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Abstract
Risk aggregation is a popular method used to estimate the sum of a collection of financial assets or
events, where each asset or event is modelled as a random variable. Applications include insurance,
operational risk, stress testing and sensitivity analysis. In practice, the sum of a set of random
variables involves the use of two well-known mathematical operations: n-fold convolution (for a
fixed number n) andN-fold convolution, defined as the compound sum of a frequency distributionN
and a severity distribution, where the number of constant n-fold convolutions is determined by N,
where the severity and frequency variables are independent, and continuous, currently numerical
solutions such as, Panjer’s recursion, fast Fourier transforms and Monte Carlo simulation produce
acceptable results. However, they have not been designed to cope with new modelling challenges that
require hybrid models containing discrete explanatory (regime switching) variables or where discrete
and continuous variables are inter-dependent and may influence the severity and frequency in
complex, non-linear, ways. This paper describes a Bayesian Factorisation and Elimination (BFE)
algorithm that performs convolution on the hybrid models required to aggregate risk in the presence
of causal dependencies. This algorithm exploits a number of advances from the field of Bayesian
Networks, covering methods to approximate statistical and conditionally deterministic functions to
factorise multivariate distributions for efficient computation. Experiments show that BFE is as
accurate on conventional problems as competing methods. For more difficult hybrid problems BFE
can provide a more general solution that the others cannot offer. In addition, the BFE approach can
be easily extended to perform deconvolution for the purposes of stress testing and sensitivity analysis
in a way that competing methods do not.
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1. Motivation and Introduction

Risk aggregation is a popular method used to estimate the sum of a collection of financial assets or
events, where each asset or event is modelled as a random variable. Existing techniques make a
number of assumptions about these random variables. First, they are almost always continuous.
Second, if they are independent then they are identically distributed. Third, should they be
dependent, these dependencies are best represented by correlation functions, such as copulas (Nelsen,
2007; Embrechts, 2009), where marginal distribution functions are linked by some dependence
structure. These statistical methods have tended to model associations between variables as a purely
phenomenological artefact extant in historical statistical data. Recent experience, at least since the
beginning of the financial crisis in 2007, has amply demonstrated the inability of these assumptions
to handle non-linear effects or “shocks” on financial assets and events, resulting in models that
are inadequate for prediction, stress testing and model comprehension (Laeven & Valencia, 2008;
IMF, 2009).

It has been extensively argued that modelling dependence as correlation is insufficient, as it ignores
any views that the analyst may, quite properly, hold about those causal influences that help generate
and explain the statistical data observed (Meucci, 2008; Rebonato, 2010). Such causal influences are
commonplace and permeate all levels of economic and financial discourse. For example, does a
dramatic fall in equity prices cause an increase in equity implied volatilities or is it an increase in
implied volatility that causes a fall in equity prices? The answer is trivial in this case, since a fall in
equity prices is well known to affect implied volatility, but correlation alone contains no information
about the direction of causation. To incorporate causation we need to involve the analyst or expert
and “fold into” the model views of how discrete events interact and the effects of this interaction on
the aggregation of risk. This approach extends the methodological boundaries last pushed back by
the celebrated Black–Litterman model (Black & Litterman, 1991). In that approach a risk manager’s
role is as an active participant in the risk modelling, and the role of the model is to accommodate
their subjective “views”, expressed as Bayesian priors of expectations and variances of asset returns.
In this paper we aim to represent these Bayesian “views” in an explicit causal structure, whilst
providing the computational framework for solutions. Such causal models would involve discrete
explanatory (regime switching) variables and hybrid mixtures of inter-dependent discrete and
continuous variables. A causal risk aggregation model might incorporate expert derived views about
macro-economic, behavioural, operational or strategic factors that might influence the assets or
events under “normal” or “abnormal” conditions. Applications of the approach include insurance,
stress testing, operational risk and sensitivity analysis.

At its heart risk aggregation requires the sum of n random variables. In practice, this involves the use
of two well-known mathematical operations: n-fold convolution (for a fixed value of n) and N-fold
convolution (Heckman &Meyers, 1983), defined as the compound sum of a frequency distributionN,
and a severity distribution S, where the number of constant n-fold convolutions is determined by N,
stochastically. Currently, popular methods such as Panjer’s recursion (Panjer, 1981), fast Fourier
transforms (FFT, Heckman & Meyers, 1983) and Monte Carlo (MC) simulation (Fishman, 1996)
perform risk aggregation numerically using parameters derived from historical data to estimate the
distributions for both S and N. Where S and N are independent and continuous, these approaches
produce acceptable results. However, they have not been designed to cope with the new modelling
challenges outlined above. In the context of modelling general dependencies among severity
variables, a popular approach is to use copulas, both to model the dependent variables and to
perform risk aggregation.
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Our aim then is to show how we can carry out a stochastic risk aggregation (N-fold convolution) in a
causal Bayesian framework, in such a way that subjective views about inter-dependencies can be
explicitly modelled and numerically evaluated, i.e., where discrete and continuous variables are inter-
dependent and may influence N and S in complex, non-linear ways. We see this as the first of many
financial modelling problems that are amenable to this new approach.

This paper describes a Bayesian Factorisation and Elimination (BFE) algorithm that performs
convolution on the hybrid models required to aggregate risk in the presence of causal dependencies.
This algorithm exploits a number of advances from the field of Bayesian Networks (BNs), covering
methods to approximate statistical and conditionally deterministic functions and to factorise
multivariate distributions for efficient computation.

Section 2 provides an overview of popular methods for risk aggregation. Section 3 describes BN tech-
nology with a view to explaining some of the core foundational algorithms used in this paper. The BFE
convolution algorithm is described in section 4, showing how it builds and extends on the standard BN
algorithms presented in section 3. Section 5 presents a version of BFE that performs deconvolution and
section 6 presents experimental results showing the performance of BFE. Section 7 concludes the paper.

2. Risk Aggregation

An encyclopaedic overview of the current state of the art in risk aggregation is presented in McNeil
et al. (2010). The general aggregation formula for fixed, n, assets, is:

T ¼ S0 + S1 + ¼ + Sn (1)

where T is the sum of n asset valuations and each Si is from the same common continuous
distribution fx, which can be thought of as a return (severity) distribution S. This is called an n-fold
convolution. If S∼ fx and if we have a variable number of assets, N, then equation (1) can be
rewritten as an N-fold convolution:

fTðxÞ ¼
X1
j¼ 0

f �jðxÞPðN ¼ jÞ (2)

where f �j xð Þ ¼ Ð1
0
f �ðj�1Þðx�yÞf dyð Þ is a recursive n-fold convolution on S. We can therefore

rewrite equation (2) in a discrete form: P(N = j) = aj, for j = 0, 1,…,L, where L is the length of
discretised frequency N. The following expressions hold:

PðTÞ ¼ a0PðT0Þ + a1PðT1Þ + ¼ + aLPðTLÞ (3)

T0 ¼ S0; T1 ¼ S0 + S1 ; ¼ ; TL ¼ S0 + S1 + ¼ + SL (4)

where each Tj is a constant n-fold convolution. The equation (3) represents a mixture distribution
where the mixture components consist of mutually exclusive variables, themselves composed using
the conditionally deterministic functions stated in equation (4).

