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Abstract We calculate the centralizers of elements, finite subgroups and virtually cyclic subgroups
of Houghton’s group Hn. We discuss various Bredon (co)homological finiteness conditions satisfied by
Hn including the Bredon (co)homological dimension and FPn conditions, which are analogues of the
ordinary cohomological dimension and FPn conditions, respectively.
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1. Introduction

Houghton’s group Hn was introduced in [11] as an example of a group acting on a set S

with H1(Hn, A ⊗ Z[S]) = An−1 for any abelian group A.
In [5], Brown used an important new technique to show that the Thompson–Higman

groups Fn,r, Tn,r and Vn,r were FP∞. In the same paper he showed that Houghton’s
group Hn is interesting from the viewpoint of cohomological finiteness conditions; namely,
he showed that Hn is FPn−1 but not FPn. Thompson’s group F was previously shown by
different methods to be FP∞ [6], thus providing the first known example of a torsion-free
FP∞ group with infinite cohomological dimension.

There has been recent interest in the structure of the centralizers of Thompson’s
groups. In [22] the centralizers of finite subgroups of generalizations of Thompson’s
groups T and V were calculated and this data was used to give information about Bre-
don (co)homological finiteness conditions satisfied by these groups. The results obtained
in [22, Theorems 4.4 and 4.8] have some similarity with those obtained here. In [2] a
description of centralizers of elements in the Thompson–Higman group Vn were given.

In § 2 we give the necessary background on Bredon (co)homological finiteness condi-
tions. An analysis of the centralizers of finite subgroups in Houghton’s group is contained
in § 3. As Corollary 3.7, we obtain that centralizers of finite subgroups are FPn−1 but
not FPn. This should be compared with [13], where examples are given of soluble groups
of type FPn with centralizers of finite subgroups that are not FPn, and also with [21],
where it is shown that in virtually soluble groups of type FP∞ the centralizers of all
finite subgroups are of type FP∞.
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In § 4 our analysis is extended to arbitrary elements and virtually cyclic subgroups.
Using this information, elements in Hn are constructed whose centralizers are FPi for any
0 � i � n − 3. In § 5 the space that Brown constructed in [5] in order to prove that Hn

is FPn−1 but not FPn is shown to be a model for EHn, the classifying space for proper
actions of Hn. Finally, § 6 contains a discussion of Bredon (co)homological finiteness
conditions that are satisfied by Houghton’s group. Namely, we show in Proposition 6.1
that Hn is not quasi-FP0 and in Proposition 6.3 that the Bredon cohomological dimension
and the Bredon geometric dimension with respect to the family of finite subgroups are
both equal to n. See § 2 for the definitions of quasi-FPn and of Bredon cohomological
and geometric dimension.

Fixing a natural number n > 1, define Houghton’s group Hn to be the group of per-
mutations of S = N × {1, . . . , n} that are ‘eventually translations’, i.e. for any given
permutation h ∈ Hn there are collections {z1, . . . , zn} ∈ N

n and {m1, . . . , mn} ∈ Z
n

with
h(i, x) = (i + mx, x) for all x ∈ {1, . . . , n} and all i � zx. (1.1)

Define a map φ as follows:

φ : Hn →
{

(m1, . . . , mn) ∈ Z
n :

∑
mi = 0

}
∼= Z

n−1, (1.2)

φ : h �→ (m1, . . . , mn). (1.3)

Its kernel is exactly the permutations that are ‘eventually zero’ on S, i.e. the infinite
symmetric group Sym∞ (the finite support permutations of a countable set).

2. A review of Bredon (co)homological finiteness conditions

Throughout this section G is a discrete group and F is a family of subgroups of G that
is closed under taking subgroups and conjugation. The orbit category, denoted by OFG,
is the small category whose objects are the transitive G-sets G/H for H ∈ F and whose
arrows are all G-maps between them. Any G-map G/H → G/K is determined entirely
by the image of the coset H in G/K and H �→ xK determines a G-map if and only if
x−1Hx � K.

An OFG-module, or Bredon module, is a contravariant functor from OFG to the cate-
gory of abelian groups. As such, the category OFG-Mod of OFG-modules is abelian and
exactness is defined pointwise: a short exact sequence

M ′ → M → M ′′

is exact if and only if

M ′(G/H) → M(G/H) → M ′′(G/H)

is exact for all H ∈ F . The category of OFG-modules can be shown to have enough
projectives. If Ω1 and Ω2 are G-sets, then we denote by Z[Ω1, Ω2] the free abelian group
on the set of all G-maps Ω1 → Ω2. If H ∈ F , the OFG-module Z[−, G/K] defined by

Z[−, G/K](G/H) = Z[G/H, G/K]
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is free and such modules serve as the building blocks of free OFG-modules. More precisely,
any free OFG-module is a direct sum of such modules.

