squire
operators represents a significant progress, but this approach ignores the crucial
entrainment process in the region near the leading edge, where non-parallelism plays
a leading-order role for relevant long-wavelength components. The stability properties
and breakdown characteristics revealed in most previous studies are therefore only
of qualitative value. For a quantitatively accurate prediction, it is necessary to take
an integrated approach, in which FST is properly specified and its entire entrainment
process into the boundary layer is satisfactorily described. In DNS, this may be
achieved by imposing FST well upstream of the leading edge as was done, e.g.
in Ovchinnikov et al. (2008). However, the resulting extended computation domain
renders DNS an excessively expensive tool for systematic parametric studies.

Disturbances present in the oncoming free stream may be of different form,
including:

(i) spanwise variation of an otherwise uniform mean stream (with the
corresponding vorticity of the disturbance being normal to the plat);

(ii) steady streamwise vorticity superimposed on the mean flow;
(iii) unsteady vortical fluctuations of the convected-gust type.
The parameters characterizing these disturbances are the amplitude ε, the Reynolds

number RΛ = U∞Λ/ν and the typical frequency k1 (normalized by U∞/Λ), where Λ is
the spanwise integral length scale of FST.

The experiments of Klebanoff & Tidstrom (1959) and Bradshaw (1965) indicated
that the Blasius boundary layer is remarkably sensitive to disturbances of type
(i). Prompted by this finding, Crow (1966) employed the linearized boundary-
layer equations to calculate the boundary-layer response to such small-amplitude
disturbances. He found that the streamwise velocity within the boundary layer grows
linearly with the downstream distance x. It may be noted that the homogeneous system
admits an asymptotic eigensolution, whose streamwise velocity grows algebraically, i.e.
u ∼ x0.216 (Luchini 1996). Since this growth is much slower than that of Crow’s forced
solution, only the latter is of significance in the subsequent development. Goldstein,
Leib & Cowley (1992) pointed out that the forced motion remains linear only within
a distance much smaller than min {RΛ, ε−1} to the leading edge. The continued
development downstream is nonlinear, governed by the nonlinear boundary-layer
equations, if εRΛ � 1, or by the so-called nonlinear boundary-region equations
which include cross-flow ellipticity if εRΛ = O(1), as was shown by Goldstein &
Wundrow (1998). Numerical solutions reveal that nonlinearity leads to a strong
vorticity concentration along the spanwise direction causing the viscous boundary
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Evolution and instability of nonlinear unsteady streaks 5

layer to separate for εRΛ � 1, but the streamwise velocity profile of the distorted
boundary layer does not become inflectional. In the same vein, Goldstein & Leib
(1993) and Wundrow & Goldstein (2001) investigated nonlinear streaks driven by
disturbances of type (ii), streamwise vortices, and found that an inflection point
appears on the boundary-layer profile before separation occurs. The distorted flow
thus supports short-wavelength inviscid Rayleigh instability, which was linked to
bypass transition to turbulence.

FST is generally considered to consist primarily of unsteady disturbances of
type (iii), i.e. vortical waves propagating at the speed of the free stream. Of
particular relevance are low-frequency (long-wavelength) components with k1 � 1.
Their entrainment into the boundary layer and the development of the induced
streaks are governed by the boundary-region equations if k1 =O(R−1

Λ ), as was shown
by Leib, Wundrow & Goldstein (1999a) (referred to as LWG hereafter). These
equations may be linearized if the intensity of FST is sufficiently weak, i.e. ε � R−1

Λ .
Numerical solutions indicate that the boundary layer acts as a filter, allowing low-
frequency perturbations to penetrate into the boundary layer while the high-frequency
ones are absorbed in the outer edge of boundary layer. For higher level FST with
typical intensity ε = O(R−1

Λ ), the fully nonlinear boundary-region equations have to
be reinstated because streaks attain an order 1 amplitude.

Wu & Choudhari (2003) are among the first to investigate the impact of FST-
induced unsteady streaks on boundary-layer instability. They considered the limiting
case R−1

Λ � k1 � 1 and ε � R−1
Λ , for which streaks can be approximated by the

linear boundary-layer solution because they attain the maximum magnitude but
remain linear in the region where the boundary-layer thickness δ∗ � Λ. Due to
the inherent unsteadiness, streaks of moderate amplitude may alter the near-
wall curvature of the boundary layer by an O(1) amount, thereby enhancing the
amplification rate of T-S waves. When the distortion exceeds a certain threshold,
the perturbed mean profile develops an inflection point during certain phases of
the streak modulation, and thus supports intermittent inviscid sinuous and varicose
instability modes. The importance of unsteadiness is further highlighted by the recent
work of Goldstein & Sescu (2008). They found that in contrast to the steady limit
(Goldstein et al. 1992), unsteady disturbances of type (i) cause the nonlinearly
distorted profile to become inflectional, and therefore render the flow inviscidly
unstable.

In typical experiments and applications (such as turbomachinery), the FST level is
likely to be sufficiently high that fully developed streaks are nonlinear, and appear in
the region where δ∗ =O(Λ). The present work therefore investigates the development
and instability of streaks in the generic regime corresponding to ε = O(R−1

Λ ) and
k1 = O(R−1

Λ ) as RΛ → ∞, for which streaks acquire an O(1) streamwise velocity when
δ∗ = O(Λ).

The rest of the paper is organized as follows. In § 2, we formulate the problem
by specifying the free-stream disturbance and scaling relations. The flow structure
proposed for steady free-stream disturbance (Wundrow & Goldstein 2001) is directly
applicable to low-frequency disturbances. The mathematical problem consists of the
unsteady nonlinear boundary-region equations (UNBREs), and appropriate outer
boundary conditions and upstream conditions near the leading edge, which account
for the action of the free-stream disturbance on the boundary layer. In § 3, we describe
the numerical procedure to solve the UNBREs. The results are presented in § 4. The
instability of nonlinear streaks is analysed in § 5. A summary and concluding remarks
are given in § 6.
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xΛ

Λ

yΛ

zΛ

δΛ

u = U∞î + εu∞ (x − t, y, z)

Λ

Λ

λ∗x

ΛRΛ

ΛRΛ

Free-stream convected gusts

Secondary instability

Nonlinear Klebanoff modes

O(ε/k1)

I
II

III

IV

Figure 1. A schematic illustration of the problem under consideration, the coordinate
system and the flow regimes.

2. Problem formulation: scaling and equations of motion
We consider the incompressible two-dimensional flow due to a uniform velocity U∞

past an infinitely thin flat plate. Superimposed on the oncoming stream are small-
amplitude fluctuations, which are represented by vortical modes of the convected-gust
type (see figure 1). The analysis is pertinent to the special case of a pair of free-stream
vortical modes with the same frequency (and hence streamwise wavenumber), but
opposite (dimensional) spanwise wavenumbers ±k∗

3; it is hoped that experiments
in which disturbances of this simple form are generated in a controlled manner
would become possible in the near future. The extension to general homogeneous,
statistically stationary FST is a subject of our ongoing investigations.

The flow is described in a Cartesian coordinate system, in which a point is

represented by a vector x = x î + y ĵ + zk̂, where î , ĵ and k̂ are the unit vectors
in the streamwise, wall-normal and spanwise directions, respectively. The inverse of
the spanwise fundamental wavenumber k∗

3 of the free-stream gust is taken to be a
reference length Λ = 1/k∗

3 , and hence k3 = 1.0. The time t∗ is normalized by Λ/U∞.
The velocities and pressure p∗ are made dimensionless by U∞ and ρU 2

∞, respectively.
The disturbance in the upstream region is passively advected by the background

mean flow, and it can be written as

u− î = εu∞(x−t, y, z) = ε
(
û∞

+eik3z + û∞
−exp[−ik3z]

)
exp[ik1(x − t) + ik2y]+c.c., (2.1)

where ε � 1 measures the amplitude of the oncoming perturbation, k = {k1, k2, k3},
and û∞

± = {û∞
1,±, û∞

2,±, û∞
3,±} =O(1). From the continuity equation, it follows that

k1û
∞
1,± + k2û

∞
2,± ± k3û

∞
3,± = 0. (2.2)
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Evolution and instability of nonlinear unsteady streaks 7

The ensuing evolution of the disturbance outside and within the boundary layer
depends on k1, ε and the Reynolds number

RΛ = U∞Λ/ν, (2.3)

where ν is the kinematic viscosity of the fluid. As in LWG, we assume that RΛ is
asymptotically large, i.e. RΛ � 1, and consider long-wavelength disturbances with

k1 = O(R−1
Λ ). (2.4)

The disturbance remains linear when the turbulent Reynolds number is rt = εRΛ � 1.
We now take

rt = O(1), (2.5)

for which the disturbance undergoes nonlinear development. For steady free-stream
disturbances, it has been shown by Goldstein (1997) that the flow domain can be
divided into four distinct asymptotic regions. The same structure holds for the present
unsteady (but low-frequency) disturbances of interest, and is shown in figure 1. In the
inviscid region-I over O(Λ) distances from the leading edge (i.e. x = O(1), y = O(1))
and in the viscous boundary layer (region-II), the disturbance is linear as in LWG.
Two distinct regions emerge further downstream (x = O(RΛ)): an inner region-III
which has a width of O(Λ) and an outer region-IV whose transversal scale is of
O(ΛRΛ). The main focus of the present analysis will be on these two regions, in
which nonlinear effects come into the play and streaks may undergo secondary
instability.