For the sake of clarity in insurance, and similar, applications N is interpreted as a frequency
distribution and S is defined as a severity (loss) distribution.

General numerical solutions to computing the aggregate distribution include Panjer’s recursion (Panjer,
1981), fast Fourier transform (Heckman & Meyers, 1983) and MC simulation (Fishman, 1996).
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In this paper severity variables can depend on discrete explanatory variables with dependencies
expressed via conditioning in BN. This contrasts with the classic approach for dependency modelling
among severity variables using copulas. Rather than use dependency and conditioning the copula
approach models the dependency structure independently with marginal functions, which supports
the construction of high-dimensional models.

In the context of copula-based risk aggregation Bruneton (2011) proposes the use of hierarchical
aggregation using copulas. Also, Arbenz & Canestraro (2012) proposes hierarchical risk aggregation
based on tree dependence modelling using step-wise low-dimensional copulas, and also gives a
sample reordering algorithm for numerical approximation. Brechmann (2014) suggests hierarchical
Kendall copulas to achieve flexible building blocks, where risk aggregation is supported by the
Kendall function. These approaches capture the joint dependencies from a hierarchical structure and
exploit use of small building blocks. In contrast to correlation modelling, our work assumes causality
and dependency, where joint dependency is decomposed by conditional dependencies using the BN
framework.

3. BN

3.1. Background

A BN (Pearl, 1993; Lauritzen, 1996; Jensen & Nielsen, 2009) consists of two main elements:

1. Qualitative: This is given by a directed acyclic graph with nodes representing random variables,
which can be discrete or continuous, and may or may not be observable, and directed arcs (from
parent to child) representing causal or influential relationships between variables.

2. Quantitative: A probability distribution associated with each node X. For a node with parents
this is a conditional probability distribution (CPD), P(X | pa(X)) that defines the probabilistic
relationship of node given its respective parents pa(X). For each node X without parents, called
root nodes, this is their marginal probability distribution P(X). If X is discrete, the CPD can be
represented as a node probability table (NPT), P(X | pa(X)), which lists the probability that X
takes, on each of its different values, for each combination of values of its parents pa(X). For
continuous variables, the CPDs represent conditional probability density functions.

Together, the qualitative and quantitative parts of the BN encode all relevant information contained
in a full joint probability model. The conditional independence assertions about the variables,
represented by the absence of arcs, allow decomposition of the underlying joint probability distribution
as a product of CPDs. Specifically:

PðX1; ¼ ;XnÞ ¼
Y

PðXi jpaðXiÞ

This significantly reduces the complexity of inference tasks on the BN (Spiegelhalter & Lauritzen,
1990; Fenton & Neil, 2012).

BNs have already been employed to address financial problems. For example, in Cowell et al. (2007)
BNs were used for overall loss distribution and making predictions for insurance; in Neil & Fenton
(2008) BNs were used for modelling operational risk in financial institutes, while the work in
Politou & Giudici (2009) combines MC simulation, graphic models and copula functions to build
operational risk models for a bank. Likewise, Rebonato (2010) discusses a coherent stress testing
approach using BNs.
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We have chosen to use BNs because the latest algorithms can model causal dependencies between
hybrid variables during inference, to produce approximate posterior marginal distributions for the
variables of interest. Also, by virtue of Bayes’ theorem they are agnostic about causal direction and
can perform inference from cause to effect and vice versa (or convolution to deconvolution, as is the
case here). Until very recently BN tools were unable to properly handle non-Gaussian continuous
variables, and so such variables had to be discretised manually, with inevitable loss of accuracy.
A solution to this problem was described in Neil et al. (2007) based on an extension of the junction
tree (JT) inference algorithm, and is described below in section 3.2. The result of inference is a set of
queries on the BN in the form of univariate or multivariate posterior marginal distributions. This
allows the approximate solution of classical Bayesian statistical problems, involving continuous
variables as well as hybrid problems involving both discrete and continuous variables, without
any restriction on distribution family or any requirement for conjugacy. This scheme iteratively
converges on the posterior solution and has provided highly efficient solutions in a number of
domains (Marquez, Neil, & Fenton, 2010); (Fenton & Neil, 2012).

Both exact and approximate inference in BNs is NP-hard (Cooper & Herskovits, 1992) and the
efficiency of the JT architecture depends on the size of the clusters in the associated tree. To help
reduce conditional probability table (CPT) size we employ a factorisation scheme called binary
factorisation (BF, described below in section 3.3) to reduce the size and associated computation time
required for continuous variables in the model (Neil et al., 2012).

We have used AgenaRisk (2014), a commercial BN package and extended it to incorporate the new
BFE algorithm to carry out the experiments described in section 4.

3.2. Dynamic discretisation (DD) on hybrid BNs

Static discretisation has historically been used to approximate the domain of the continuous variables
in a BN using predefined, fixed piecewise constant partitions. This approximation will be accurate so
long as the posterior high-density region remains in the specified domain during inference. However,
the analyst will not know, in advance, which areas of the domain require the greater number of
intervals, ultimately resulting in an inaccurate posterior estimate. DD is an alternative discretisation
approach that searches for the high-density region during inference and adds more intervals where they
are needed while removing intervals where they are not (by merging or deletion). The algorithm
iteratively discretises the target variables by the convergence of relative entropy error threshold.

Formally, let X be a continuous node in the BN. The range of X is denoted by ΩX and the probability
density function of X is denoted by fX. The idea of discretisation is to approximate fX as follows:

1. Partition ΩX into a set of interval ΨX = {wj}.

2. Define a locally constant function fx on the partitioning intervals.

We estimate the relative entropy error induced by the discretised function using an upper bound of
the Kullback–Leibler (KL) metric between two density functions f and g:

Dðf j jgÞ ¼
ð
f ðxÞ log f ðxÞ

gðxÞdx (5)

Under the KL metric the optimal value for the discretised function ~fx is given by the mean of the
function in each of the intervals of the discretised domain. The discretisation task reduces then to
finding an optimal partition set Ψ̂x.
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DD searches ΩX for the most accurate specification of the high-density regions given the model and
the evidence, calculating a sequence of discretisation intervals in ΩX iteratively. At each stage in the
iterative process, a candidate discretisation, Ψx = {wj}, is tested to determine whether the relative
entropy error of the resulting discretised probability density ~fX is below a given threshold, defined
according to some stopping rule. After each variable in the model is discretised the inference
algorithm, such as JT, calculates the joint posterior distributions for all variables in the model. This
gives a new posterior probability density for all variables and these are then re-discretised. This
process continues until the stopping rule is triggered.