An OFG-module M is said to be finitely generated if it admits an epimorphism from
some free OFG-module ⊕

i∈I

Z[−, G/Hi]−�M

with I a finite set.
We denote by ZF the OFG-module taking all objects to Z and all arrows to the identity

map. Analogously to ordinary group cohomology, we define the Bredon cohomological
dimension of a OFG-module M to be the shortest length of a projective resolution of M

by OFG-modules, and the cohomological dimension of a group G to be the shortest
length of a projective resolution of the OFG-module ZF . These two integers are denoted
pdF M and cdF G. If F = Fin (the family of finite subgroups), then the notation cdG

is used and if F = V Cyc (the family of virtually cyclic subgroups), then the notation
cd G is used.

The Bredon geometric dimension of a group G, denoted by gdF G, is defined to be the
minimal dimension of a model for EF G. Recall that a G-CW-complex is a CW-complex
with a cellular rigid G-action, where a rigid action is one where the pointwise and setwise
stabilizers of all cells coincide. A model for EF G is defined to be a G-CW-complex X

such that

XH �
{

pt if H ∈ F ,

∅ if H /∈ F .

By an application of the equivariant Whitehead theorem [16, Theorem 2.4], this is unique
up to G-homotopy equivalence. In the case where F = T riv, the family consisting of only
the trivial subgroup, a model for ETriv G is the universal cover EG of an Eilenberg–Mac
Lane space K(G, 1). An n-dimensional model for EF G gives rise to a free resolution of
OFG-modules C∗ by setting Cn(G/H) = Kn(XH), where Kn denotes the cellular chain
complex of a CW-complex. Immediately we deduce that cdF G � gdF G.

A theorem of Lück and Meintrup gives an inequality in the other direction.

Theorem (Lück and Meintrup [19, Theorem 0.1]). gdF G � max{cdF G, 3}.

If F = Fin, we denote the geometric dimension by gd G and if F = V Cyc, we denote
it by gdG. Dunwoody has shown that cdG = 1 implies that gdG = 1 [8], and hence
cd G = gdG unless cd G = 2 and gdG = 3. Brady et al . showed in [3] that this can
indeed happen.

There are many groups for which good models for EG are known; [18] is a good
reference for these.

The FPn-conditions are natural generalizations of the FPn conditions of ordinary
group cohomology. An OFG-module M is FPn if it admits a projective resolution by
OFinG-modules that is finitely generated in all dimensions less than or equal to n. A
group G is FPn if ZFin is FPn.

The following lemma details an alternative algebraic description of the condition FPn

that is easier to calculate.
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Proposition (Kropholler et al . [14, Lemmas 3.1 and 3.2]).

(1) G is FP0 if and only if G has finitely many conjugacy classes of finite subgroups.

(2) An OFG-module M is FPn (n � 1) if and only if G is FP0 and M(G/K) is of type
FPn over the Weyl group WK = NGK/K for all finite subgroups K � G.

Corollary. The following are equivalent for a group G:

(1) G is FPn;

(2) G is FP0 and the Weyl groups WK = NGK/K are FPn for all finite subgroups K;

(3) G is FP0 and the centralizers CGK are FPn for all finite subgroups K.

Proof. By the previous proposition, (1) and (2) are equivalent. To see the equivalence
of (2) and (3), consider the short exact sequence

0 → K → NGK → WK → 0.

K is finite and hence FP∞, so WK is FPn if and only if NGK is FPn [1, Proposition 2.7].
K is finite, so CGK is of finite index in NGK [23, 1.6.13] and, as such, CGK is FPn if
and only if NGK is FPn. Hence, WK is FPn if and only if CGK is FPn. �

The condition that a group G has only finitely many conjugacy classes of finite sub-
groups is extremely strong. In [22] the weaker condition quasi-FPn is introduced.

Definition 2.1.

(1) G is quasi-FP0 if and only if there are finitely many conjugacy classes of finite
subgroups isomorphic to a given finite subgroup.

(2) G is quasi-FPn if and only if G is quasi-FP0 and WK is FPn for every finite K � G.

Many results about finiteness in ordinary group cohomology carry over into the Bredon
case. For example, in [22, § 5] versions of the Bieri–Eckmann criterion for both FPn and
quasi-FPn OFG-modules were shown to hold (see [1, § 1.3] for the classical case).

3. Centralizers of finite subgroups in Hn

First we recall some properties of group actions on sets before narrowing our focus to
Houghton’s group.

Proposition 3.1. If G is a group acting on a countable set X and H is any subgroup
of G, then the following hold.

(1) If x and y are in the same G-orbit, then their isotropy subgroups Gx and Gy are
G-conjugate.

(2) If g ∈ CG(H), then Hgx = Hx for all x ∈ X.
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(3) Partition X into {Xa}t
a=1, where t ∈ N ∪ {∞}, via the equivalence relation ∼,

where x ∼ y if and only if Hx is H-conjugate to Hy. Any two points in the same
H-orbit will lie in the same partition and any c ∈ CG(H) maps Xa onto Xa for
all a.

(4) Let G act faithfully on X with the property that, for all g ∈ G and Xa ⊆ X as
in the previous section, there exists a group element ga ∈ G that fixes X \ Xa and
acts as g does on Xa. Then CG(H) = C1 × · · · × Ct, where Ca is the subgroup of
CG(H) acting trivially on X \ Xa.

Proof. (1) and (2) are standard results.

(3) This follows immediately from (1) and (2).