2.1. Disturbances in the outer region

The outer region corresponds to x = O(RΛ) and y =O(RΛ), and so we introduce

x = k1x, ȳ = k1y (2.6)

in view of (2.4). The perturbation in this region consists not only of the three-
dimensional vortical disturbance convected from upstream, which depends on the
relatively short transverse variable y, but also of the two-dimensional disturbance that
is induced by the viscous motion within the boundary layer through the displacement
effect. The latter arises because the streamwise velocity of the boundary-layer signature
acquires an O(1) amplitude and attenuates over a large transverse distance. The
situation is analogous to that for the steady perturbations considered by Wundrow &
Goldstein (2001). Following them, we decompose the solution as

u = 1 + ε[ū0(x, ȳ, t̄ ) + û0(x, ȳ, y, z, t̄ )] + · · · ,

v = ε[v̄0(x, ȳ, t̄ ) + v̂0(x, ȳ, y, z, t̄ )] + · · · ,

w = εŵ0(x, ȳ, y, z, t̄ ) + · · · ,

p = − 1
2

+ εp̄0(x, ȳ, t̄ ) + ε2p̂1(x, ȳ, y, z, t̄ ) + · · · ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.7)

where t̄ = k1t = O(1). The terms ū0, v̄0 and p̄0 represent the displacement-induced
inviscid flow, and depend only on the slow streamwise and transverse variables x and
ȳ. This two-dimensional part is (taken to be) governed by the linearized unsteady
Euler equations

ū0x + v̄0ȳ = 0, ū0t̄ + ū0x = −p̄0x, v̄0t̄ + v̄0x = −p̄0ȳ , (2.8)

subject to the boundary condition

ū0, v̄0 → 0 as ȳ → ∞. (2.9)
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By matching εv̄0 with the spanwise averaged normal velocity in the boundary layer
given by (2.33), the other boundary condition may be derived as

v̄0 = (k1/ε)δ̄x (x, t̄ ) at ȳ = 0, (2.10)

where k1/ε = O(1) for the scaling adopted, and δ̄(x, t̄ ) denotes the spanwise averaged
displacement thickness, the precise definition of which will be given later when the
flow in region-II is considered (see (2.34)). Elimination of the pressure from (2.8)
shows that the vorticity ω̄0 ≡ (ū0ȳ − v̄0x) satisfies the equation (∂t̄ + ∂x)ω̄0 = 0, so that
ω̄0 = ω̄0(x − t̄). It can be inferred that ω̄0 ≡ 0 since ω̄0 → 0 as x → 0, implied by the
condition that both ū0 and v̄0 vanish upstream. The two-dimensional flow is therefore
irrotational with v̄0 and ū0 satisfying the Laplace equation. The relevant solution can
be obtained by using complex variable theory as (cf. Wundrow & Goldstein 2001)

ū0 = −Re[i(k1/ε)δ̄ξ̄ (ξ̄ , t̄)], v̄0 = Re[(k1/ε)δ̄ξ̄ (ξ̄ , t̄)], (2.11)

where δ̄(ξ̄ , t̄) is the analytic continuation of δ̄(x, t̄) to the complex plane ξ̄ = x+iȳ and
Re indicates the real part. From the momentum equations (or Bernoulli’s equation),
the pressure is found to be

p̄0 = Re[i(k1/ε)(δ̄ξ̄ (ξ̄ , t̄) + δ̄t̄ (ξ̄ , t̄))]. (2.12)

The result (2.11)–(2.12) generalizes (3.16) of Wundrow & Goldstein (2001) to the
unsteady case.

It is worth noting that the decomposition (2.7) and the specification of (ū0, v̄0, p̄0)
via (2.8)–(2.10) are based primarily on physical nature of this part of the flow. The
mathematical advantage of this decomposition is, as in the steady case (Wundrow &
Goldstein 2001), that it allows for the removal of the explicit dependence of the three-
dimensional part on the slow variable ȳ (see below). The procedure may alternatively
be viewed as a (purely) mathematical construction to achieve this purpose.

The governing equations for (û0, v̂0, ŵ0, p̂1), the three-dimensional part of the
unsteady motion, follow from substituting (2.7) into the Navier–Stokes equations.
Written in terms of the variable y, those equations involve v̄0. Similar to the case
of the steady perturbations (Wundrow & Goldstein 2001), the coupling with v̄0

(and the associated dependence on ȳ) can be removed by introducing the Prandtl
transformation

ŷ = y − Re[δ̂(ξ̄ , t̄)], (2.13)

for a suitably chosen δ̂. Inserting (2.7) into the Navier–Stokes equations, and making
use of (2.8) and (2.13), we obtain at leading order

v̂0y + ŵ0z = 0, (2.14)

LN

⎛⎝ û0

v̂0

ŵ0

⎞⎠ = (ε/k1)

⎛⎝ 0
−p̂1y

−p̂1z

⎞⎠ + σ∇2

⎛⎝ û0

v̂0

ŵ0

⎞⎠ , (2.15)

where we have put σ = 1/(k1RΛ), ∇2 is the Laplace operator in the y–z plane and the
nonlinear differential operator

LN = ∂t̄ + ∂x + (ε/k1)(v̂0∂ŷ + ŵ0∂z) + Re(−δ̂t̄ − δ̂ξ̄ + (ε/k1)v̄0). (2.16)

The dependence on v̄0 can be removed by choosing δ̂ to make the last three terms
vanish, leading to the equation

δ̂ξ̄ + δ̂t̄ = δ̄ξ̄ (ξ̄ , t̄) (2.17)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.41


Evolution and instability of nonlinear unsteady streaks 9

for δ̂ after (2.11) is used. The appropriate ‘boundary condition’ is

δ̂(0, t̄) = 0 for all t̄ > 0, (2.18)

which corresponds to a vanishingly small displacement near the leading edge. Since
the solution must be time periodic, the displacement thickness can be expressed as a
Fourier series

δ̄(x, t̄ ) =
∑

δ̄m(x) exp[im(x − t̄)], (2.19)

and the formal solution for δ̂ may accordingly be obtained as

δ̂ =
∑

δ̂m(ξ̄ ) exp[im(ξ̄ − t̄)] with δ̂m = δ̄m + im

∫ ξ̄

0

δ̄m(ξ̄ , t̄ ) dξ̄ . (2.20)

The momentum equations (2.15) indicate that the transverse velocities (v̂0, ŵ0)
are decoupled from the streamwise velocity û0. The leading-order forcing of the
free-stream disturbance on the boundary layer is exerted by (v̂0, ŵ0), to which the
boundary-layer solution must match. The streamwise velocity so generated within
the boundary layer is of O(1), while the direct forcing through û0 is of a higher
order effect. Matching û0 with the boundary-layer solution is necessary only when a
solution with a higher accuracy of O(R−1

Λ ) is sought (cf. Ricco 2009).

In view of the continuity equation (2.14), one may introduce the stream function ψ̂ ,
in terms of which the transverse momentum equations may be written as a transport
equation for the longitudinal vorticity ∇2ψ ,

[∂t̄ + ∂x + (ε/k1)(ψ̂z∂ŷ − ψ̂ŷ∂z)]∇2ψ̂ = σ∇4ψ̂, (2.21)

and the Poisson equation for the pressure

∇2p̂1 = −2
(
v̂0zŵ0ŷ + ŵ2

0z

)
= −2

(
ψ̂ŷŷ ψ̂zz + ψ̂2

ŷz

)
. (2.22)

It turns out that for a disturbance consisting of a pair of oblique modes, the
nonlinear terms in (2.21) vanish identically, and the equation can be solved to obtain

ψ̂ = 2c∞ sin(k3z) exp
[
−σ

(
k2

2 + k2
3

)
x + ik̄1(x − t̄) + ik2ŷ

]
+ c.c., (2.23)

where c∞ is an arbitrary constant. It follows that

(v̂0, ŵ0) = (2k3 cos(k3z), −2ik2 sin(k3z))c∞ exp
[
−σ

(
k2

2 + k2
3

)
x + i(x − t̄) + ik2ŷ

]
+ c.c.

(2.24)

We take c∞ = −1/k2 so that the normalized amplitude of the spanwise velocity in the
free stream is unity, which fixes ε. By inserting ψ̂ into (2.22), the solution for the
pressure is found as

p̂1 = 2k2
2 |c∞|2 cos(2k3z) exp

[
−2σ

(
k2

2 + k2
3

)
x
]

− 2k2
3c

2
∞ exp

[
−2σ

(
k2

2 + k2
3

)
x + 2i(x − t̄) + 2ik2ŷ

]
+ c.c. (2.25)

To aid the matching with the solution in the boundary layer, we expand e−ni(̄t−k2 δ̂)

(n= 0, 2) into Fourier series, i.e.

exp[−īt − ik2δ̂(x, t̄ )] =
∑

m

φm(x) exp[−imt̄ ],

exp[−2īt − 2ik2δ̂(x, t̄ )] =
∑

m

πm(x) exp[−imt̄ ].

⎫⎪⎪⎬⎪⎪⎭ (2.26)
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10 P. Ricco, J. Luo and X. Wu

Then rewriting (v̂0, ŵ0, p̂1) in terms of y by using (2.13), we find that for y = O(1)

(v̂0, ŵ0, p̂1) =
∑
m,n

(v†
m,n, w†

m,n, p†
m,n) exp[im(x − t̄) + ik3nz], (2.27)

where

v
†
m,±1 = k3c∞ exp

[
−σ

(
k2

2 + k2
3

)
x
][

φm exp[i(x + k2y)] + φ∗
−m exp[−i(x + k2y)]

]
,

w
†
m,±1 = ∓k2c∞ exp

[
−σ

(
k2

2 + k2
3

)
x
][

φm exp[i(x + k2y)] − φ∗
−m exp[−i(x + k2y)]

]
,

p
†
0,±2 = 2k2

2 |c∞|2 exp
[
−2σ

(
k2

2 + k2
3

)
x
]
,

p
†
m,0 = −2k2

3c
2
∞ exp

[
−2σ

(
k2

2 + k2
3

)
x
][

πm exp[2i(x + k2y)] + π∗
−m exp[−2i(x + k2y)]

]
;

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.28)

all other components v†
m,n = w†

m,n = 0 (n �= ±1), and p†
m,n = 0 (n �= 0, ±2). Note that

although the upstream disturbance is composed of only the temporal fundamental
component, due to the displacement effect harmonics arise in fluctuations at the outer
edge of the boundary layer as the disturbance evolves downstream.