3.3. BF

The cost of using off-the-shelf BN algorithms to calculateN-fold convolution can be computationally
expensive. The conditional probability density expression of node T is defined by all of its parent
nodes by equation (1):

Tn ¼ S0 + S1 + ¼ + Sn

If each node has a node state of size m and the total number of parents is n, then the CPT for T has a
total size of mn+ 1 given the intervals computed under DD. To help reduce the CPT size we employ
BF to factorise the BN graph according to the statistical and deterministic functions declared in it.

To illustrate the BF process, we consider constant n-fold convolution models for both the independent
and common cause case, as represented by BNs G1 and G2, respectively, in Figure 1. This is just
equation (1).

After employing BF, the BNsG1 andG2 are transformed intoG1' andG2', respectively, as shown in
Figure 1. In Figure 1 G1 shows the N-fold convolution when severities are independent and iden-
tically distributed. G2 denotes the N-fold convolution when severities are dependent on a discrete
common cause random vector C.

S0 S2S1

T

... Sn

T1

... Sn

T2

Tn

...

G1
G1′

T

... ...

...

G2
G2′

C C

SnSn

T1 T2 Tn

S0 S2S1

S0 S2S1

S0 S2S1

Figure 1. Bayesian Networks models of N-fold convolution of i.i.d. severity variables (G1) and of
common cause version (G2) with accompanying binary factorised versions (G1' and G2').
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BF ensures that, in the transformed BN, each variable’s NPT expression involves a maximum of two
continuous parent variables in the transformed BN. This produces a maximal discretised NPT of sizem3.

Theoretical equivalence of G1 and G1' with the resulting BN models G2 and G2' is demonstrated in
Neil et al. (2012).

4. BFE

To solve the N-fold convolution problem using off-the-shelf BN technology is not possible because
we cannot compute G1 and G2 effectively from the conditional dependency structures defined in
Figure 1. This is because, even with BF, either the model size is prohibitively large (in the case of G1)
or the JT cluster sizes would be exponential in size (as with G2). Therefore, the original contribution
of this paper is to produce an iterative factorised approach to the computation that scales up
to arbitrary sized models. This approach is called Bayesian Factorisation and Elimination. This
algorithm performs convolution on the hybrid models required to aggregate risk in the presence
(or absence) of causal dependencies. This algorithm exploits a number of advances from the field of
BNs already described in section 3. We refer to these advances as the BN engine and they are shown
in the overall algorithm architecture in Figure 2.

The BFE algorithm contains three separate steps, each performing specific optimisations:

1. Log-based aggregation (LBA): This algorithm computes equation (4), the n-fold convolution, in a
log-based pattern that can be more efficient than aggregation by straight summation.

2. Variable elimination (VE): Variables are iteratively eliminated during LBA process, by which we
can achieve greater computation efficiency for calculating arbitrary constant n-fold convolutions.

3. Compound density factorisation (CDF): The compound sum equation (3) can be factorised by
this algorithm in order to reduce large NPTs into smaller ones. CDF is similar to BF except that in
CDF we introduce one more intermediate variable (a Boolean node) for weighting the compound
density combination at each step in the aggregation process.

4.1. LBA

In equation (3) each Ti, i = 1,…, n is the sum of its parent variables Ti − 1 and Si, and the aggregation
process simply involves repeated summations of the same variable Si. As BF proceeds intermediate

Bayesian Factorization and Elimination (BFE)

BN Engine

Log Based
Aggregation

(LBA)

Binary
Factorization

(BF)

Compond
Density

Factorization
(CDF)

Variable
Elimination

(VE)

Dynamic
Discretization

(DD)

Junction Tree
(JT)

Figure 2. Architecture of Bayesian Networks algorithms.
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variables Fj are created to aggregate every two parents, creating a hierarchy until the total aggregate T is
computed. An example, in the presence and absence of common cause vector is shown in Figure 3.

This approach to aggregation is computationally expensive since all the variables are entered and
computed in the BN explicitly. LBA simply computes and subsequently reuses prior computed results
recursively, so that in each subsequent step we can reuse results from previous steps, without having
to create the whole BN. The resulting process is O(log2 n).

4.2. VE

The aim of VE is to remove nodes from a BN, G, that do not belong to a query set Q, containing
only the variables of interest, by a process of marginalisation. Here we use VE to reduce the number
of variables we handle but add additional steps to exploit repeated structure in the BF model. We do
not need, therefore, to explicitly manipulate the whole BN, because we are not interested in setting
arbitrary query variables or conditioning evidence. Instead, we iterate through the binary factored
model, progressively creating subsets of the aggregation hierarchy that can be reused recursively,
eliminating nodes and reusing parts as we go.

We first consider a full BF BN and use this to identify variables that can be eliminated and query sets
necessary during VE. In the simple case for an n-fold convolution for independent i.i.d. severity variables,
the graphG1' in Figure 1 denotes the BF form of the computation of Tn ¼ Pn

j¼0 Sj after introducing the
intermediate binary factored variables {T1,T2,…,Tn−1}. The marginal distribution for Tn has the form

PðTnÞ ¼
X

ðS0 ¼ ;Sn ;T1;¼;Tn�1Þ
PðS0; S1; ¼ ; Sn;T1;T2; ¼;Tn�1;TnÞ

¼
X

ðS0 ¼ ;Sn ;T1;¼;Tn�1Þ
PðTn jTn�1; SnÞPðTn�1 jTn�2; Sn�1Þ¼PðT1 jS0; S1ÞPðS0ÞPðS1Þ¼PðSnÞ ð6Þ

Exploiting the conditional independence relations in Figure 1.

Notice that every pair of parent variables Ti and Si + 1 is independent in this model and we can
marginalise out each pair of Ti and Si +1 from the model separately. Equation (6) can be alternatively
expressed as predefined “query blocks”:

PðTnÞ ¼
X

Tn�1 ;Sn

PðTn jTn�1; SnÞ ¼
X
T1 ;S2

PðT2 jT1; S2Þ
X
S0;S1

PðT1 jS0; S1ÞPðS0ÞPðS1Þ
( )

PðS2Þ
( )

¼

( )
PðSnÞ

(7)

G1 G2

T

AiA0

S2 S3

F1

S0 S1

F0

...

...

... Sn

Fj

Sn-1

C

T

AiA0

S2 S3

F1

S0 S1

F0

...

...