(4) This follows from (3) and our new assumption on G. Let c ∈ CG(H) and ca be the
element given by the assumption. Since the action of G on X is faithful, ca is necessarily
unique. That the action is faithful also implies that c = c1 · · · ct and that any two ca

and cb commute in G because they act non-trivially only on distinct Xa. Thus we have
the necessary isomorphism CG(H) → C1 × · · · × Ct. �

Let Q � Hn be a finite subgroup of Houghton’s group Hn and let SQ = S \ SQ be
the set of points of S that are not fixed by Q. The finiteness of Q implies that φ(Q) = 0
since any element q with φ(q) �= 0 necessarily has infinite order. For every q ∈ Q there
exists {z1, . . . , zn} ∈ N

n such that

q(i, x) = (i, x) if i � zx.

Taking z′
x to be the maximum of these zx over all elements in Q, it follows that Q must

fix the set {(i, x) : i � z′
x} and, in particular, SQ ⊆ {(i, x) : i < z′

x} is finite.
We need to see that the subgroup Q � Hn acting on the set S satisfies the conditions

of Proposition 3.1 (4). We give the following lemma in more generality than is needed
here as it will be useful later on. That the action is faithful is automatic since an element
h ∈ Hn is uniquely determined by its action on the set S.

Lemma 3.2. Let Q � Hn be a subgroup that is either finite or of the form F � Z

for F a finite subgroup of Hn. Partition S with respect to Q into sets {Sa}t
a=1 as in

Proposition 3.1 (3) applied to the action of Hn on S and the subgroup Q of Hn. Then
the conditions of Proposition 3.1 (4) are satisfied.

Proof. Fix a ∈ {1, . . . , t} and let ha denote the permutation of S that fixes S \ Sa

and acts as h does on Sa. We wish to show that ha is an element of Hn.
There are only finitely many elements in Q with finite order so, as in the argument

just before this lemma, we may choose integers zx for x ∈ {1, . . . , n} such that if q is a
finite-order element of Q, then q(i, x) = (i, x) whenever i � zx. If Q is a finite group,
then one of the following statements holds.
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• Sa is fixed by Q, in which case

{(i, x) : i � zx, x ∈ {1, . . . , n}} ⊆ Sa

so ha(i, x) = h(i, x) for all i � zx. In particular, for large enough i, ha acts as a
translation on (i, x) and is hence an element of Hn.

• Sa is not fixed by Q, in which case

Sa ⊆ {(i, x) : i < zx, x ∈ {1, . . . , n}}.

In particular, Sa is finite and ha(i, x) = (i, x) for all i � zx. Hence, ha is an element
of Hn.

It remains to treat the case in which Q = F �Z. Write w for a generator of Z in F �Z.
By choosing a larger zx if needed, we may assume that w acts either trivially or as a
translation on (i, x) whenever i � zx. Hence, for any x ∈ {1, . . . , n}, the isotropy group
in Q of {(i, x) : i � zx} is either F or Q.

If Sa has isotropy group Q or F , then for some x ∈ {1, . . . , n}, one of the following
statements holds.

• We have
Sa ∩ {(i, x) : i � zx} = {(i, x) : i � zx},

in which case ha(i, x) = h(i, x) for i � zx. In particular, for large enough i, ha acts
as a translation on (i, x) and hence is an element of Hn.

• We have
Sa ∩ {(i, x) : i � zx} = ∅,

in which case ha(i, x) = (i, x) for i � zx. In particular, for large enough i, ha fixes
(i, x) and hence is an element of Hn.

If Sa is the set corresponding to an isotropy group not equal to F or Q, then

Sa ⊆ {(i, x) : i � zx, x ∈ {1, . . . , n}}.

It follows that ha fixes (i, x) for i � zx, and hence ha is an element of Hn. �

Partition S into disjoint sets according to the Q-conjugacy classes of the stabilizers,
as in Proposition 3.1 (3). The set with isotropy in Q equal to Q is SQ and since SQ is
finite the partition is finite, and thus

S = SQ ∪ S1 ∪ · · · ∪ St.

Proposition 3.1 (4) gives that

CHn(Q) = Hn|SQ × C1 × · · · × Ct,
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where each Ca acts only on Sa and leaves SQ and Sb fixed for a �= b (where a, b ∈
{1, . . . , t}). The first element of the direct product decomposition is the subgroup of
CHn(Q) acting only on SQ and leaving S \SQ fixed. This is Hn|SQ (Hn restricted to SQ)
because, as the action of Q on SQ is trivial, any permutation of SQ will centralize Q.
Choose a bijection SQ → S such that, for all x, (i, x) �→ (i + mx, x) for large enough i

and some mx ∈ Z; this induces an isomorphism between Hn|SQ and Hn.
To give an explicit definition of the group Ca we need three lemmas.

Lemma 3.3. Ca is isomorphic to the group T of Q-set automorphisms of Sa.