2.2. The inner region: nonlinear unsteady streaks

In the boundary layer, which corresponds to x = O(1) and y = O(1), the flow can be
decomposed as a sum of the Blasius boundary layer and the perturbation induced by
the free-stream disturbance, namely

{u, v, w, p} =

{
F ′,

(
k1

2xRΛ

)1/2

(ηF ′ − F ), 0, −1

2

}
+ rt

{
u(x, η, z, t),

×
(

2xk1

RΛ

)1/2

v(x, η, z, t),
k1

k3

w(x, η, z, t),
k1

RΛ

p(x, η, z, t)

}
, (2.29)

where

η = y

(
k1RΛ

2x

)1/2

. (2.30)

The function F (η) satisfies the Blasius equation

F ′′′ + FF ′′ = 0, (2.31)

subject to the boundary conditions F (0) = 0, F ′(0) = 0 and F ′ → 1 as η → ∞. For
η � 1, the function F → η ≡ η − β , where β ≈ 1.2168.

Note that the normal and spanwise velocities of streaks are still of small amplitude,
but the streamwise velocity,

U (y, z; x, t̄) ≡ F ′ + rtu(x, η, z, t), (2.32)

is of O(1). The displacement effect, through which the viscous motion influences the
inviscid outer region, is associated with the so-called transpiration velocity, i.e. the
spanwise averaged velocity v at the outer edge of the boundary layer. Integrating
the continuity equation, ∂U/∂x + ∂v/∂y + ∂w/∂z = 0, first with respect to z over a
spanwise period 2π/k3 and then with respect to y from 0 to ∞, we find that

k3

2π

∫ 2π/k3

0

v(y, z; x, t̄) dz → k3

2π

∫ 2π/k3

0

∫ ∞

0

(−Ux) dy dz = k1δ̄x(x, t̄) as y → ∞, (2.33)
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Evolution and instability of nonlinear unsteady streaks 11

where δ̄(x, t̄ ) denotes the spanwise averaged displacement thickness, defined as

δ̄(x, t̄ ) =
k3

2π

∫ 2π/k3

0

∫ ∞

0

(1 − U (y, z, x, t̄)) dy dz. (2.34)

In the present nonlinear regime, the solution consists of all harmonics and can be
expressed as

(u, v, w, p) =

+∞∑
m,n=−∞

(ûm,n(x, η), v̂m,n(x, η), ŵm,n(x, η), p̂m,n(x, η)) exp[−imk1t + ink3z].

(2.35)

The reality of the physical quality requires

q̂−m,−n = (q̂m,n)cc, (2.36)

where q̂m,n stands for any of (ûm,n, v̂m,n, ŵm,n, p̂m,n), and the subscript cc indicates
the complex conjugate. The equations for the Fourier coefficients are obtained by
inserting (2.29) and (2.35) into the nonlinear boundary-region equations, which are
the rigorous asymptotic limit of the Navier–Stokes equations for k1 � k3. The resulting
equations are as follows.

The continuity equation:

∂ûm,n

∂x
− η

2x

∂ûm,n

∂η
+

∂v̂m,n

∂η
+ niŵm,n = 0. (2.37)

The x-momentum equation:

(
−im− ηF ′′

2x
+n2κ2

)
ûm,n+F ′ ∂ûm,n

∂x
− F

2x

∂ûm,n

∂η
− 1

2x

∂2ûm,n

∂η2
+F ′′v̂m,n = rt f̂ m,n. (2.38)

The y-momentum equation:

(
−im +

F ′

2x
+

ηF ′′

2x
+ n2κ2

)
v̂m,n +

1

4x2

(
F − ηF ′ − η2F ′′) ûm,n

+ F ′ ∂v̂m,n

∂x
− F

2x

∂v̂m,n

∂η
− 1

2x

∂2v̂m,n

∂η2
+

1

2x

∂p̂m,n

∂η
= rt ĝm,n. (2.39)

The z-momentum equation:

(−im + n2κ2)ŵm,n + F ′ ∂ŵm,n

∂x
− F

2x

∂ŵm,n

∂η
− 1

2x

∂2ŵm,n

∂η2
+ niκ2p̂m,n = rt ĥm,n, (2.40)

where

κ ≡ k3/(k1RΛ)1/2 = O(1), (2.41)
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12 P. Ricco, J. Luo and X. Wu

and the nonlinear terms f̂ m,n, ĝm,n and ĥm,n are given by

f̂ m,n =

[
−

̂∂(u u)

∂x
+

η

2x

̂∂(u u)

∂η
−

̂∂(u v)

∂η
− ni û w

]
m,n

,

ĝm,n =

[
− 1

2x
û v −

̂∂(u v)

∂x
+

η

2x

̂∂(u v)

∂η
−

̂∂(v v)

∂η
− ni v̂ w

]
m,n

,

ĥm,n =

[
−

̂∂(u w)

∂x
+

η

2x

̂∂(u w)

∂η
−

̂∂(v w)

∂η
− ni ŵ w

]
m,n

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.42)

with the ̂ symbol denoting Fourier transform.

2.3. Initial and outer boundary conditions

While the induced perturbation within the boundary layer acquires an O(1) streamwise
velocity when x = O(1), all three velocity components are of small amplitude near
the leading edge so that perturbation is essentially linear there. As is explained in
the appendix, the upstream conditions derived by LWG remain valid. These can be
expressed as

û1,±1 → q±(2x)(U0 + (2x)1/2U1), (2.43)

v̂1,±1 → q±

{
V0 + (2x)1/2V1 +

i

(κ2−i|κ |)(2x)1/2
(
exp

[
iκ2(2x)1/2η −

(
κ2 + κ2

2

)
x
]

− exp[−|κ |(2x)1/2η]
)

−
(

3

4
β − 1

2
g1|κ |(2x)1/2

)
exp[−|κ |(2x)1/2η] + η +

3

4
β

+ (2x)1/2

[
− i

2
(κ2 + i|κ |)(η2 + 1) +

3

4
β|κ |η +

1

2
|κ |g1

]}
, (2.44)

ŵ1,±1 → ∓iq±

{
W0 + (2x)1/2W1 +

1

κ2−i|κ |
(
κ2 exp

[
iκ2(2x)1/2η −

(
κ2 + κ2

2

)
x
]

− i|κ | exp[−|κ |(2x)1/2η]
)

− 3

4
β|κ |(2x)1/2 exp

[
−|κ |(2x)1/2η

]
− 1 − (2x)1/2

[
i(κ2 + i|κ |)η − 3

4
β|κ |

]}
, (2.45)

as x → 0, where

q± = ±(iκ2/k3)(û
∞
3,± ± iû∞

2,±), κ2 = k2/
√

k1RΛ, (2.46)

the constant g1 is given in (B 15) on page 200 in LWG, and Uk , Vk and Wk (k = 0, 1)
are found by solving the system (B 1)–(B 8) in LWG. The transversely decaying term
in (2.45)–(2.45), exp[−|κ |(2x)1/2η], represents the reflected disturbance by the wall.
The upstream conditions (2.43)–(2.45) prove to be adequate for starting calculations,
as our numerical results will show.

The solution within the boundary layer must match the outer solution (2.27). Thus,
for x = O(1), we require that

(ûm,n, v̂m,n, ŵm,n, p̂m,n) →
(
0, (2x/σ )− 1

2 v†
m,n, (k3σ )w†

m,n, (ε/k1)p
†
m,n

)
(2.47)

for n �= 0 as η → ∞, where (v†
m,n, w

†
m,n, p

†
m,n) on the right-hand side are given by (2.28).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.41


Evolution and instability of nonlinear unsteady streaks 13

The boundary-region equations (2.37)–(2.40), along with the upstream conditions
(2.43)–(2.45) and the outer boundary condition (2.47), and further supplemented by
(2.34), (2.20) and (2.32), describe the entrainment of free-stream disturbances and the
subsequent development of the induced streaks.

3. Numerical procedures
The boundary-region equations (2.37)–(2.40) are parabolic in the x-direction and

hence can be solved by a marching procedure in x. The equations are discretized
by a second-order finite-difference scheme which is backward in x and central in η.
The resulting block tri-diagonal system at each x is solved using a standard block-
elimination algorithm. The pressure component is computed on a grid staggered in
the η-direction with respect to the grid for the velocity field so as to avoid pressure
decoupling. No boundary condition for the pressure fluctuation is required at the
wall; its value is calculated a posteriori by solving the z-momentum equation at η = 0.
The equations for components with n= 0 require special attention as the pressure
p̂m,0 appears only in the y-momentum equation. The three velocity components are
thus computed by only solving the continuity, x- and z-momentum equations, and
no far-field condition is required. The wall-normal derivative of the pressure can be
obtained a posteriori from the y-momentum equation.

The outer boundary conditions (2.47) in the upstream limit x � 1 are consistent with
the initial conditions (2.43)–(2.45) when κ(2x)1/2η � 1; both represent the oncoming
disturbance since exp[−|κ |(2x)1/2η] (i.e. the reflected disturbance) is negligible. The
condition for overlapping (i.e. |κ |(2x)1/2η � 1) implies that η has to be large if the
Dirichlet outer boundary conditions (2.47) are employed for very small x. In order to
avoid this, the mixed boundary conditions (5.28)–(5.31) of LWG, which are consistent
with (2.47) but accommodate the transverse decay of the reflected disturbance, are
used to march the BREs for a short distance, typically to x = 0.04–0.07, over which
the perturbation is linear. Farther downstream, the boundary condition is switched
to (2.47). Careful numerical checks have been performed to ensure that the result
is independent of the location of the switching, and that the normal and spanwise
velocity components match smoothly to the values specified by (2.47).