... Sn

Fj

Sn-1

Figure 3. G1 and G2 Bayesian Networks binary factorised for aggregation.
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So, using equation (7) we can recursively marginalise out, i.e., eliminate or prune, each pair of
parents Ti and Si + 1 from the model. For example, the elimination order in equation (7) could be: {S0,
S1}, {T1, S2}…{Tn −1, Sn}. The marginal distribution of Tn, i.e., the final query set, is then yielded at
the last elimination step.

In order to illustrate the recursive BN graph operations, required during VE, consider Figure 1 and
BN G1. The first few steps involved are shown in Figure 4. At each stage we reuse the same graph
structures and expressions for graphs {K1, K2, K3} and {L1, L2, L3}. We can proceed through the BF
BN, computing the marginal distributions for the query set, removing elimination sets and repeating
the process until we exhaust the variable list.

However, in the case where common cause dependencies are present in the BN, as illustrated by G2
in Figure 1, additional care is needed during VE. Here the elimination set does not simply consist of
leaf nodes that can be eliminated directly since we have a common parent node C, that we want to
preserve in the query set at each step. To help highlight how the VE process operates in the presence
of common cause variables consider BN G2' in Figure 1 and compute the posterior marginal
distribution for T2. The marginal distribution for T2 has the form equation (8):

PðT2Þ ¼
X

C;S0;S1;S2 ;T1

PðT2 jT1; S2ÞPðT1 jS0; S1ÞPðS0 jCÞPðS1 jCÞPðS2 jCÞPðCÞ

¼
X

C;S2;T1

PðT2 jT1; S2ÞPðS2 jCÞPðCÞ
X
S0 ;S1

PðT1 jS0; S1ÞPðS0 jCÞPðS1 jCÞ
( )

ð8Þ

We first want to eliminate S0 and S1 by marginalising them:

PðT1 jCÞ ¼
X
S0;S1

PðT1 jS0; S1ÞPðS0 jCÞPðS2 jCÞ (9)

The marginal of T2 can now be expressed along with C, T1 and S2 alone:

PðT2Þ ¼
X

C;S2 ;T1

PðT2 jT1; S2ÞPðS2 jCÞPðT1 jCÞPðCÞ

S0 S1

F0

F0

Eliminate
{S0, S1}

F0 F1

A0

Eliminate
{F0, F1}

A0
K1

L1

K3

L3

Copy
Query set

{F0}

S2 S3

F1

F1

Eliminate
{S2, S3}

K2

L2

Copy
Query set

{F1}

Figure 4. Variable elimination process applied to part of Bayesian Network G1.

Peng Lin et al.

306

https://doi.org/10.1017/S1748499514000098 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499514000098


Next we eliminate S2 and T1:

PðT2 jCÞ ¼
X
T1;S2

PðT2 jT1; S2ÞPðS2 jCÞPðT1 jCÞ (10)

In general, by VE, we obtain the conditional distribution for each variable Tn− 1 (the sum of n
severity variables) with the form:

PðTn�1 jCÞ ¼
X

Tn�2 ;Sn�1

PðTn�1 jTn�2; Sn�1ÞPðTn�2 jCÞPðSn�1 jCÞ (11)

Since equation (11) specifies the conditional distribution for variable Tn− 1 |C and therefore the
posterior marginal distribution for the target n-fold convolution Tn −1 the aggregate total is obtained
by marginalising out C.

In order to explain the VE algorithm, in terms of graph manipulation, in the common cause case we
step through a 3-fold convolution. Figure 5(a) depicts a 3-fold convolution model, BF (fromG to G')
and then subject to VE, resulting in reduced the BN V. The VE steps are shown in Figure 5(b), which,
although operating on subsets of G, result in the same graph, i.e., L2 = V.

To calculate the arbitrary n-fold convolution in the multiple common cause case it is essential to
maintain the structure connecting the common causes in G' in every elimination step so that when
variables are eliminated any dependencies on common cause variables are correctly maintained.
Consequently, the elimination task involves generating the marginal for variable Tj conditional on
the set C = C0, C1,…, Cm. This more general case is shown in Figure 6, with multiple common cause

S1 S2

C

T1

S3

T2

S1 S3S2

C
(a)

(b)

T

G G’ V

C

T2

S1 S2

C

T1

C

T1

Eliminate
{S1, S2}

T1 S3

C

T2

Eliminate
{T1, S3}

C

T2

K1 L1 K2 L2

Copy
Query set

{C, T1}

Figure 5. (a) Simple common cause model binary factorisation and variable elimination (VE)
process. (b) VE process applied to part of Bayesian Network G.
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variables C0, C1,…, Cm, and dependent severity variables Si. The scheme can be generalised to any
configuration of common causes.

4.3. CDF

Recall the compound density expression for an N-fold convolution, as given in equation (3), where
Tj ¼

Pj
i¼0 Si; j ¼ 0 ðlength of NÞ is an i-fold convolution with S itself and aj = P(N = j) is the

weighting assigned to the corresponding Tj. Unfortunately, the compound density expression for
P(T) is very space inefficient and to address this we need to factorise it. Given each component in the
mixture is mutually exclusive, i.e., for a given value of N the aggregate total is equal to 1, and only
one Ti, variable, this factorisation is straightforward. However, we cannot use a BF for equation (3),
therefore we factorise the compound density expression into pairs of “block nodes” and combine
each pair incrementally as shown below.

Equation (3) is factorised as shown in Figure 7, where additional Boolean variables Ej (with only two
states True and False)1 are introduced to assign weightings proportional to aj, to each pair of block
nodes, i.e., {T0,T1}, {F0,T2},…, {Fj −2, Tj}. Factor variables Fj are created to calculate the weighted
aggregate for each step, up to the length of the N-fold convolution L.

The NPT for Ej − 1 is defined by the following:

PðEj�1 ¼ TrueÞ ¼ a0 + a1 + ¼ + aj�1

a0 + a1 + ¼ + aj
(12)

The conditionally deterministic expression for variable Fj−1 (called a partitioned node in BN parlance)
is defined by

Fj�1 ¼
Fj�2

Tj

if Ej�1 ¼ True

if Ej�1 ¼ False

(
(13)

Since T0 and T1 are mutually exclusive, the marginal distribution for variable F0 is:

F0 ¼ PðE0 ¼ TrueÞPðT0Þ +PðE0 ¼ FalseÞPðT1Þ ¼ a0PðT0Þ + a1PðT1Þ
which is identical to the first two terms in the original compound density expression (equation (3)).
Similarly, the marginal for variable Fj becomes:

Fj�1 ¼ PðEj�1 ¼ TrueÞPðFj�2Þ +PðEj�1 ¼ FalseÞPðTjÞ (14)

S1

C1

S2

T2

C0

S3

T1

... Cm

...

...