Proof. An element c ∈ Ca determines a Q-set automorphism of Sa, giving a map
Ca → T . Since the action of Ca on Sa is faithful, this map is injective. Any Q-set
automorphism α of Sa may be extended to a Q-set automorphism of S, where α acts
trivially on S \ Sa. Since Sa is a finite set, α acts trivially on (i, x) for large enough i

and any x ∈ {1, . . . , n}, and hence α is an element of Hn. Finally, since α is a Q-set
automorphism, qαs = αqs (equivalently α−1qαs = s for all s ∈ S and q ∈ Q) showing
that α ∈ Ca and so the map Ca → T is surjective. �

Lemma 3.4. Sa is Q-set isomorphic to the disjoint union of r copies of Q/Qa,
where Qa is an isotropy group of Sa and r = |Sa|/|Q : Qa|.

Proof. Sa is finite and so splits as a disjoint union of finitely many Q-orbits. Choose
orbit representatives {s1, . . . , sr} ⊂ Sa for these orbits. These sk may be chosen to
have the same Q-stabilizers: if Qs1 �= Qs2 , then there is some q ∈ Q such that Qqs2 =
qQs2q

−1 = Qs1 (the partitions Sa were chosen to have this property by Proposition 3.1).
Iterating this procedure, we get a set of representatives who all have isotropy group Qs1 .
Now set Qa = Qs1 and note that there are |Q : Qa| elements in each of the Q-orbits, so
r|Q : Qa| = |Sa|. �

Recall that if G is any group and r � 1 is some natural number, then the wreath
product G � Symr is the semi-direct product

G � Symr =
r∏

k=1

G � Symr,

where the symmetric group Symr acts by permuting the factors in the direct product.
Recall also that for any subgroup H of a group G, the Weyl group WGH is defined to

be WGH = NGH/H.

Lemma 3.5. The group Ca is isomorphic to the wreath product WQQa � Symr,
where Qa is some isotropy group of Sa and r = |Sa|/|Q : Qa|.

Proof. Using Lemmas 3.3 and 3.4, Ca is isomorphic to the group of Q-set automor-
phisms of the disjoint union of r copies of Q/Qa.

To begin, we show that the group of automorphisms of the Q-set Q/Qa is isomorphic to
WQQa. An automorphism α : Q/Qa → Q/Qa is determined by the image α(Qa) = qQa

of the identity coset and such an element determines an automorphism if and only if

https://doi.org/10.1017/S0013091514000285 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000285


776 S. St. John-Green

Figure 1. A representation of Sa. The large circles are the sets {Qs1, . . . , Qsr} (in this figure
r = 3). Elements of Symr permute only the large circles, while elements of

∏r
k=1WQQa leave

the large circles fixed and permute only elements inside them.

q−1Qaq � Qa, or equivalently q ∈ NQQa. Since two elements q1, q2 ∈ Q will determine
the same automorphism if and only if q1Qa = q2Qa, the group of Q-set automorphisms
of Q/Qa is the Weyl group WQQa.

For the general case, note that if c ∈ Ca, then c permutes the Q-orbits {Qs1, . . . , Qsr},
so there is a map Ca → Symr. Assume that the representatives {s1, . . . , sr} have been
chosen, as in the proof of Lemma 3.4, to have the same Q-stabilizers. The map π is split
by the map

ι : Symr → Ca,

σ �→ (ι(σ) : qsk �→ qsσ(k) for all q ∈ Q).

Each ι(σ) is a well-defined element of Hn since

qsk = q̃sk ⇐⇒ q̃−1q ∈ Qsk
= Qsσ(k) ⇐⇒ qsσ(k) = q̃sσ(k).

The kernel of the map π is exactly the elements of Ca that fix each Q-orbit but
may permute the elements inside the Q-orbits; by the previous part, this is exactly∏r

k=1WQQa. For any σ ∈ Symr, the element ι(σ) acts on
∏r

k=1WQQa by permuting the
factors, so the group Ca is indeed isomorphic to the wreath product. �

The centralizer CHn
Q can now be completely described.

Proposition 3.6. The centralizer CHn(Q) of any finite subgroup Q � Hn splits as a
direct product

CHn(Q) ∼= Hn|SQ × C1 × · · · × Ct,

where Hn|SQ
∼= Hn is Houghton’s group restricted to SQ and, for all a ∈ {1, . . . , t},

Ca
∼= WQQa � Symr

for Qa an isotropy group of Sa and r = |Sa|/|Q : Qa|. In particular, Hn has finite index
in CHn(Q).
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Proof. We have already proven that

CHn(Q) ∼= Hn|SQ × C1 × · · · × Ct

and Lemma 3.5 gives the required description of Ca. �

Corollary 3.7. If Q is a finite subgroup of Hn, then the centralizer CHn(Q) is FPn−1

but not FPn.

Proof. Hn is finite index in the centralizer CHn(Q), by Proposition 3.6. Appealing
to Brown’s result [5, Theorem 5.1] that Hn is FPn−1 but not FPn, and that a group is
FPn if and only if a finite index subgroup is FPn [4, Proposition VIII.5.5.1], we deduce
that CHn(Q) is FPn−1 but not FPn. �

4. Centralizers of elements in Hn

If q ∈ Hn is an element of finite order, then the subgroup Q = 〈q〉 is a finite subgroup and
the previous section may be used to describe the centralizer CHn

(q) = CHn
(Q). Thus,

for an element q of finite order, CHn
(q) ∼= C × Hn for some finite group C.