The Hermitian property, (2.36), can be used to reduce the size of the matrix. Fourier
modes with negative indices m are evaluated by using (2.36) so that only half of the
Fourier modes need to be computed. The nonlinear terms are evaluated by using the
pseudo-spectral method, that is the velocities in spectral space are transformed back
to physical space in order to carry out multiplications. The products are subsequently
Fourier transformed back again to spectral space. A second-order predictor–corrector
scheme is employed for handling the nonlinear effect. In the predictor, the nonlinear
terms are treated explicitly: they are approximated by using the velocity field at
the three previous x locations. The resulting linear algebraic system is solved to
evaluate the velocity and pressure field. This predicted solution is used in a correction
step to recompute the nonlinear terms. The iteration is repeated until the difference
between the consecutive estimates is smaller than a specified tolerance. The aliasing
error is eliminated by following the so-called 3/2-rule, which prevents the spurious
energy cascade from the unresolved high-frequency modes into the resolved low-
frequency ones (Kim, Moin & Moser 1987). Such a de-aliasing procedure was found
to be essential for the stability of the numerical results when nonlinearity becomes
significant. Use of Nt = Nz = 17 Fourier modes is sufficient to capture the nonlinear
effect. Resolution checks show that truncated modes have an order-of-amplitude of
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14 P. Ricco, J. Luo and X. Wu

about 10−10, and thus do not significantly influence the flow dynamics. The magnitude
of the error remains constant throughout the downstream evolution of the flow. The
domain extends to η =30, and 1000 grid points are used in this direction.

4. Results for the nonlinear development of streaks
The parameters characterizing the free-stream disturbance are taken to be as

follows: û∞
1,2,± = 1.0, û∞

3,± = ∓ 1.0, which leads to k1 + k2 − 1 = 0. Unless otherwise
indicated, we take k1 = 0.005, RΛ = 400 (κ = 0.707) and ε = 0.01 (rt = 4), for which
the FST intensity, defined as the r.m.s. of the free-stream streamwise velocity,
is T u =2

√
2ε = 2.8 %. This case is chosen because it is representative of typical

low-speed wind-tunnel experiments, where, for example, U∞ = 5 m s−1, the spanwise
wavelength is λ∗

z ≈ 8 mm, energetic disturbances in the boundary layer are found to
be in the frequency band f ∗ < 10 Hz, and the FST intensity is T u =1–3 %; see
for example Westin et al. (1994), Matsubara & Alfredsson (2001) and Fransson,
Matsubara & Alfredsson (2005).

Due to the nonlinear effect, the streak signature consists of all harmonics. Its overall
intensity may be measured by the r.m.s., urms , defined as (see Pope 2000, p. 687)

urms ≡ rt

[∑
m,n

|ûm,n|2
]1/2

, m �= 0. (4.1)

Figure 2(a) shows the downstream development of umax , the maximum of urms at
each x defined as

umax ≡ max
η

urms, (4.2)

for three different values of ε. Sufficiently upstream, the streak signature is weak
so that the linear and nonlinear solutions overlap. Nonlinearity gradually asserts
its influence as the disturbance amplifies. Compared with the corresponding linear
solution, the nonlinear disturbance grows more slowly, attenuates appreciably earlier
and its peak amplitude is also reduced, indicating that nonlinearity plays a stabilizing
role. It may therefore be inferred that the amplitude of the streaks would be
significantly over-predicted by linearized theory. The stabilizing effect becomes more
pronounced as ε increases. For instance, the nonlinear responses for ε = 0.01 and
ε = 0.015 differ by just 20 % despite the 50 % difference in the amplitude of the free-
stream disturbance. Figure 2(b) indicates that the stabilizing effect is also enhanced for
smaller values of k1 up to k1 = 0.01. For k1 below 0.01, which are typical of disturbances
causing bypass transition, the evolution of umax is almost indistinguishable from each
other, suggesting that nonlinearity stabilizes uniformly all components with sufficiently
long wavelengths.

A stabilizing effect of nonlinearity was noted in previous studies in related but
different contexts. For example, Leib, Wundrow & Goldstein (1999b) found that
nonlinearity tends to inhibit the boundary-layer response to a steady perturbation in
the free stream. A similar effect has also been reported by Zuccher et al. (2006) in
their study of steady optimal perturbations in the Blasius boundary layer.

The nonlinear self-interaction of each fundamental mode generates a mean-flow
distortion as well as higher harmonics ûm,±m. Figure 3 shows the development of
maxη |rt ûm,n|, the maximum amplitude of these components. Near the leading edge,
all harmonics and the mean-flow distortion have much smaller amplitudes than that
of the fundamental, consistent with the linear nature of the disturbance in this region.
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Figure 2. Linear and nonlinear development of umax , the maximum r.m.s. of the streamwise
velocity of the streak. (a) umax versus x for a fixed k1 = 0.005, and different ε = 0.005 (solid lines),
0.01 (dashed lines), 0.015 (dash-dotted lines). The thin/thick curves denote the linear/nonlinear
solutions. (b) umax versus x at a fixed rt = 4 (RΛ = 400, ε = 0.01), and different k1 = 0.005 (thin
line), 0.01 and 0.05 (thick lines). The dashed/solid lines indicate linearized/nonlinear solutions.

The harmonics remain of smaller amplitude for x = O(1), but the mean-flow distortion
û00 acquires a magnitude appreciably greater than the fundamental. A strong mean-
flow distortion leads to formation of a ‘backward jet’, an issue to be discussed later.
Figure 4 displays the streamwise velocity profiles of the fundamental mode (1, 1),
the mean-flow distortion (0, 0), and the second and third harmonics (2, 2) and (3, 3),
at x = 0.3 and 0.7. The result is presented only for modes with n � 0 since modes
(m, n) and (m, −n) have the same amplitude for the free-stream disturbance of the
assumed form. The magnitude of the higher harmonics decreases so quickly that
the third harmonic (m = 3) makes an almost negligible contribution to the overall
disturbance energetics. The mean-flow distortion undergoes considerable amplification
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Figure 3. Development of the fundamental mode max |rt û11|, and nonlinearly generated
harmonic components max|rt ûm,n|. The parameters are k1 = 0.005, RΛ = 400 and ε = 0.01.

0 1 2 3 4 5 6 7

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14(a)

r t
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û m

,m
|

0 1 2 3 4 5 6 7

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14(b)

η η

Figure 4. Profiles of the streamwise velocities of the mean-flow distortion and harmonics um,m

(m= 1, 2, 3) at x = 0.3 (a) and x = 0.7 (b). The dashed line: rt û0,0; solid line: rt |û1,1| (thin:
linear solution, thick: nonlinear solution); dash-dotted line: rt |û2,2| and dotted line: rt |û3,3|.

as it evolves downstream, while the magnitudes of the harmonics vary very little in
this range of x. Note that the linear (thin solid line) and the nonlinear (thick solid
line) profiles of rt |û1,1| overlap for η < 0.5, suggesting that viscous effects dominate
over the Reynolds stress in this near-wall region. The peak of the disturbance is
located closer to the wall in the nonlinear case than in the linear case. Nonlinearity
attenuates the disturbance in the core but enhances fluctuations in the outer portion
(η > 3) of the boundary layer.

The mutual interaction between (1, 1) and (1, −1) generates additional harmonic
components (2, 0) and (0, 2). Their profiles, displayed in figure 5 as thick and thin
solid lines respectively, have comparable amplitudes. The (0, 2) mode features a peak
in the core of the boundary layer at η ≈ 2, while the (2,0) mode has two peaks at
η ≈ 1 and 3.5. The mean-flow distortion (0, 0) has a magnitude about four times larger
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Figure 5. Profiles of the streamwise velocities of the harmonics um,n (m �= n) at x = 0.3 (a) and
x =0.7 (b). The thin solid line: rt |û0,2|; thick solid line: rt |û2,0|; thin dashed line: rt |û1,3|, thick
dashed line: rt |û3,1|.

than that of the harmonics (2, 0) and (2, 2), but the spanwise-dependent mean-flow
component (0, 2) (i.e. steady streak) does not acquire an even larger amplitude as
one might anticipate on the basis of wave–wave interactions (cf. Goldstein & Choi
1989; Wu, Lee & Cowley 1993; Hall & Smith 1991). This is because the streamwise
wavelength of the fundamental modes (1, ±1) is long enough to be comparable with
the length scale over which their amplitude evolves, which means that the harmonics
and steady streaks are hardly distinguishable in the sense that they all have the same
streamwise length scale. As a result, they have comparable magnitudes.

The components generated at third order, û3,1 and û1,3, are displayed by dashed
lines in figure 5; the amplitude of û3,1 is larger than that of û1,3. Similarly to û2,0, the
profile of û3,1 also exhibits two peaks, but the respective peak positions are located
farther from the wall, at η ≈ 2 and 4 respectively.

We now examine the steady streaks ustr , i.e. the steady spanwise modulation
of the streamwise velocity generated by nonlinear interactions. Mathematically, it
corresponds to the sum of Fourier components (0, ±n), i.e.

ustr ≡ rt

∑
n

û0,n exp[ink3z]. (4.3)

Steady streaks are superimposed onto the Blasius boundary layer to give the total
steady streamwise velocity

UM (x, η, z) = F ′(η) + ustr (x, η, z). (4.4)

Theoretical results concerning steady streaks are worth documenting because UM

(and ustr ) can readily be acquired in the laboratory by taking the time average of
pointwise measurements (and subtracting out the Blasius profile).