Sn

Tn-1

C1C0 ... Cm

Sn

Tn-1

Tn-2S1

C1

S2 Sn

C0

...

T

... Cm

G VG’

. . .

Figure 6. Multiple common cause model binary factorisation and variable elimination process
(transformed graph name shown below each graph).

1 “True” and “False” are used for convenience; any binary labelling would do equally well.
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After applying the CDF method to equation (3) we have the marginal for Fj − 1, as shown by (14),
which yields the compound density, P(T), for the N-fold convolution. Therefore, by using the CDF
method we can compute the compound density (equation (3)) more efficiently.

The CDF method is a general way of factorising a compound density. It takes as input any n-fold
convolution, regardless of the causal structure governing the severity variables. Note that the CDF
method can be made more efficient by applying VE to remove leaf nodes. Likewise, we can execute
the algorithm recursively reuse the same BN fragment P(F | F,T,E).

4.4. The BFE convolution algorithm

The BFE convolution algorithm is formalised, as pseudo code, in Table 1.

5. Deconvolution using the BFE Algorithm

5.1. Deconvolution

Where we are interested in the posterior marginal distribution of the causal variables conditional on the
convolution aggregated results we can perform deconvolution, in effect reversing the direction of
inference involved in convolution. This is of interest in sensitivity analysis, where we might be interested
in identifying which causal variables have the largest, differential, impact on some summary statistic of
the aggregated total, such as the mean loss or the conditional value at risk, derived from P(C |T> t0).

One established solution for deconvolution involves inverse filtering using Fourier transforms,
whereby the severity S is obtained by inverse transformation from its characteristic function.
Alternative analytical estimation methods, i.e., maximum likelihood and numerical evaluation
involving Fourier transforms or simulation-based sampling methods, can be attempted but none of
them is known to have been applied to N-fold deconvolution in hybrid models containing discrete
causal variables.

BN-based inference offers an alternative, natural, way of solving deconvolution because it offers
both predictive (cause to consequence) reasoning and diagnostic (consequence to cause) reasoning.
This process of backwards inference is called “back propagation”, whereby evidence is entered into
the BN on a consequence node and then the model is updated to determine the posterior probabilities
of all parent and antecedent variables in the model. A “backwards” version of the BFE algorithm offers
a solution for answering deconvolution problems in a general way without making any assumptions
about the form of the density function of S. The approach again uses a discretised form for all
continuous variables in the hybrid BN, thus ensuring that the frequency distribution N is identifiable.

F0

E0 E1

F1

...

...

... Fj-1

Ej-1

T0

T1 T2 Tj

Figure 7. Compound density factorisation.

Risk aggregation in the presence of discrete causally connected random variables

309

https://doi.org/10.1017/S1748499514000098 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499514000098


Example 1 Consider a simple BN with parent variable distributions X∼Normal (μ = 5, σ2 = 5),
Y∼Normal (μ = 10, σ2 = 10) and likelihood function for a child variable P(Z |X,Y) = P(Z = X+Y).
Figure 8(a) shows the prior convolution effects of the back propagation calculation, as marginal
distributions superimposed on the BN graph. The exact posterior marginal for Z is Z∼Normal
(μ = 15, σ2 = 15). Our approximation produces a mean of 14.99 and variance 16.28.

If we set an observation Z = z0 and perform inference we obtain the posterior marginal of X by
Bayes’ rule:

PðX jZ ¼ z0Þ ¼ PðX;Z ¼ z0Þ
PðZ ¼ z0Þ ¼

P
Y
PðZ ¼ z0 jX;YÞPðXÞPðYÞP

X;Y
PðZ ¼ z0 jX;YÞPðXÞPðYÞ (15)

Where our likelihood P(Z |X,Y) is a convolution function, equation (15) defines the deconvolution
and yields the posterior marginal distribution of X given observation Z = z0. In Figure 8(b), the
observation is Z = 30 (which is approximated as a discrete bin of given width), and the posterior for
X has updated to a marginal distribution with mean 9.97 and variance 3.477.

In the example shown in Figure 8 the parent variables X and Y are conditionally dependent given the
observation Z = z0. For n-fold convolution with or without common causes an observation on the Ti

variables would also make each of the severity variables dependent and we can perform n-fold
deconvolution using the DD and JT alone for small models containing non i.i.d severity variables
with query block sizes of maximum cardinality four. For large models, containing i.i.d severity
variables BFE provides a correct solution with minimal computational overhead.

We have already noted that during N-fold convolution the Ti variables are mutually exclusive, such
that for a given N = i, if the variable Ti exists, then the other variables do not. This fact can be
exploited during factorisation during the deconvolution processes.

Consider the common cause BN model shown in Figure 9. The fully specified model is shown in BN
graph A. The posterior distributions for all nodes can be computed by way of the BFE convolution

Table 1. Bayesian Factorisation and Elimination convolution algorithm.

Input: S: Severity variable, N: Frequency variable, C: vector of common causes (optional)
Output: Compound density T
Main:
1. Compute the probability density function of N, with sample space Z by:

fN(x) = P(N = x) = P({zj∈Z :N(z) = x}) = aj, j = 0,1,…,length(Z)
2. for j = 0 to (length of Z) do
3. for i = 0 to zj do
4. Compute zj-fold convolution Tzj ¼

Pzj
i¼0 Si by BF and LBA algorithms

5. Eliminate nodes (out of query set) by VE algorithm
6. end for
7. While j≥2 do
8. Apply CDF algorithm to factorize (2.3) by probability density of N

Compute Fj − 1 = P(Ej − 1 = True)P(Fj − 2) +P(Ej −1 = False)P(Tzj)
9. Eliminate nodes Si, Fj − 2 and Tzj by VE algorithm
10. end while
11. end for
12. return P(Fj − 1) {marginal distribution of T}
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algorithm and we can cache any distributions and parameters we might need during this process, for
subsequent use during deconvolution. The BFE deconvolution algorithm then proceeds by elim-
inating all intermediate, frequency and severity variables until we get the reduced BN graph con-
taining the final query set of interest.

Let us assume the model structure in BN A of Figure 9. Here frequency N is discretised into three
finite states {1, 2, 3}, so there are three n-fold convolution variables Ti ¼

Pi
j¼0 Sj; i ¼ 0; 1; 2 each

corresponding to the sum of one, two and three severity variables. T is the compound distribution
defined by:

T ¼ a0PðT0Þ + a1PðT1Þ + a2PðT2Þ; ai ¼ PðN ¼ iÞ; i ¼ 0; 1; 2

Given evidence T = t0 the deconvolution of C is achieved by:

PðC jT ¼ t0Þ ¼ PðC;T ¼ t0Þ
PðT ¼ t0Þ

¼
X

Si;Ti;N

PðT ¼ t0 jpaðTÞÞPðNÞPðTi jpaðTiÞÞPðSi jCÞPðCÞ ð16Þ

where pa(T) denotes the parents of T. So, once the convolution model has eliminated all irrelevant
variables, in this case Si, Tzj, Ej, Fj we would be left with the query set, which here is Q = {C,T}.

