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Abstract. In the parameter regime where the ion/electron–dust collisions domin-
ate with respect to the plasma binary collisions, the presence of plasma fluxes
to the dust surfaces and dust charge fluctuations can significantly modify the
dusty plasma response to low-frequency perturbations, with respect to the multi-
component response (no charging collisions, fixed dust charge). Here the response
found from the kinetic theory which consistently takes into account collisions and
charge fluctuations is examined, analytic expressions are given and the parameter
regime where significant differences with respect to the multi-component approach
arise is determined. The streaming instability is considered as a particular example
and it is shown that both the real and imaginary parts of the frequency can be
significantly changed with respect to the multi-component results.

1. Introduction
Owing to the charging collisions of electrons and ions with dust particles, dusty
plasmas are dissipative systems and the dust charge fluctuates in response to
fluctuating plasma currents. These effects have been consistently taken into account
to find the plasma responses and dispersion relation (DR) in dusty plasmas [1–
3], in the parameter regime ndZ

2
d/ne > 1 (nd, ne dust and electron densities,

qeq = −eZd equilibrium dust charge, negative if only plasma currents contribute
to the charging) where the electron/ion–dust collisions dominate with respect to
the plasma binary collisions [4]. The charging collisions induce fluctuations of
the dust charge which, in turn, induce plasma and field fluctuations, to be taken
into account in the dusty plasma response [1, 2]. When all of these effects are
negligible, the response (permittivity) is just the sum of the susceptibilities of the
three components (electrons, ions and dust particles with fixed charge) [5]:

ε
(0)
k,ω = 1 +

∑
α

χ
α(0)
k,ω ; χ

α(0)
k,ω =

ω2
pα

k2

∫
1

ω − k · v+ i0
k · ∂Fα (v)

∂v
dv (1.1)

where ωpα and Fα (v) are the plasma frequency and equilibrium distribution func-
tion (normalized to 1) of the α-species (α = e, i,d) (the i0 in the denominator is the
usual notation to account for causality). The charging collisions are described by
cross sections σα (q, v) (α = e, i; q is the dust charge, v is the electron or ion velocity,
assumed to be much larger than the dust velocities) and collision frequencies

νd,α (v) = ndv

∫
σα (q, v)F d(q, v′) dq dv′ � vndσα (qeq, v) (1.2)
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where the last approximation assumes that the equilibrium distribution of dust
charges F d(q, v′) is peaked around q = qeq, the equilibrium value determined by
the condition of zero net plasma flux to the dust surface, and the charge fluctuations
are small (|q − qeq|/|qeq| � 1, see [6]). The approximate equality in (1.2) then comes
from the zero order in the expansion of σα (q, v) around qeq and the normalization
condition: ∫

F d(q, v′) dq dv′ = 1. (1.3)

In the following estimates the orbital motion limited (OML) expressions for the
cross sections will be used, for spherical grains of radius a:

σα (qeq, v) = πa2

(
1 − 2qeqeα

amαv2

)
(1.4)

and for electrons it is σe = 0 for v < vmin ≡ (2e2Zd/ame)1/2 (for negative dust
particles).
Taking into account the charging collisions introduces changes in the electron

and ion susceptibilities, which are given by [1,2]

χα
k,ω =

ω2
pα

k2

∫
1

ω − k · v+ iνd,α (v)
k · ∂Fα (v)

∂v
dv (α = e, i). (1.5)

It should be stressed that in the presence of the dissipative collisions the equilibrium
plasma distributions Fα (v) are not, in general, Maxwellian [7], although in the fol-
lowing estimates Maxwellian distributions will be assumed. The charging collisions
and consequent dust charge fluctuations also introduce new ‘mixed’ terms in the
dusty plasma response εk,ω , such that it can no longer be written as the sum of the
susceptibilities.
It is the aim of this work to discuss the dusty plasma permittivity (Sec. 2), to give

analytical expressions for the low-frequency responses (see the Appendix), which
can be useful in the study of low-frequency modes ω � kvTe , kvT i (where vTα

is the
thermal velocity) in dusty plasmas and to compare the behavior of the response with
the multi-component case (Sec. 3) to find the parameter regime where significant
differences appear and the effects of the charging collisions cannot be neglected. The
case of relative dust–plasma streaming is considered as an example of the changes
due to the effect of the charging collisions and dust charge fluctuations.