We first consider ustr at η = 1.64, which roughly corresponds to the location of the
maximum. The spanwise distributions of ustr at different x are shown in figure 6.
Steady streaks exhibit a pattern of spanwise alternating ‘valleys’ and ‘peaks’, which
remain aligned in the streamwise direction. Their intensity increases as the flow evolves
downstream. The steepening spanwise gradient is caused by the accumulated effect
of the low-speed fluid near the wall being lifted up, while the high-speed fluid in the
outer portion is brought down towards the wall. Figure 7 shows the contours of ustr
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Figure 6. Amplitude and spanwise distribution of steady streaks ustr (see (4.3)) at η =1.64
at different x.
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Figure 7. Contour of steady streamwise velocity streaks in the η–z plane at x = 0.3 (a), 0.7
(b), 1.0 (c) and 1.2 (d ).
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Figure 8. Profiles of rt û0,0 at different x.

in the y–z plane at different streamwise locations. The outer region of the boundary
layer (i.e. η ≈ 3) features a lower velocity with respect to the Blasius value, while the
opposite occurs near the wall. The outer low-velocity region becomes thinner in the
η-direction, an indication of an increasing normal gradient.

The time- and z-averaged streamwise velocity,

UM = UM (x, η) = F ′(η) + rt û0,0(x, η), (4.5)

is now studied. Figure 8 shows the profiles of the mean-flow distortion rt û0,0 at
different x. The amplitude of rt û0,0 grows downstream. The induced mean velocity
is positive near the wall and negative in the outer region, indicating respectively
an increase of the mean wall-shear stress with respect to the Blasius value and a
‘backward jet’ forming at the edge of the boundary layer (Jacobs & Durbin 2001).
Interestingly, the profile at different x crosses zero almost always at η ≈ 2.

An attempt is now made to compare the theoretical predictions with the wind-
tunnel experimental data of Matsubara & Alfredsson (2001) for the case of U∞ =
12 m s−1, T u =1.5 %. In these experiments, the boundary layer is perturbed by a
continuous spectrum of turbulent disturbances, while in our formulation the free-
stream disturbance is synthesized by a pair of convected gusts. A precise quantitative
comparison is not possible at this stage, but the theory may be expected to capture
salient qualitative features if the wavelengths and frequency of the free-stream
disturbance are chosen to correspond to those of the dominant component in the
FST in the experiments. The characteristic spanwise wavelength can be estimated
as the minimum of the autocorrelation function Ruu of the streamwise velocity
perturbation along z. From figure 7 of Matsubara & Alfredsson (2001), one finds that
λ∗

z = 0.008 m, a value also consistent with flow visualization images. The representative
frequency, f ∗ =5 Hz, can be extracted from their figure 9(b), where spectra of
disturbances are shown. The gust intensity can be found through the value of T u,
i.e. ε = 0.01T u/(2

√
2) = 0.0053. Table 1 presents the estimated parameters pertinent to

the experiments of Matsubara & Alfredsson (2001). The fact that the scaled spanwise
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λ∗
x (m) λ∗

z (m) f (Hz) k1 κ RΛ rt

2.4 0.008 5 0.0033 0.555 974.4 5.17

Table 1. Estimated flow parameters pertinent to the experimental data shown in figure 2 of
Matsubara & Alfredsson (2001).
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Figure 9. (a) Profiles of rt û0,0 rescaled by the maximum along y∗/δ∗ and comparison with
the experimental data of Matsubara & Alfredsson (2001) at x∗ = 0.7 m (filled circles), 0.8 m
(squares), 0.9 m (triangle) and 1 m (open circles). (b) Profiles of the mean streamwise velocity
UM at different x (thin lines) and of the Blasius profile (thick line).

wavenumber κ =O(1) and that λ∗
z is comparable with the boundary-layer thickness

highlights the importance of accounting for the spanwise viscous diffusivity, while the
disturbance Reynolds number rt = O(1) confirms the relevance of nonlinear effects. It
is also found that λ∗

x � λ∗
z , as required by the asymptotic formulation.

Computations were performed using the parameters given in table 1. The predicted
profiles of the mean-flow distortion rt û0,0(y

∗/δ∗) at four different streamwise locations
are shown in the graph of figure 9(a), where δ∗ is the displacement thickness. The
normalized profiles match the wind-tunnel data (symbols) quite well, in particular
for y∗/δ∗ < 2. The shape of the profile in this range of y∗/δ∗ is independent of the
streamwise location. An appreciable but rather small change of shape is noted for
y∗/δ∗ > 2. The minimum is over predicted, but its wall-normal location (y∗/δ∗ ≈ 3) is
captured accurately, and the slight decrease of the minimum with x∗ is consistent with
the experimental data. The discrepancies in the outer portion of the boundary layer
may be attributed to the simplified representation of the free-stream disturbance.
Better agreement may be expected if the latter is modelled more realistically, e.g.
by a stochastic Fourier series having the same spectral property of the FST in
experiments.

The predicted profiles of the mean flow UM at different x are displayed in the graph
of figure 9(b). The profiles at x∗ =0.7, 0.8, 0.9 and 1 m (x = 1.83, 2.09, 2.36 and 2.62,
respectively – thin lines) collapse well over the whole boundary layer, suggesting that
nonlinear effects have saturated at these sufficiently far downstream locations. The
increase of the wall-shear stress over the Blasius solution (the thick line) agrees with
the experimental observation.
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Figure 10. Profiles of urms , the r.m.s. of the streamwise velocity. (a) Predicted profiles at x =
0.1, 0.2, 0.3, 0.4, 0.6 and 0.7. (b) Measurement of figure 2(c) of Matsubara & Alfredsson (2001).

Figure 10(a) shows how the profile of urms of the disturbance evolves downstream.
Near the leading edge, the boundary-layer disturbance is of small amplitude so that
its profile agrees with the theoretical linear solution (LWG), ηF ′′, the shape of which
resembles the eigensolution of Luchini (1996). In the downstream region where the
nonlinear effects become relevant, the fundamental mode in the main bulk of the
boundary layer grows at a slower rate, while the disturbance in the outer region
becomes more energetic. The peak position moves towards the wall. Both trends are
in good qualitative agreement with the experimentally measured urms profiles, shown
in figure 2(c) of Matsubara & Alfredsson (2001). The latter is reproduced in the graph
shown in figure 10(b); the profiles at the last three locations should be ignored as
the flow has entered the fully turbulent regime, in which urms is caused by small-scale
fluctuations rather than by streaks.

The instantaneous streamwise velocity profiles at x = 0.7 and z = 0 in different
phases

φ ≡ k1t (4.6)

are shown in figure 11. The boundary-layer response in the near-wall region is
characterized by forward and backward fluctuations, but with the former being
prevalent. At the outer edge of the boundary layer (2.7 <η < 5), perturbations are
persistently in the negative streamwise direction, forming a region of velocity deficit
or a ‘backward jet’. These results agree with previous findings by DNS (Jacobs &
Durbin 2001).

The instantaneous streamwise velocity profile is found to become inflectional in
the normal direction during certain phases or time windows of the oscillations as is
shown in figure 11, where the inflection points ηs satisfying the Fjørtoft’s criterion,
(Drazin & Reid 2004)

U ′′(ηs) = 0 and U ′′[U − U (ηs)] < 0, (4.7)

are marked. In flows which are steady and spanwise-uniform, the presence of
such points is a necessary condition for inviscid instability. The base flow of the
present study, i.e. the boundary layer perturbed by streaks, is unsteady and spanwise
dependent. Nevertheless, appearance of inflection points may be taken as a precursor
of inviscid secondary instability on the basis of the following observations. Firstly,
the base flow may be treated as being quasi-steady because the characteristic time
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Figure 11. Profiles of the instantaneous streamwise velocity U (η, z; x, t̄) (see (2.32)) at z = 0
and x = 1.2 in different phases. Inflection points are marked by �.

scale of inviscid modes is much shorter than that of underlying streaks. Secondly,
a connection between an inflectional profile and inviscid instability was suggested
by stability calculations of steady spanwise-dependent flows (Malik et al. 1999).
Furthermore, it has been shown mathematically that an inflectional profile in the
region where δ∗ � Λ indeed becomes inviscidly unstable (Wu & Choudhari 2003;
Wu & Luo 2003).

Figure 12 shows contours of the instantaneous streamwise velocity at x =0.7 and
1.2. In each case, three phases of time modulation are chosen. The flow field exhibits a
mushroom-like shape, which is associated with the near-wall low-speed fluid moving
towards the outer portion of the boundary layer, while at the location of half a
spanwise wavelength away, the high-speed fluid in the outer part is brought down
towards the wall. This spanwise alternating pattern is also observed in boundary
layers perturbed by steady free-stream disturbances (Wundrow & Goldstein 2001),
but the spanwise concentration of vorticity in the present unsteady case is much less
pronounced. This is probably because the up- and down-wash motions leading to
concentration reverse their directions during a cycle of modulation.

5. Streak instability
The nonlinear calculations predict a distorted velocity profile U (y, z; x, t̄ ), which

may in certain phases possess inflection points in the streamwise and spanwise
directions, and hence may become inviscidly unstable. Since U varies with x and t̄

slowly, the dependence on these two variables can be treated as being parametric when
the short-wavelength (of order δ∗) and the high-frequency (of order U∞/δ∗) instability
is considered. For the secondary instability mode, the perturbation, pressure p̃ say,
takes the form

p̃ = p̂(y, z; x, t̄)ei(αx−ωt). (5.1)

Owing to the dependence of the base flow on both y and z, p̂ is governed by a partial
differential equation (Hall & Horseman 1991)[

(U − ω/α)
(
∂2

y + ∂2
z − α2

)
− 2Uy∂y − 2Uz∂z

]
p̂ = 0. (5.2)
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Figure 12. Contour of the instantaneous streamwise velocity in the η–z plane. Plots (a, c, e)
are for x = 0.7 at phases φ = 25π/16 (a), 30π/16 (c) and 31π/16 (e). Plots (b, d, f ), are for
x =1.2 at phases φ = 13π/16 (b), π (d ) and 5π/4 (f ).