Figure 8. (a) Convolution and (b) deconvolution.

T0 TT1

N

C

T

T2

C

N

A

S0 S2S1

C

T

G’

T0 T1 T2

G

Figure 9. Binary factored common cause N-fold Bayesian Network, A, reduced by applying the
variable elimination algorithm to G and then G'.
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5.2. Reconstructing the frequency variables during deconvolution

If we are also interested in including the frequency variable N in our query set we must be careful to
cache variables Ej, Fj −2 and Tzj during convolution. Recall that the prior distribution for N was
decomposed into the Ej during CDF, therefore we need some way of updating this prior using the
new posterior probabilities generated on the Boolean variables Ej during deconvolution. To perform
deconvolution on N it is first necessarily to reconstruct N from the Ej variables that together
composed the original N.

Reconstruction involves composing all Boolean variables Ej into the frequency variable N, in
a way that the updating of Ej can directly result in generating a new posterior distribution of N.
The model is established by connecting all Ej nodes to N, where the new NPT for N has the
form of combining all its parents. However, it turns out this NPT is exponential (2j +1) in size. To
avoid the drawback we use an alternative, factorised, approach that can reconstruct the NPT
incrementally.

As before, we reconstructN using BF where the conditioning is conducted efficiently using incremental
steps. Here the intermediate variables produced during BFNk (k = 0,…, j−1) are created efficiently by
ensuring their NPTs are of minimal size.

The routine for constructing the NPTs for Nk (k = 0,…, j − 1) from the Ej’s is:

1. Order parents Ej and Ej − 1 from higher index to lower index for Nk’s NPT (since Ej is Boolean
variable with only two states, one concatenating all Ej −1’s states and another state is single state
that Ej −1 does not contain. In this example E1 should be placed on top of E0 in the NPT table, as
it is easier for comparing the common sets).

2. As we have already generated the NPT map of Ej, Ej −1 and Nk. Next, we specify the NPT entry
with unit value (“1”) at Nk = τ, when Ej and Ej −1 has common sets τ (in this example, E1 and E0

have common sets τ = “0” and τ = “1”).

3. Specify NPT entry with value (“1”) atNk = τ, when Ej and Ej − 1 have no common sets and Ej = τ

(Ej has one state τ that Ej −1 does not contain, so under this case Nk only needs to be consistent
with Ej as the changes on Ej − 1 would not affect the probability P(Nk = τ), in this example it is
when E1 = τ = “2”).

4. Specify NPT entry with value (“0”) at all other entries.

We repeat this routine for all Nk (k = 0,…, j −1) until we have exhausted all Ej’s, producing a fully
reconstructed N. Once we have built the reconstructed structure (Nk) for N, in fact the updates of
Ej’s probabilities are directly mapped to Nk, and so deconvolution of N is retrieved.

5.3. The BFE deconvolution algorithm with examples

The BFE deconvolution algorithm for N-fold deconvolution is formalised as pseudo code in Table 2.

Example 2 Consider a simplified example for deconvoluting N, suppose frequency distribution N is
discretised as {0.1, 0.2, 0.3, 0.4} with discrete states {0, 1, 2, 3} and S∼Exponential(1). Figure 10(a)
shows these incremental steps for example 4. In this example there are three parents (E0, E1, E2) to
N. The incremental composition steps of Ej have introduced two intermediate variables N0 and N1,
and we expect the frequency N to be reconstructed at the end of the incremental step, which is
variable N1. Key to this process is how to build the NPT for each Nk.
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Table 3 illustrates the NPT of N0, where it composes E0 and E1 successively, in such a way that each Nk

contains all and only its parents’ discrete states. SoN0 has the discrete distribution on “0”, “1” and “2”.

Figure 10(b) shows the deconvolution of N by our reconstruction process. The reconstructed prior
distribution of N1 is identical to node “original N” (shown in Figure 10(a)) as we expected. After
setting an observation value “0” at the compound sum variable F2 we have queried that the posterior
of N is 99.7% probability at state “0”, since at state zero it has all possibility of generating a zero
compound sum at F2.

The reconstruction theme is applicable to cases that N has discrete parent cause variables as well,
where Ej’s NPTs are generated directly fromN’s parents, and the deconvolution is performed by BFE
deconvolution algorithm. Experiment 3 in section 6 considers deconvoluting common cause variables
where the model has this form.

Table 2. Bayesian Factorisation and Elimination deconvolution algorithm.

Input: S: Severity variable, N: Frequency variable, C: vector of common causes and T = t0
Output: posterior marginal of query set members i.e. P(C |T = t0), P(N | T = t0)
Main:
1. do convolution BFE algorithm to produce final query set
2. if N is in query set
3. reconstruct N from Ej

4. end if
5. set evidence t0 on T and perform inference
6. return posterior marginal distributions for query set

Figure 10. (a) Reconstruct N and (b) deconvoluting N.

Table 3. The node probability table of N0.

E1 “01” “2”

E0 “0” “1” “0” “1”
N0 = 0 1.0 0.0 0.0 0.0
N0 = 1 0.0 1.0 0.0 0.0
N0 = 2 0.0 0.0 1.0 1.0
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6. Experiments

We report on a number of experiments using the BFE algorithm in order to determine whether it can
be applied to a spectrum of risk aggregation problem archetypes. Where possible the results are
compared to analytical results, FFT, Panjer’s approach and MC simulation. The following experiments,
with accompanying rationale, were carried out:

1. Experiment 1: Convolution with multimodal (mixtures of) severity distribution. We believe this
to be a particularly difficult case for those methods that are more reliant on particular analytical
assumptions. Practically, multimodal distributions are of interest in cases where we might have
extreme outcomes, such as sharp regime shifts in asset valuations.

2. Experiment 2: Convolution with discrete common causes variables. This is the key experiment in
the paper since these causes will be co-dependent and the severity distribution will depend on
their values (and hence will be a conditional mixture).

3. Experiment 3: Deconvolution with discrete common causes. This is the inverse of experiment 2
where we seek to estimate the posterior marginal for the common causes conditioned on some
observed total aggregated value.

The computing environment settings for the experiments are as follows. Operation system: Windows
XP Professional, Intel i5 @ 3.30 GHz, 4.0 GB RAM. AgenaRisk was used to implement the BFE
algorithm, which was written in java, where typically the DD settings were for 65 iterations for
severity variables and 25 iterations for the frequency variable. A sample size of 2.0E + 5 was used as
the settings in R (2013) for the MC simulation.