If q ∈ Hn is an element of infinite order and Q = 〈q〉, then we may apply Proposi-
tion 3.1 (3) to split up S into a disjoint collection {Sa : a ∈ A ⊆ N}∪SQ (SQ is the element
of the collection associated with the isotropy group Q). Assume that S0 is the set associ-
ated with the trivial isotropy group. Since q is a translation on (i, x) ∈ S = N×{1, . . . , n}
for large enough i, and points acted on by such a translation have trivial isotropy, there
are only finitely many elements of S whose isotropy group is neither the trivial group
nor Q. Hence, Sa is finite for a �= 0 and the set A is finite. From now on let A = {0, . . . , t}.
We now use Lemma 3.2 and Proposition 3.1 (4) as in the previous section: CHn(Q) splits
as

CHn(Q) ∼= C0 × C1 × · · · × Ct × Hn|SQ ,

where Ca acts only on Sa and Hn|SQ is Houghton’s group restricted to SQ. Unlike in the
last section, Hn|SQ may not be isomorphic to Hn. Let J ⊆ {1, . . . , n} satisfy

x ∈ J if and only if (i, x) ∈ SQ for all i � zx, some zx ∈ N.

If x /∈ J , then, for large enough i, q must act as a non-trivial translation on (i, x) and the
set (N×{x})∩SQ is finite. Clearly, |J | � n− 2, but different elements q may give values
0 � |J | � n − 2. In the case |J | = 0, SQ is necessarily finite and so Hn|SQ is isomorphic
to a finite symmetric group on SQ. It is also possible that SQ = ∅, in which case Hn|SQ

is just the trivial group. If |J | �= 0, then the argument proceeds as in the previous section
by choosing a bijection

SQ → N × J

such that (i, x) �→ (i + mx, x) for some mx ∈ Z whenever i is large enough and x ∈ J .
This set map induces a group isomorphism between Hn|SQ and H|J| (Houghton’s group
on the set J × N).
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Lemma 3.5 describes the groups Ca for a �= 0, so it remains only to treat the case a = 0.
We cannot use the arguments used for a �= 0 here as the set S0 is not finite. In particular,
Lemma 3.3 does not apply: every Q-set isomorphism of S0 is realized by an element of
the infinite support permutation group on S0, but there are Q-set isomorphisms of S0

that are not realized by an element of Hn.
The next three lemmas are needed to describe C0 and this description will use the

graph Γ , which we now describe. The vertices of Γ are those x ∈ {1, . . . , n} for which q

acts non-trivially on infinitely many elements of N × {x}. Equivalently, the vertices are
the elements of {1, . . . , n} \ J . There is an edge from x to y in Γ if there exists s ∈ S0

and N ∈ N such that, for all m � N , we have q−ms ∈ N × {x} and qms ∈ N × {y}.
Let π0Γ denote the path components of Γ and for any vertex x of Γ denote by [x] the
element of π0Γ corresponding to that vertex.

Let z ∈ N be some integer such that, for all i � z, q acts trivially or as a translation
on (i, x) for all x ∈ {1, . . . , n}. Fix z for the remainder of this section.

For each path component [x] in π0Γ , let S
[x]
0 denote the smallest Q-subset of S0

containing the set {(i, y) : i � z, y ∈ [x]}. Note that (i, y) /∈ S
[x]
0 for any y /∈ [x] and i � z

since if (i, x) and (j, y) are two elements of S0 in the same Q-orbit with i � z and j � z,
then there is an edge between x and y in Γ : if (i, x) = qk(j, y) and q acts as a positive
translation on the element (i, x), then let N = k and s = (i, x), and similarly for when q

acts as a negative translation. This gives a Q-set decomposition of S0 as

S0 =
∐

[x]∈π0Γ

S
[x]
0 ,

where
∐

denotes disjoint union.

Lemma 4.1. Let [x] ∈ π0Γ . If C
[x]
0 denotes the subgroup of C0 that acts non-trivially

only on S
[x]
0 , then there is an isomorphism

C0 ∼= C
[x1]
0 × · · · × C

[xr]
0 ,

where [x1], [x2], . . . , [xr] are all elements of π0Γ .

Proof. If c ∈ C0 and [x] ∈ π0Γ , then let c[x] denote the permutation of S such that c[x]

acts as c does on S
[x]
0 , and acts trivially on S \ S

[x]
0 . We will show that c[x] is an element

of C0. Since the action of C0 on S0 is faithful, it follows that the elements c[x] and c[y]

commute and
c = c[x1]c[x2] · · · c[xr],

which suffices to prove the lemma.
Let y ∈ {1, . . . , n}. The element c[x] acts trivially on (i, y) for i � z if y /∈ [x], and acts

as c does on (i, y) for i � z if y ∈ [x]. Thus, c[x] is an element of Hn. Since c[x] is also a
Q-set automorphism of S, c[x] is a member of C0. �

Lemma 4.2. Let [x] ∈ π0Γ , c ∈ C0 and let z′ ∈ N such that c acts either trivially
or as a translation on (i, x) for all x ∈ {1, . . . , n} and i � z′. The action of c on some
element (i, x) ∈ S for i � z′ then completely determines the action of c on S

[x]
0 .
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Proof. Firstly, note that knowing the action of c on some element (i, x) for i � z′

determines the action of c on the set {(i, x) : i � z′} since we chose z′ in order to have
this property.