This equation together with appropriate boundary conditions leads to a bi-global
instability problem (Theofilis 2003).

Since U has been obtained as a function of η, we rewrite (5.2) in terms of η. For
spanwise-periodic streaks,

U (η, z; x, t̄) = U (η, z + 2π/k3; x, t̄) ≡
∑

m

Ūm(η; x, t̄) exp[imk3z], (5.3)
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Floquet theory can be used to express p̂ as

p̂(y, z; x, t̄) = exp[iqk3z]
∑

n

p̂n(η; x, t̄) exp[ink3z], (5.4)

where 0 � q � 1/2 with q =0 and q = 1/2 representing the fundamental and
subharmonic resonance respectively. Substitution into (5.2) yields a system of ordinary
differential equations of infinite dimensions for p̂n,∑

m

{Ūn−mp̂ ′′
m − 2Ū ′

n−mp̂′
m −

[
(m + q)2k̂2

3 + α̂2 + 2(n − m)(m + q)k̂2
3

]
Ūn−mp̂m}

= (ω̂/α̂)
[
p̂′′

n −
(
(m + q)2k̂2

3 + α̂2
)
p̂n

]
, (5.5)

where the prime denotes differentiation with respect to η, and

(α̂, k̂3, ω̂) = (α, k3, ω) [2x/(k1RΛ)]1/2 . (5.6)

The no-penetration condition and the requirement that the mode decays at the infinity
impose the boundary conditions,

p̂n, η(0) = 0, p̂n → 0 as η → ∞, (5.7)

on (5.5). The infinite system (5.5)–(5.7) is to be truncated and discretized using an
appropriate discretization scheme.

Temporal instability of steady spanwise-periodic streaks has been studied previously
(Andersson et al. 2001). The present investigation differs from the earlier work in
that streaks are induced by physically realizable free-stream disturbance rather than
represented by an optimal disturbance. This difference is crucial because only by
considering FST-induced streaks can the effect of FST on instability and transition
be quantified. Another distinction is that in addition to temporal instability, spatial
instability, which is potentially more relevant, will be considered.

The infinite domain for η is mapped to the finite interval [−1, 1], and p̂m is expanded
as a series,

p̂m =
∑

amnTn(ζ ), (5.8)

of Chebyshev polynomials Tn, where ζ denotes the new variable after the mapping.
Projection of (5.5) at the collocation points leads to an algebraic system of the form
A(α)a =(ω̂/α̂)Ba, where A and B are matrices. This generalized eigenvalue problem is
solved by an approach involving two steps. For the temporal instability formulation,
in which α̂ is real and c = ω̂/α̂ = cr + ici is complex, the eigenvalue problem is linear
and the QZ method is used to compute all the eigenvalues for a given α̂. The focus is
on the eigenvalue c with the largest imaginary part ci (i.e. the most unstable mode),
while the remaining ones are discarded because their imaginary parts are at least one
order of magnitude smaller. The value of c given by the QZ method is taken as a first
approximation and is further refined in the second step, which consists of a Gaussian
elimination procedure and the Muller iteration to force the determinant |A − cB| =0.
The QZ approximation is used as the first guess to initiate the iteration. When the
convergence is achieved, the corresponding eigenfunction is computed.

For the spatial instability formulation, the eigenvalue problem is nonlinear since
the complex wavenumber α̂ has to be found for a given real frequency ω̂. The QZ
method is not directly applicable even though the Muller method may be implemented
provided that a good initial guess for α̂ can be specified. A ‘parametric continuation’
procedure is adopted. The temporal instability is extended to allow for a complex
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α̂ = α̂r + iα̂i and is solved using the Muller method to find ω̂ = ω̂r + iω̂i . Then α̂r is
fixed but −α̂i is gradually increased from zero until ω̂i = 0, by which stage a temporal
mode is continued into a spatial mode.

Stability calculations of nonlinear streaks were performed for the case RΛ = 400,
k1 = 0.005 and ε = 0.01. Eight Fourier terms and 256 Chebyshev polynomials were
used. Doubling Fourier terms to 16 in the Muller method yields no appreciable
difference. Results will be presented for the fundamental modes (q = 0) since they
are found to be more unstable than the subharmonic (q = 1/2) or detuned modes
(0 < q < 1/2).

Figure 13 shows the instability characteristics at x = 0.7, where streaks reach their
maximum amplitude and the spanwise wavelength of streaks is found to be about
6δ∗. Calculations of the growth rate at different instants indicate that, within each
cycle of streak oscillation, instability occurs in two time windows, π/2 < φ < π and
3π/2 < φ < 2π. Each instability episode lasts about a quarter of the cycle. The temporal
growth rates corresponding to the three instants, φ = 25π/16, 15π/8, 31π/16, are
shown in figure 13(a). The band of unstable modes has wavenumbers α̂ < 1.2 with
the largest growth rate being attained for α̂ ≈ 0.5, or α ≈ 0.6, suggesting that the most
unstable mode has a streamwise wavelength about 1.7 times larger than the spanwise
wavelength of streaks. The phase speed and group velocity are shown in figure 13(b).
The phase speed appears to be only weakly dependent on the frequency and remains
in the range of 0.75–0.82U∞. The group velocity is close to the phase speed with the
maximum difference being about just 10 %. The predicted phase and group velocities
are in agreement with the value (c ≈ 0.8) estimated from experimental observations
(Mans et al. 2007). The propagation speed does not appear to be sensitive to the
profile and amplitude of streaks. Similar values were obtained from numerical studies
of impulse propagation in a boundary perturbed by an optimal disturbance (Brandt
et al. 2003; Schlatter et al. 2008).

The spatial growth rates of unstable modes, calculated by solving the spatial
eigenvalue problem as described above, are displayed in figure 13(c). Spatial growth
rates may alternatively be obtained using Gaster transformation (Gaster 1962),

α̂i = −ω̂i/cg. (5.9)

The result is compared with the directly computed −αi . There is hardly any difference
to graphic precision, which is rather surprising because the relation (5.9) is expected
to hold only when ω̂i is very small.

Figure 14 displays the (normalized) eigenfunctions |p̂m| (m =1, 2, 3, 4, 5) of the
most unstable modes in the phases φ = 25π/16, 15π/8. An interesting feature is that
the first harmonic p̂1 always has a much larger amplitude than that of the other
components. At each instant, the most unstable temporal and spatial modes resume
the identical shape.

An investigation of the stability of streaks is also carried out at a location further
downstream, i.e. at x =1.2. The results are shown in figures 15 and 16. The overall
characteristics are similar to those at x = 0.7. At x = 1.2, the amplitude of streaks is
somewhat smaller than that at x = 0.7 (see figure 2a), and yet the band of unstable
modes appears broader and their growth rates are larger, i.e. streaks are more unstable
despite having a smaller amplitude. This suggests that the magnitude of streaks is not
the only relevant parameter determining the instability; their spatial structure is also
important. Again, the spatial growth rates obtained by using (5.9) are remarkably
accurate. Only in the most unstable phase (curve 3 in figure 15) can one detect a very
small (but negligible) difference from the directly calculated −α̂i .
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Figure 13. Streak instability characteristics at x = 0.7. (a) Temporal growth rate ω̂i = α̂ci

versus α̂; (b) the phase speed cr (solid lines) and group velocity cg (dashed lines) versus α̂; (c)
spatial grow rate −α̂i versus ω̂ with symbols representing the result obtained by using (5.9). The
curves (1), (2) and (3) correspond to the phases φ = 25π/16, 15π/8 and 31π/16, respectively.
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Figure 14. Eigenfunctions of the most unstable modes at x = 0.7: (a) φ = 25π/16, temporal
mode α̂ = 0.375; (b) φ = 25π/16, spatial mode ω̂ = 0.29; (c) φ =15π/8, temporal mode α̂ = 0.5;
(d ) φ = 15π/8, spatial mode ω̂ =0.42. The solid lines with symbols represent |p̂| ≡

∑
|p̂m|.

The streamwise velocity û of the instability mode is related to the pressure p̂ via
the relation

û(y, z) = −(p̂yy + p̂zz + α2p̂)/(2α2(Ū − c)). (5.10)

Contours of û(y, z) are shown in figure 17, in which contours of the instantaneous
streamwise velocity of streaks are included. The mode resides in the outer portion of
the boundary layer and on the ‘shoulders’ of streaks. This feature is broadly similar
to that exhibited by sinuous modes supported by a steady optimal disturbance
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Figure 15. Streak instability characteristics at x = 1.2. (a) Temporal growth rate ω̂i = α̂ci

versus α; (b) the phase speed cr (solid lines) and group velocity cg (dashed lines) versus α̂; (c)
spatial grow rate −α̂i versus ω̂ with symbols representing the result obtained by using (5.9).
The curves (1), (2) and (3) correspond to the phases φ = 13π/16, π and 5π/4, respectively.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.41


Evolution and instability of nonlinear unsteady streaks 29

1

2

3

4

1

2

34

5

0.2 0.4 0.6 0.8 1.0 1.20

1

2

3

4

5

6

7

8

9

10

η

(a)

1

2

34

5

0.2 0.4 0.6 0.8 1.0 1.20

1

2

3

4

5

6

7

8

9

10(c)

0.2 0.4 0.6 0.8 1.0 1.20

1

2

3

4

5

6

7

8

9

10(d)

1

2

3
4

0.2 0.4 0.6 0.8 1.0 1.20

1

2

3

4

5

6

7

8

9

10

η

(b)

|pm| and |p||pm| and |p|

Figure 16. Eigenfunctions of the most unstable modes at x = 1.2: (a) φ = 13π/16, temporal
mode α̂ = 0.48; (b) φ = 13π/16, spatial mode ω̂ = 0.37; (c) φ = 5π/4, temporal mode α̂ =0.56;
(d ) φ = 5π/4, spatial mode ω̂ = 0.45. The solid lines with symbols represent |p̂| ≡

∑
|p̂m|.