6.1. Experiment 1: convolution with multimodal severity distribution

Here we set the event frequency as N∼Poisson(50) but the severity distribution is a mixture
distribution, S∼ fS:

fS ¼ ð0:2ÞGammað5; 1:5Þ + ð0:3ÞNormalð25; 2Þ + ð0:4ÞNormalð50; 3Þ + ð0:1ÞGammað100; 2Þ

In a hybrid BN a mixture distribution is modelled by conditioning the severity variable on one or
more partitioning discrete variables C. Assuming that severity variables Sj are i.i.d. we can calculate
the compound density using BFE.

The characteristic function of a mixture distribution is inconvenient to define (with continuous and
discrete components). The analytical and programming effort needed to solve each multimodal
severity distribution for Panjer is high, so here we compare with MC only. (Table 4).

The corresponding marginal distribution for the query node set {T, N, S} is shown in Figure 11.

6.2. Experiment 2: convolution with discrete common causes variables

Loss distributions from operational risk can vary in different circumstances, e.g., exhibiting
co-dependences among causes. Suppose in some cases that losses are caused by daily operations and
these losses are drawn from a mixture of truncated Normal distributions, whereas extreme or some
unexpected losses are distributed in a more severe distribution. We model this behaviour by a
hierarchical common cause combination C0,…, C4.

The severity variable S is conditioning on common cause variable, C0, C1, C2. And these common
cause variables are conditioned on higher common causes C3 and C4. Severity NPT is shown in
Table 5. The frequency distribution of losses is modelled as N∼Poisson(50).
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In Figure 12(a) the model severities with dependencies by common cause variables C0,…, C4 is
introduced. Figure 12(b) depicts a 16-fold convolution of dependent severities using the VE method.
For any given frequency distribution N we can apply the BFE convolution algorithm to calculate the
common cause N-fold convolution.

Table 4. Results of convolution with multimodal severity distribution.

Algorithm Mean s.d. 95th percentile 99th percentile Analysis Effort

MC 2,444.8 516.7 3,340.0 3,787.7 Low
BFE 2,441.1 523.3 3,341.5 3,783.1 Low

MC, Monte Carlo; BFE, Bayesian Factorisation and Elimination.

Figure 11. Marginal distributions for overlaid on Bayesian Network graph containing query
nodes for Experiment 1.

Table 5. Severity node probability table.

C0 High Low

C1 High Low High Low

C2 High Low High Low High Low High Low

Expression Normal Normal Normal Normal Normal Normal Normal Normal
(1,2) (2,3) (3,4) (4,5) (100,110) (110,120) (120,130) (130,140)
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Figure 13 illustrates the output compound densities for the compared algorithms. Table 6 shows that
results for the two approaches are almost identical on summary statistics except the small difference
on standard deviation. BFE has offered a unified approach to construct and compute such a model
conveniently.

6.3. Experiment 3: deconvolution with discrete common causes variables

We reuse the convolution model from experiment 2 as the input model for deconvolution
(Figure 14).

Figure 12. (a) Common cause-dependent severity; (b) 16-fold convolution of dependent severity.

Figure 13. Compound densities (a) Monte Carlo; (b) Bayesian Factorisation and Elimination.

Table 6. Common cause N-fold convolution density.

Algorithm Mean Median s.d. 95th percentile 99th percentile

MC 3,831 5,017 2,784 7,215 8,023
BFE 3,871 5,052 3,255 7,267 8,115

MC, Monte Carlo; BFE, Bayesian Factorisation and Elimination.
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Figure 14(b) sets an observation on total aggregation node AggS_N. After performing deconvolution
we queried the posterior marginal of common causes and diagnose that the most likely common
cause is C0, which is in its “Low” state with certainty. This is easily explained by the fact that from
the severity NPT, shown in Table 5, it is only when state of C0 is “Low” that a value of 6,000 can be
at all probable. This deconvolution is currently only supported by BEF since the information cannot
be back retrieved by other approaches.

Deconvolution is obviously useful in carrying out a sensitivity of the model results, allowing the
analyst to quickly check model assumptions and identify which causal factors have the largest
consequential effect on the result. This is difficult to do manually or informally in the presence
of non-linear interactions. Also, without “backwards” deconvolution we can only compute such
sensitivities “forwards” one casual variable at a time and this is computationally much more
expensive. For example, the forwards calculation of T from ten Boolean common cause variables
would require 210 calculations versus 40 in the backwards case (assuming T was discretised into
40 states).

7. Conclusion and Future Work

This paper has reviewed historical, popular, methods for performing risk aggregation and compared
them with a new method called Bayesian Factorisation and Elimination. The method exploits
a number of advances from the field of Bayesian Networks, covering methods to approximate
statistical and conditionally deterministic functions and to factorise multivariate distributions for
efficient computation. Our objective for BFE was for it to perform aggregation for classes of problems
that the existing methods cannot solve (namely hybrid situations involving common causes) while

Figure 14. (a) Common cause N-fold convolution using Bayesian Factorisation and Elimination
algorithm. (b) N-fold model deconvolution using BFE algorithm. (The intermediate variables in
this example are shown for reference despite them being eliminated during the convolution
process).
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performing at least as well on conventional aggregation problems. Our experiments show that our
objectives were achieved. For more difficult hybrid problems the experimental results show that BFE
provides a more general solution that is not possible with the previous methods.

In addition, the BFE approach can be easily extended to perform deconvolution for the purposes of
stress testing and sensitivity analysis in a way that competing methods cannot currently offer. The
BFE deconvolution method reported here provides a low-resolution result, which is likely good
enough for the purposes of model checking and sensitivity analysis. However, we are investigating
an alternative high-resolution approach whereby variables are discretised efficiently during the
deconvolution process, thus providing more accurate posterior results.

Ongoing and future research is also focused on more complex situations involving both copulas and
common cause variables. The challenge here is to decompose these models into lower-dimensional
joint distributions, where complexity can be further reduced by factorisation. One final area of
interest includes optimisation of the results such that we might choose set of actions in the model that
maximise returns for minimum risk: we see deconvolution playing a strong role here.

Acknowledgements

We are grateful to the editor as well as the anonymous reviewers for comments and suggestions on
the paper.

References
AgenaRisk. (2014). AgenaRisk. Available online at the address http://www.agenarisk.com/ (accessed

23 December 2014).
Arbenz, P. & Canestraro, D. (2012). Estimating copulas for insurance from scarce observations,

expert opinion and prior information: a Bayesian approach. ASTIN Bulletin, 42(1), 271–290.
Black, F. & Litterman, R.B. (1991). Asset allocation: combining investor views with market

equilibrium. The Journal of Fixed Income, 1(2), 7–18.
Brechmann, E.C. (2014). Hierarchical Kendall copulas: properties and inference. Canadian Journal

of Statistics, 42(1), 78–108.
Bruneton, J.-P. (2011). Copula-based hierarchical aggregation of correlated risks. The behaviour of

the diversification benefit in Gaussian and lognormal trees. arXiv:1111.1113 [q-Fin]. Retrieved
from http://arxiv.org/abs/1111.1113 (accessed 20 February 2014).