Let y ∈ [x] such that there is an edge from x to y and so there is a natural number N

and element s ∈ S
[x]
0 such that qNs = (i, x) and q−Ns = (j, y) for some natural numbers i

and j. By choosing N larger if necessary, we can take i, j � z′. The action of c on (j, y)
is now completely determined by the action on (i, x) since

c(j, y) = cq−2N (i, x) = q−2Nc(i, x).

For any y ∈ [x] there is a path from x to y in Γ , so we have determined the action of
c on the set X = {(j, y) : j � z′, y ∈ [x]}. If s ∈ S

[x]
0 \ X, then, since S

[x]
0 \ X is finite,

there is some integer m with qms = x ∈ X. So cs = cq−mx = q−mcx, which completely
determines the action of c on s. �

Lemma 4.3. For any [x] ∈ π0Γ there is an isomorphism

C
[x]
0

∼= Z.

Proof. By Lemma 4.2 the action is completely determined by the action on some
element (i, x) for large enough i, and the action on this element is necessarily by transla-
tion by some element mx(c). This defines an injective homomorphism C

[x]
0 → Z, sending

c �→ mx(c). Let q[x] be the element of C
[x]
0 described in the proof of Lemma 4.1: q[x] is a

non-trivial element of C
[x]
0 , so C

[x]
0 is mapped isomorphically onto a non-trivial subgroup

of Z. �

Combining Lemmas 4.1 and 4.3 shows that C0 ∼= Z
r, where r = |π0Γ |.

Recall that the vertices of Γ are indexed by the set {1, . . . , n} \ J . Since there are
no isolated vertices in Γ , |π0Γ | � �(n − |J |)/2� (where �·� denotes the integer floor
function). Recalling that 0 � |J | � n − 2, the set {1, . . . , n} \ J is necessarily non-empty,
so 1 � |π0Γ |. Combining these gives

1 � |π0Γ | � �(n − |J |)/2�.

We can now completely describe the centralizer CHn
(q).

Theorem 4.4.

(1) If q ∈ Hn is an element of finite order, then

CHn(q) ∼= Hn|SQ × C1 × · · · × Ct,

where Hn|SQ
∼= Hn is Houghton’s group restricted to SQ and, for all a ∈ {1, . . . , t},

Ca
∼= WQQa � Symr

for Qa an isotropy group of Sa and r = |Sa|/|Q : Qa|. In particular, Hn is finite
index in CHnQ.
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(2) If q ∈ Hn is an element of infinite order, then either

CHn(q) ∼= Hk × Z
r × C1 × · · · × Ct

or
CHn(q) ∼= F × Z

r × C1 × · · · × Ct,

where F is some finite symmetric group, Hk is Houghton’s group with 0 � k � n−2,
and the groups Ca are as in the previous part. In the first case 1 � r � �(n− k)/2�
and in the second case 1 � r � �n/2�.

In Corollary 3.7 it was proved that for an element q of finite order, CHn(q) is FPn−1

but not FPn. The situation is much worse for elements q of infinite order, in which case
the centralizer may not even be finitely generated. For example, when n is odd and q is
the element acting on S = N × {1, . . . , n} as

q :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i, x) �→ (i + 1, x) if x � (n − 1)/2,

(i, x) �→ (i − 1, x) if (n + 1)/2 � x � n − 1 and i �= 0,

(0, x) �→ (0, x − ((n − 1)/2)) if (n + 1)/2 � x � n − 1,

(i, n) �→ (i, n),

the only fixed points are on the ray N × {n}. The argument leading up to Theorem 4.4
shows that the centralizer is a direct product of groups, one of which is Houghton’s
group H1, which is isomorphic to the infinite symmetric group and hence is not finitely
generated. In particular, for this q, the centralizer CHn(q) is not even FP1. A similar
example can easily be constructed for the case in which n is even.

All the groups in the direct product decomposition from Theorem 4.4 except Hk are
FP∞, being built by extensions from finite groups and free abelian groups. By choosing
various infinite-order elements q, for example by modifying the example of the previous
paragraph, the centralizers can be chosen to be FPk for 0 � k � n−3. The upper bound
of n − 3 arises because any infinite-order element q must necessarily be ‘eventually a
translation’ (in the sense of (1.1)) on N × {x} for at least two x. As such, the copy of
Houghton’s group in the centralizer can act on at most n − 2 rays and is thus at largest
Hn−2, which is FPn−3.

Corollary 4.5. If Q is an infinite virtually cyclic subgroup of Hn, then either

CHn(Q) ∼= Hk × Z
r × C1 × · · · × Ct

or
CHn(Q) ∼= F × Z

r × C1 × · · · × Ct,

where the elements in the decomposition are all as in Theorem 4.4.

This corollary can be proved by reducing to the case of Theorem 4.4, but before that
we require the following lemma.