(Andersson et al. 2001). It is worth noting that û mostly concentrates in the vicinity
of the critical level ηc(z) where Ū (ηc, z) = cr .

In order to aid the comparison with previous results and experiments, we convert the
characteristics of the most unstable modes at x = 0.7 and 1.2 to quantities normalized
in the same way as in most of the experimental literature, and the streamwise location
to the Reynolds number,

Rδ∗ = U∞δ∗/ν = 1.2168(2xRΛ/k1)
1/2, (5.11)

based on the local displacement thickness δ∗. The result is displayed in table 2. The
position x = 0.7 corresponds to Rδ∗ = 407, which is smaller than the critical Reynolds
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Rδ∗ F α†
r (λ∗

s ) cr cg −α
†
i �t∗U∞/δ∗

Theory (x = 0.7) 407 1243 0.63 (10δ∗) 0.79 0.75 0.049 270
Theory (x = 1.2) 533 1186 0.80 (7.7δ∗) 0.77 0.72 0.074 240
Experiment 588–715 (16δ∗) 0.8 0.01 (50)

Table 2. Instability characteristics of the most unstable modes and comparison with the
experimental data of Mans et al. (2007).
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Figure 17. Contours of the eigenfunction for the streamwise velocity û. (a, c) x = 0.7 and
φ = 25π/16, 15π/8, respectively. (b, d) x = 1.2 and φ = 13π/16, π, respectively. The light dashed
lines are contours of the instantaneous velocity of the base flow U (η, z; x, t), and the thick
dashed lines represent the critical level ηc , at which U (ηc, z) = cr .

number Rδ∗ ≈ 520 for the T-S instability (Jordinson 1970). The streak instability
considered here takes place in the region where T-S waves are all damped, and it is
therefore likely to be the inherent mechanism of bypass transition. The frequency of
the most unstable mode, measured by

F ≡
(
2πf ∗ν/U 2

∞
)

× 106 = (ω/RΛ) × 106, (5.12)

is F ≈ 1186, where f ∗ is the dimensional frequency in Hertz. In contrast, unstable
T-S waves are in the frequency band F < 400, and those which cause transition are
actually of much lower frequency with F ≈ 102 because T-S modes with F > 200 soon
reach the upper branch and decay (Fasel & Konzelman 1990; Kachanov 1994). The α†
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in the table is the wavenumber normalized by δ∗, and it is related to α̂ by α† =βα̂. The
most unstable mode has α†

r ≈ 0.63, which gives a streamwise wavelength λ∗
s ≈ 10δ∗.

The predicted growth rate of −α̂i ≈ 0.04 for the most unstable mode corresponds
to −α

†
i ≈ 0.049, which is one order of magnitude greater than that of T-S waves;

the latter is about O(10−3) in the major unstable zone (Jordinson 1970; Fasel &
Konzelman 1990). The location x = 1.2 corresponds to Rδ∗ ≈ 533, which is just about
in the unstable region of T-S waves. The most unstable inviscid mode has more or less
the same character as that at x = 0.7, except that its growth rate is considerably larger.

As a comparison, the experimental data of Mans et al. (2007) are also shown
in table 2. Using the combined PIV-visualization technique in a water channel,
Mans et al. (2007) detected sinuous wavy motions of streaks in the region covering
1.17 × 105 <Rex < 1.73 × 105, or 588 <Rδ∗ < 715, where Rex is the Reynolds number
based on the distance to the leading edge. Although two-dimensional T-S modes are
unstable in this range of the Reynolds number, highly three-dimensional ones are
damped, and therefore the possibility of the observed wavy motions being oblique T-S
waves can be ruled out. Mans et al. (2007) reported a propagation velocity of 0.8U∞,
which is in close agreement with our prediction. The wavelength was estimated to be
about 40 δ∗

300 (and δ∗
300 = 2.4 mm for U∞ =0.125 m s−1), which corresponds, according

to Schlatter et al. (2008), to 9–16δ∗, but our estimate gives 16–20δ∗ depending on
the location of observation. The value of 16δ∗ in table 2 is probably closer to the
lower end, but is still about twice as large as the typical value suggested by the
theory. The spatial growth rate (−α

†
i ) is the quantity that is most difficult to measure.

Nevertheless, Mans et al. (2007) were able to extract an average value of 0.01, which
is smaller than the theoretical estimate. This level of discrepancy is not surprising
because the characteristics of free-stream disturbances, on which both the wavelength
and growth rate depend, must be rather different. On the other hand, the scattering
in the raw data is so large that the experimental values should probably be viewed
as merely an indication of the orders of magnitude. The present theory uses a rather
simplistic representation of FST, but appears to predict the right orders of magnitude.

Our calculations indicate that streak instability occurs within about a quarter of
cycle, i.e. �φ ≈ π/2. The corresponding time window �t∗, normalized by δ∗/U∞, is
270 at x =0.7 and 240 at x = 1.2. Such an intermittent nature of the instability was
suggested by the experimental observation of Mans et al. (2007), where the time lapse
from the onset of sinuous oscillations to the breakdown into small-scale motions
was found to be about 50. That this duration is a fraction of the time window for
instability seems reasonable because unstable modes must first undergo amplification
before becoming observable, and must have acquired sufficiently large magnitude to
cause transition before the unstable phase ends.

A full validation of the theoretical prediction requires careful experiments in which
the free-stream vortical disturbances are introduced in a controlled and repeatable
manner. Controlled two-dimensional gusts were successfully generated in the study
of boundary-layer receptivity (Dietz 1999). It would be interesting to use a similar
technique to generate a pair of oblique gusts as assumed in the theory. We hope that
the present work would spur such an experiment, in which case the results shown in
table 2 and in figures 13 and 15 might provide a useful guide.

6. Summary and conclusions
As a crucial step towards understanding and predicting bypass transition, we

investigated the influence of unsteady free-stream disturbance, modelled by convected
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gusts, on the Blasius boundary layer. Attention is focused on long-wavelength
components, which are known to penetrate into the boundary layer to generate
streamwise elongated streaks. For sufficiently weak disturbances, an initial-boundary-
value problem, consisting of the linearised BREs and appropriate upstream and far-
field boundary conditions, has been formulated by LWG to describe the entrainment
of the disturbance and the evolution of streaks. That formulation has in the present
study been generalized to the case where the free-stream disturbance is strong enough
to generate streaks with O(1) streamwise velocity thereby fundamentally altering the
stability characteristics of the flow. In the region where the local boundary-layer
thickness becomes comparable with the spanwise wavelength scale, the streaks are
governed by the nonlinear BREs. The disturbance in the far field becomes nonlinear
too and is simultaneously influenced by the displacement effect produced by the
viscous motion in the boundary layer.

The resulting nonlinear initial-boundary-value problem is solved numerically for
the special case where the convected gust consists of a pair of oblique modes with
the same frequency but opposite spanwise wavenumbers. Nonlinearity is found to
have a stabilizing effect in that it inhibits the amplification of streaks, and causes
the fluctuation to attenuate earlier. Nonlinear interactions within the boundary layer
generate fluctuations at harmonic frequencies as well as an appreciable mean-flow
distortion. The profile of the latter exhibits a velocity deficit at the edge of the
boundary layer so that the distorted mean flow features a ‘backward jet’ as was
observed in DNS (Jacobs & Durbin 2001). The profiles of the mean-flow distortion and
the r.m.s of the fluctuation are in reasonably good agreement with the experimental
measurements of Matsubara & Alfredsson (2001).

During each cycle, there exist time windows in which the instantaneous velocity
profile becomes inflectional in the wall-normal direction, suggesting that the streaky
boundary layer may be inviscidly unstable. This is confirmed by both temporal and
spatial secondary instability analyses. Calculations for a disturbance level T u =2.8 %
indicate that intermittent but robust instability occurs in two time windows, each
lasting about one quarter of the cycle. The dominant modes are of sinuous type
and have the same spanwise wavelength as that of streaks. Their characteristic
wavelength, growth rate, phase and group velocities are comparable with available
experimental data. It may be pointed out that this is the first stability calculation of
nonlinear unsteady streaks induced by a realizable (though still idealized) free-stream
disturbance. It is also the first time that spatial growth rates of secondary instability
have been calculated directly by solving the nonlinear eigenvalue problem. Our result
indicates that the Gaster transformation, frequently used to convert temporal growth
rates to spatial ones, is remarkably accurate.

In the present work, streaks are assumed to be spanwise periodic so that the
secondary instability was formulated by using Floquet theory. Experiments indicate
that streak breakdown occurs sporadically in space, suggesting that local instability of
isolated streaks operates. This instability was found to arise in the region where δ∗ � Λ

(Wu & Choudhari 2003; Wu & Luo 2003). It would be interesting to investigate further
the instability of nonlinear localized streaks in the generic case where δ∗ = O(Λ).