Cooper, G.F. & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9(4), 309–347.

Cowell, R.G., Verrall, R.J. & Yoon, Y.K. (2007). Modeling operational risk with Bayesian
networks. Journal of Risk and Insurance, 74(4), 795–827.

Embrechts, P. (2009). Copulas: a personal view. Journal of Risk and Insurance, 76(3), 639–650.
Fishman, G. (1996). Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer.
Fenton, N. & Neil, M. (2012). Risk Assessment and Decision Analysis with Bayesian Networks.

Boca Raton, Florida: CRC Press.
Heckman, P.E. & Meyers, G.G. (1983). The calculation of aggregate loss distributions (pp. 22–61).

Presented at the Proceedings of the Casualty Actuarial Society. Retrieved from http://casact.
net/pubs/proceed/proceed83/83022.pdf (accessed 23 December 2013).

IMF. (2009). IMF global financial stability report – navigating the financial challenges ahead.
Washington, DC.

Peng Lin et al.

318

https://doi.org/10.1017/S1748499514000098 Published online by Cambridge University Press

http://www.agenarisk.com/
http://arxiv.org/abs/1111.1113
https://doi.org/10.1017/S1748499514000098


Jensen, F.V. & Nielsen, T.D. (2009). Bayesian Networks and Decision Graphs. New York: Springer.
Laeven, L. & Valencia, F. (2008). Systemic Banking Crises: A New Database (SSRN Scholarly Paper

No. 1278435). Social Science Research Network, Rochester, NY.
Lauritzen, S.L. (1996). Graphical Models. Oxford University Press.
Marquez, D., Neil, M. & Fenton, N. (2010). Improved reliability modeling using Bayesian networks

and dynamic discretization. Reliability Engineering & System Safety, 95(4), 412–425.
McNeil, A.J., Frey, R. & Embrechts, P. (2010). Quantitative Risk Management: Concepts,

Techniques, and Tools. Princeton, New Jersey: Princeton University Press.
Meucci, A. (2008). Fully Flexible Views: Theory and Practice (SSRN Scholarly Paper No. 1213325).

Social Science Research Network, Rochester, NY.
Neil, M., Chen, X. & Fenton, N. (2012). Optimizing the calculation of conditional probability tables

in hybrid Bayesian networks using binary factorization. IEEE Transactions on Knowledge and
Data Engineering, 24(7), 1306–1312.

Neil, M. & Fenton, N. (2008). Using Bayesian networks to model the operational risk to information
technology infrastructure in financial institutions. Journal of Financial Transformation,
22, 131–138.

Neil, M., Tailor, M. & Marquez, D. (2007). Inference in hybrid Bayesian networks using dynamic
discretization. Statistics and Computing, 17, 219–233.

Nelsen, R.B. (2007). An Introduction to Copulas. New York: Springer.
Panjer, H.H. (1981). Recursive evaluation of a family of compound distributions. ASTIN Bulletin,

1(12), 22–26.
Pearl, J. (1993). [Bayesian analysis in expert systems]: comment: graphical models, causality and

intervention. Statistical Science, 8(3), 266–269.
Politou, D. & Giudici, P. (2009). Modelling operational risk losses with graphical models and copula

functions. Methodology and Computing in Applied Probability, 11(1), 65–93.
R. (2013). The R Project for Statistical Computing. Available online at the address http://www.r-project.

org/ (accessed 23 December 2013).
Rebonato, R. (2010). Coherent Stress Testing: A Bayesian Approach to the Analysis of Financial

Stress. West Sussex, UK: John Wiley & Sons.
Spiegelhalter, D.J. & Lauritzen, S.L. (1990). Sequential updating of conditional probabilities on

directed graphical structures. Networks, 20(5), 579–605.

Risk aggregation in the presence of discrete causally connected random variables

319

https://doi.org/10.1017/S1748499514000098 Published online by Cambridge University Press

http://www.r-project.org/
http://www.r-project.org/
https://doi.org/10.1017/S1748499514000098

	Risk aggregation in the presence of discrete causally connected random variables
	1.Motivation and Introduction
	2.Risk Aggregation
	3. BN
	3.1. Background
	3.2. Dynamic discretisation (DD) on hybrid BNs
	3.3. BF

	Figure 1Bayesian Networks models of N-fold convolution of i.i.d.
	4. BFE
	4.1. LBA

	Figure 2Architecture of Bayesian Networks algorithms.
	4.2. VE

	Figure 3G1 and G2 Bayesian Networks binary factorised for aggregation.
	Figure 4Variable elimination process applied to part of Bayesian Network G1.
	Figure 5(a) Simple common cause model binary factorisation and variable elimination (VE) process.
	4.3. CDF

	Figure 6Multiple common cause model binary factorisation and variable elimination process (transformed graph name shown below each graph).
	4.4. The BFE convolution algorithm

	5. Deconvolution using the BFE Algorithm
	5.1. Deconvolution

	Figure 7Compound density factorisation.
	Table 1Bayesian Factorisation and Elimination convolution algorithm.
	Figure 8(a) Convolution and (b) deconvolution.
	Figure 9Binary factored common cause N-fold Bayesian Network, A, reduced by applying the variable elimination algorithm to G and then G&#x0027;.
	5.2. Reconstructing the frequency variables during deconvolution
	5.3. The BFE deconvolution algorithm with examples

	Table 2Bayesian Factorisation and Elimination deconvolution algorithm.
	Figure 10(a) Reconstruct N and (b) deconvoluting N.
	Table 3The node probability table of N0.
	6. Experiments
	6.1. Experiment 1: convolution with multimodal severity distribution
	6.2. Experiment 2: convolution with discrete common causes variables

	Table 4Results of convolution with multimodal severity distribution.
	Figure 11Marginal distributions for overlaid on Bayesian Network graph containing query nodes for Experiment�1.
	Table 5Severity node probability�table.
	6.3. Experiment 3: deconvolution with discrete common causes variables

	Figure 12(a) Common cause-dependent severity; (b) 16-fold convolution of dependent severity.
	Figure 13Compound densities (a) Monte Carlo; (b) Bayesian Factorisation and Elimination.
	Table 6Common cause N-fold convolution density.
	7. Conclusion and Future Work
	Figure 14(a) Common cause N-fold convolution using Bayesian Factorisation and Elimination algorithm.
	ACKNOWLEDGEMENTS
	References