Lemma 4.6. Every infinite virtually cyclic subgroup Q of Hn is finite-by-Z.
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Proof. By [12, Proposition 4], Q is either finite-by-Z or finite-by-D∞, where D∞
denotes the infinite dihedral group. We show that the latter cannot occur. Assume that
there is a short exact sequence

0 → F ↪→ Q
π−→ D∞ → 0,

where F is regarded as a subgroup of Q. Let a and b generate D∞ so that

D∞ = 〈a, b | a2 = b2 = 1〉.

Let p, q ∈ Q be lifts of a and b such that π(p) = a and π(q) = b; then p2 ∈ F . Since F is
finite, p2 has finite order and hence p has finite order. The same argument shows that q

has finite order. pq ∈ Q necessarily has infinite order as π(pq) is of infinite order in D∞.
However, since p and q are finite-order elements of Hn, by the argument at the begin-

ning of § 3, they both permute only a finite subset of S. Thus, pq permutes a finite subset
of S and is of finite order, but this contradicts the previous paragraph. �

Proof of Corollary 4.5. Using the previous lemma, write Q as Q = F � Z, where F

is a finite group. As F is finite, the set SF of points not fixed by F is finite (see the
argument at the beginning of § 3). Let z ∈ N be such that, for i � z, F acts trivially on
(i, x) for all x and Z acts on (i, x) either trivially or as a translation. Applying Lemma 3.2
and Proposition 3.1, S splits as a disjoint union

S = SQ ∪ S0 ∪ S1 ∪ · · · ∪ St,

where SQ is the fixed-point set, S0 is the set with isotropy group F and the Sa for
1 � a � t are subsets of {(i, x) : i � z}, and hence are all finite. By Proposition 3.1,
CHn

(Q) splits as a direct product

C = Hn|SQ × C0 × C1 × · · · × Ct,

where Hn|SQ denotes Houghton’s group restricted to SQ. The argument of Theorem 4.4
showing that Hn|SQ is isomorphic to either a finite symmetric group or to Hk for some
0 � k � n−2 applies without change, as does the proof of the structure of the groups Ca

for 1 � a � t. It remains to observe that because every element in S0 is fixed by F ,
any element of Hn centralizing Z and fixing S \ S0 necessarily also centralizes Q, and is
thus a member of C0. This reduces us again to the case of Theorem 4.4, showing that
C0 ∼= Z

r for some natural number 1 � r � �(n − k)/2�, or 1 � r � �n/2� if Hn|SQ is a
finite symmetric group. �

5. Brown’s model for EHn

The main result of this section will be Corollary 5.5, where the construction of Brown [5]
that is used to prove that Hn is FPn−1 but not FPn is shown to be a model for EHn.

Remark 5.1. Since the main objects of study in this section are monoids, maps are
written from left to right.
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Write M for the monoid of injective maps S → S with the property that every permu-
tation is ‘eventually a translation’ (in the sense of (1.1)) and write T for the free monoid
generated by {t1, . . . , tn}, where

(i, x)ty =

{
(i + 1, x) if x = y,

(i, x) if x �= y.

The elements of T will be called translations. The map φ : Hn → Z
n, defined in (1.2),

extends naturally to a map φ : M → Z
n. Give M a poset structure by setting α � β

if β = tα for some t ∈ T . The monoid M can be given the obvious action on the right
by Hn, which in turn gives an action of Hn on the poset (M,�) since β = tα implies
that βh = tαh for all h ∈ Hn. Let |M| be the geometric realization of this poset; namely,
simplicies in |M| are finite ordered collections of elements in M with the obvious face
maps. An element h ∈ Hn fixes a vertex {α} ∈ |M| if and only if sαh = sα, which is
true if and only if h fixes Sα. Thus, the stabilizer (Hn)α may only permute the finite set
S \ Sα and we may deduce the following proposition.

Proposition 5.2. Stabilizers of simplicies in |M| are finite.

We now build up to the proof that |M| is a model for EHn with a few lemmas.

Proposition 5.3. If Q � Hn is a finite group, then the fixed-point set |M|Q is non-
empty and contractible.

Proof. For all q ∈ Q, choose {z0(q), . . . , zn(q)} to be an n-tuple of natural numbers
such that (i, x)q = (i, x) whenever i � zx(q) for all i. Q then fixes all elements (i, x) ∈ S

with i � maxQ zx(q). Define a translation t = t
maxQ z1(q)
1 · · · tmaxQ zn(q)

n , t ∈ MQ, so that
{t} is a vertex of |M|Q and |M|Q �= ∅.