The present work focused on the relatively high level of FST for which robust
inviscid instability occurs upstream of the lower branch of the much weaker viscous
T-S instability. FST of moderate level is incapable of causing inviscid instability, but
may significantly alter the growth rates of T-S modes. The asymptotic analysis in the
limit δ∗ � Λ shows that streaks enhance the amplification of upper-branch T-S waves,
and convert them into long-wavelength inviscidly unstable modes as the FST intensity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.41


Evolution and instability of nonlinear unsteady streaks 33

increases (Wu & Choudhari 2003). However, as mentioned in the introduction, the
effect of streaks and the associated mean-flow distortion on the T-S instability across
its entire spectrum (including the lower-branch regime) remains controversial. Further
insights may be gained by including viscosity in the stability formulation and solving
the resultant eigenvalue problem.

Finally, it should be emphasised that the present formulation can be extended to
account for a continuum of low-frequency components in FST, which are relevant
disturbances causing bypass transition. The entire process of initiation and develop-
ment of streaks can be described appropriately by BREs. Unlike DNS, BREs can be
solved efficiently thereby making extensive parametric study possible. Because of these
features, the present theoretical framework may form a basis for developing an efficient
and physics-based method to correlate the variation of transition location with T u and
to predict the critical threshold turbulence level delineating bypass and T-S transition.
For instance, a systematical secondary-instability analysis may be performed to
establish a quantitative relationship between the onset location xs of the instability
and T u, i.e. xs = xs(T u). The critical threshold T uc may be estimated as the value of
T u for which xs coincides with the critical Reynolds number for the T-S instability.
Since streak instability leads to rapid amplification, its onset location xs may be taken
as a first approximation for the bypass transition point. An improved correlation
could be made based on the accumulated amplification of the streak instability.

This work is supported by the UK EPSRC (grant no. EP/F045093/1) and the
Royal Society of London under the International Joint Project Scheme. Part of the
research work was conducted by PR during the 2004 Summer Research Program of
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discussions with Professors Paul Durbin, Sanjiva Lele, and Dr Tamer Zaki (now at
Imperial College London). The authors would like to thanks the referees for their
helpful comments and suggestions.

Appendix. Matching with the upstream linear solution
In this appendix, we show that the nonlinear solution in the downstream region

where x = O(1) matches to the upstream linear stage in the overlapping region
R−1

Λ � x � 1. Similar to the case of steady disturbance considered by Wundrow &
Goldstein (2001), the boundary layer in this limit splits into two regions corresponding
to η =O(1) and y = O(1). These and the outer region where y � 1 are now considered.

In the outer region y � 1, observe first that as x → 0,

δ̄ → β(2x)1/2/
√

k1RΛ, (A 1)

since the streamwise velocity of streaks is expected to be of small amplitude near the
leading edge. It follows from (2.13) and (2.17) that δ̂ = δ̄, and

ŷ → y(0)/
√

k1RΛ, (A 2)

so that v̂0 and ŵ0 (2.24) match the oncoming disturbance (2.1).
In the region η = O(1), we may seek power-series solution (as in the linear case

considered by LWG),

(ûm,n, v̂m,n.ŵm,n, p̂m,n) =

∞∑
k=0

(2x)k/2
(
(2x)U (k)

m,n, V
(k)
m,n, W

(k)
m,n, P

(k)
m,n/(2x)1/2

)
. (A 3)
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Substitution of the expansion into (2.37)–(2.40) shows that (U (k)
m,n, V

(k)
m,n, W

(k)
m,n, P

(k)
m,n)

are governed by linear equations for k = 0, 1, and so consist of only the seeded
fundamental modes (m, n) = (1, ±1). Their solution can be written as(

U (k)
m,n, V

(k)
m,n, W

(k)
m,n

)
=

(
q±Uk, q±Vk, ∓iq±Wk

)
(k = 0, 1), (A 4)

where q± = ±(iκ2/k3)(û
∞
3,± ± iû∞

2,±), and Uk , Vk and Wk (k =0, 1) are found by solving
the system (B 1)–(B 8) on page 199 in LWG. Substituting the leading-order terms in
the expansion (A 3) into (2.42) shows that the nonlinear terms behave as fm,n = O(x),

ĝm,n = O(x0) and ĥm,n = O(x0) for x � 1. Use of these estimates in (2.37)–(2.40)
indicates that nonlinear effects influence (U (k)

m,n, V
(k)
m,n, W

(k)
m,n) for k � 2 and the pressure

P (1)
m,n. It suffices to note that ∂P (1)

m,n/∂η = 0 for the nonlinearly generated pressure
(m, n) �= (1, ±1).

In the region y =O(1), i.e. η = O((2x)−1/2), the governing equations follows from
replacing F and F ′ in (2.37)–(2.40) by (η − β) and 1 respectively, and rewriting the
equations in terms of the variable y(0). The streamwise velocity ûm,n = 0, and the
solution for (v̂m,n, ŵm,n, p̂

(1)
m,n) expands as power series

(v̂m,n, ŵm,n, p̂m,n) =

∞∑
k=0

(2x)k/2
(
v̂(k)

m,n/(2x)1/2, ŵ(k)
m,n, p̂

(k)
m,n/(2x)1/2

)
. (A 5)

The first two terms for the velocity expansion are governed by linear equations so that
the only non-zero components are seeded modes corresponding to m =1 and n= ±1.
The solution that matches with the solutions in the outer region and the boundary
layer is given by the small-x limit of (5.21)–(5.23) of LWG, namely

v̂
(0)
1,±1 =

iq±

(κ2−i|κ |)
(
eiκ2y

(0) − e−|κ |y(0))
, ŵ

(0)
1,±1 =

∓iq±

κ2−i|κ |
(
κ2 eiκ2y

(0) − i|κ |e−|κ |y(0))
; (A 6)

p̂
(0)
1,±1 = q±g0 e−|κ |y(0)

, v̂
(1)
1,±1 = q±|κ |g0 e−|κ |y(0)

, ŵ
(1)
1,±1 = ∓iq±|κ |2g0 e−|κ |y(0)

, (A 7)

with g0 = −3β/(4|κ |). Nonlinear (and viscous) effects influence the third terms in the
velocity expansion (A 5). Therefore, the initial condition of LWG, constructed by
forming the composite approximation using the first two terms in (A 3) and (A 5),
remains valid to the O(

√
x) accuracy.

Elimination of the velocity components v̂(2)
m,n and ŵ(2)

m,n from their governing

equations in favour of the pressure shows that p̂(1)
m,n satisfies the equation[ ∂2

∂y(0)2
− n2κ2

]
p̂(1)

m,n = (ε/k1)Sm,n; (A 8)

after making use of (A 6), the forcing due to nonlinear interactions, i.e. Sm,n with
(m, n) �= (1, ±1), are found as

S2,0 = 4
(
κ2/κ2

2

)[
2κ2

2 e2iκ2y
(0)

+ (iκ2 − |κ |)2 e(iκ2−|κ |)y(0) − 2κ2 e−2|κ |y(0)]
,

S2,±2 = 2
(
κ2/κ2

2

)
(iκ2 + |κ |)2 e(iκ2−|κ |)y(0)

,

S0,0 = −4
(
κ2/κ2

2

)[
4κ2 e−2|κ |y(0) − (iκ2 − |κ |)2 e(iκ2−|κ |)y(0)]

+ c.c.,

S0,±2 = −2
(
κ2/κ2

2

)[
4κ2 + (iκ2 + |κ |)2 e(iκ2−|κ |)y(0)

+ c.c.
]
.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A 9)

Matching of the normal velocity v̂(2)
m,n in this region with the boundary-layer solution

(A 3) requires that v̂(2)
m,n = 0 as y(0) → 0, since V (1)

m,n is unaffected by nonlinear effects.
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It follows from the y-momentum equation that the pressure must satisfy the boundary
condition

∂p̂(1)
m,n/∂y

(0) = 0 at y(0) = 0. (A 10)

The solution that satisfies the boundary condition and matches with (2.25) in the
outer region is found as

p̂
(1)
2,0 = −2(ε/k1)

(
κ2/κ2

2

)[
e2iκ2y

(0) − e(iκ2−|κ |)y(0)

+ e−2|κ |y(0)]
,

p̂
(1)
2,±2 = (ε/k1)

(
κ2/κ2

2

) [
2(iκ2 + κ)

iκ2 − 3|κ | e(iκ2−|κ |)y(0)

+ A2,±2 e−2|κ |y(0)

]
,

p̂
(1)
0,0 = −4(ε/k1)

(
κ2/κ2

2

)[
e−2|κ |y(0) − e(iκ2−|κ |)y(0)

+ c.c.
]
,

p̂
(1)
0,±2 = 2(ε/k1)

(
κ2/κ2

2

) [
1 − 2(iκ2 + κ)

iκ2 − 3|κ | e(iκ2−|κ |)y(0)

+ c.c. + A0,±2 e−2|κ |y(0)

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 11)

where the constants

A2,±2 = −
(
κ2

2 + κ2
)
/(iκ2 − 3|κ |)κ, A0,±2 = −6

(
κ2

2 + κ2
)
/
(
κ2

2 + 9κ2
)
. (A 12)

Due to the presence of the reflected perturbation, v̂(2)
m,n and ŵ(2)

m,n are non-zero. The
solution for them can easily be found by inserting (A 6) into the momentum equations,
but it suffices to mention that both vanish as y(0) → ∞, as expected by the requirement
of matching with the velocity in the outer region.

In summary, we have shown that in the upstream region corresponding to
R−1

Λ � x � 1, the perturbation is linear at leading order, and the leading-order pressure
is induced by the viscous displacement. Nonlinear effects produce an O(x) correction
to the velocity, and an O(

√
x) correction to the pressure. The result indicates that the

nonlinear regime develops gradually from the linear stage. Note that in the upstream
region, the pressure plays a rather passive role within the boundary layer, with the
leading-order and the nonlinearly generated pressure gradients affecting only the
velocity field of O(

√
x) and O(x), respectively.
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