If {m}, {n} ∈ |M|Q, then let a, b ∈ T be two translations such that

φ(m) − φ(n) = φ(b) − φ(a)

(recall that for a translation t, φ(t) must be an n-tuple of positive numbers). Thus,
φ(am) = φ(bn) and, since am, bn ∈ M, there exist n-tuples {z1, . . . , zn} and {z′

1, . . . , z
′
n}

such that am acts as a translation for all (i, x) ∈ S with i � zx and bn acts as a translation
for all (i, x) ∈ S with i � z′

x. Let

c = t
max{z1,z′

1}
1 · · · tmax{zn,z′

n}
n

so that cam = cbn. Further pre-composing c with a large translation (for example,
that from the first section of this proof), we can assume that cam = cbn ∈ MQ and
{cam = cbn} ∈ |M|Q. This shows that the poset MQ is directed and hence the simplicial
realization |MQ| = |M|Q is contractible. �

Proposition 5.4. If Q � Hn is an infinite group, then |M|Q = ∅.
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Proof. Consider an infinite subgroup Q � Hn with |M|Q �= ∅ and choose some vertex
{m} ∈ |M|Q. For any q ∈ Q, since mq = m, it must be that φ(m) + φ(q) = φ(m) and
so φ(q) = 0, and hence Q is a subgroup of Sym∞ � Hn. Furthermore, Q must permute
an infinite subset of S (if it permuted just a finite set it would be a finite subgroup).
That mq = m implies that this infinite subset is a subset of S \ Sm, but this is finite by
construction. So the fixed-point subset |M|Q for any infinite subgroup Q is empty. �

Corollary 5.5. |M| is a model for E Hn.

Proof. Combine Propositions 5.2, 5.3 and 5.4. �

6. Finiteness conditions satisfied by Hn

Recall from § 2 that a group G is FP0 if and only if it has finitely many conjugacy classes
of finite subgroups. G satisfies the weaker quasi-FP0 condition if and only if it has finitely
many conjugacy classes of subgroups isomorphic to a given finite subgroup.

Proposition 6.1. Hn is not quasi-FP0.

Before the above proposition is proved, we need a lemma. In the infinite symmetric
group Sym∞ acting on the set S, elements can be represented by products of disjoint
cycles. We use the standard notation for a cycle: (s1, s2, . . . , sm) represents the element
of Sym∞ sending si �→ si+1 for i < n and sn �→ s1. Any element of finite order in Hn is
contained in the infinite symmetric group Sym∞ by the argument at the beginning of § 3.
We say two elements of Sym∞ have the same cycle type if they have the same number
of cycles of length m for each m ∈ N.

Lemma 6.2. If q is a finite-order element of Hn and h is an arbitrary element of Hn,
then hqh−1 is the permutation given in the disjoint cycle notation by applying h to each
element in each disjoint cycle of q. In particular, if q is represented by the single cycle
(s1, . . . sm), then hqh−1 is represented by (hs1, . . . , hsm).

Furthermore, two finite-order elements of Hn are conjugate if and only if they have
the same cycle type.

Proof. The proof of the first part is analogous to [24, Lemma 3.4]. Let q be an element
of finite order and let h be an arbitrary element of Hn. If q fixes s ∈ S, then hqh−1 fixes
hs. If q(i) = j, h(i) = k and h(j) = l, for i, j, k, l ∈ S, then hqh−1(k) = l, as required.

By the above, conjugate elements have the same cycle type. For the converse, notice
that any two finite-order elements with the same cycle type necessarily lie in Symr for
some r ∈ N, so by [24, Theorem 3.5] they are conjugated by an element of Symr. �

Proof of Proposition 6.1. If q is any order 2 element of Hn, then {idHn , q1} is a
subgroup of Hn isomorphic to Z2. Choosing a collection of elements qi for each i ∈ N�1

so that qi has i disjoint 2-cycles gives a collection of isomorphic subgroups that are all
non-conjugate, by Lemma 6.2. �

Proposition 6.3. cd Hn = gdHn = n.
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Proof. As described in the introduction, Hn can be written as

Sym∞ ↪−→Hn−�Z
n−1.

gd Z
n−1 = n − 1 since a model for E Z

n−1 is given by R
n−1 with the obvious action.

gd Sym∞ = 1 by [20, Theorem 4.3], as it is the colimit of its finite subgroups, each of
which have geometric dimension 0, and the directed category over which the colimit is
taken has homotopy dimension 1 [20, Lemma 4.2]. Z

n−1 is torsion free and so has a
bound of 1 on the orders of its finite subgroups and we deduce from [17, Theorem 3.1]
that gdHn � n − 1 + 1 = n.

To deduce the other bound, we use an argument due to Gandini [9]. Assume that
cd Hn � n − 1. By [3, Theorem 2],

cdQ � cd Hn = n − 1.

In [5, Theorem 5.1] it is proved that Hn is FPn−1 (but not FPn). Combining this with [15,
Proposition 1], we deduce that there is a bound on the orders of the finite subgroups
of Hn, but this is obviously a contradiction. Thus,

n � cd Hn � gdHn � n.

�

Remark 6.4. In [7, Theorem 1], it is proved that for every countable elementary
amenable group G of finite Hirsch length h, gdG � h + 2 (see the beginning of [10] for
a precise definition of Hirsch length for elementary amenable groups). From this we may
deduce that since the Hirsch length of Hn is h(Hn) = n − 1,

gdHn � n + 1.

In [20, Corollary 5.4] it is proved that gdG � gdG − 1 for any group G. Thus, we
deduce that

n − 1 � gdHn � n + 1.

We finish with the following question.

Question 6.5. What is the exact geometric dimension of Houghton’s group Hn with
respect to the family of virtually cyclic subgroups?
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