2. The permittivity of dusty plasmas
Neglecting the collisions with neutrals, the dusty plasma permittivity εk,ω , derived
in [3], contains plasma responses, dust responses and mixed dust–plasma responses.
It can conveniently be written in the form

εk,ω = 1 + χek,ω + χik,ω + χ
d(eq)
k,ω

(
1 +

q̃k ,ω

qeq

)
+

4πi

k
χd,chk,ω βk,ω (1 + β̃k ,ω ). (2.1)

The dust susceptibility χ
d(eq)
k,ω appearing in (2.1) is found to be given by (1.1) with

ωpd calculated with qeq and the integrated dust distribution

F d(v) =
∫

F d(q, v) dq. (2.2)
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A new dust response present in (2.1) is the charging response:

χd,chk,ω = ind

∫
F d(v)

ω − k · v+ iνch
dv (2.3)

where νch is the charging frequency, defined in [1]. The other ‘mixed’ responses
appearing in (2.1) are strictly a consequence of the charging processes and they all
vanish for σα = 0; they are defined in [1,2] in general but here only their expressions
in the particular case of low frequency Maxwellian equilibrium distributions and
OML cross sections will be given. These responses depend on frequency through the
expression ω − k · v, where v is the electron or ion velocity.
The kinetic equations for the evolution of the plasma and the dust distribution [1]

contain collision integrals, for electron–dust, ion–dust and dust–dust collisions, in
which the permittivity is evaluated at ω = k · v′ (v′ dust velocity): εk,k · v′ . Therefore
for thermal dust and plasma velocities vd, vTα

such that vd � vTα
and for low-

frequency modes ω � kvd � kvTα
, the mixed responses can effectively be evaluated

at zero frequency. In the same limit χd,chk,ω � nd/νch (for νch � ω) and, using the
expression for βk,ω as given in [1] the dusty plasma permittivity can be written as

εk,ω = 1 + χek,0 + χik,0 + χd,e,ik,0 + χ
d(eq)
k,ω

(
1 +

q̃k ,0

qeq
+ χ̃d,e,ik,0

)
(2.4)

where

χd,e,ik,0 ≡ 4πi

k

nd
νch

Sk,0

1 − (nd/νch)S̃ ′
k,0

(1 + β̃k ,0);

χ̃d,e,ik,0 ≡ nd
qeqνch

S̃k,0

1 − (nd/νch)S̃ ′
k,0

(1 + β̃k ,0).

(2.5)

Notice that the only dependence of εk,ω on the frequency, in this regime, is through
the dust equilibrium susceptibility χ

d(eq)
k,ω . The zero-frequency responses, (2.4) and

(2.5), have been calculated in [2] for Maxwellian distributions and OML cross
sections and all depend on the parameters

z =
e2Zd
akBTe

; τ =
Ti
Te

; P =
ndZd
ne

(2.6)

where Te (Ti) is the electron (ion) temperature. The ion density ni is always ex-
pressed through the quasi-neutrality condition ni = ne(1 + P ), for negative dust.
They are reported here for convenience, using the same notation as in [2]:

χα
k,0 = χ

α(0)
k,0 [1 − Gα (κα )]; (α = e, i) (2.7)

where χ
α(0)
k,0 = (k2d2

α )−1 are the zero-frequency susceptibilities from (1) and dα =
vTα

/ωpα is the electron or ion Debye length;

Sk,0 = − iνch
πaκend

1
1 + τ + z

{
(τ + z)[1 − Fe(κe)] +

κe
κi

[
1 +

τ

z
− Fi(κi)

]}
(2.8)

S̃k,0 = −qeqνch
nd

1
1 + τ + z

{(
1 +

τ

z

)
Fe(κe) − Fi(κi)

}
(2.9)

https://doi.org/10.1017/S0022377805004009 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377805004009


332 C. Marmolino and U. de Angelis

S̃ ′
k,0 =

νch
nd

1
1 + τ + z

{
(τ + z)FM

e (κe) + FM
i (κi)

}
(2.10)

q̃k ,0 =
qeq
P

{Ge(κe) − (1 + P )Gi(κi)} (2.11)

β̃k ,0 = P (z + τ)
vT iz

vT eτ
GM
e (κe) + PGM

i (κi) (2.12)

where the dimensionless wavenumbers are defined as

κe =
k

πa2nd
, κi = κe

τ

z
(2.13)

and all the functions Ge, Gi, Fe, Fi, GM
e , G

M
i , F

M
e and FM

i are given in [2] in a form
ready for numerical calculation, while their analytical expansions, for large and
small κe, are given here in the Appendix. These expansions are particularly useful
in the ranges where the numerical errors become of the same order of magnitude as
the functions. The charging frequency, defined in [1], has the following approximate
expression in the OML approximation:

νch ≈ ωpi
a√
2πdi

(1 + τ + z). (2.14)

Using the expressions (2.7)–(2.12) in (2.4) the low-frequency permittivity can finally
be written in the form

εk,ω = 1 + χ
(0)
k,ω + δχcollk,ω (P, z, τ) (2.15)

where χ
(0)
k,ω = χ

e(0)
k,0 +χ

i(0)
k,0 +χ

d(eq)
k,ω is the multi-component result and the correction

due to the effects of charging collisions is given by

δχcollk,ω (P, z, τ) = Ak + χ
d(eq)
k,ω Bk (2.16)

with

Ak = −χ
e(0)
k,0 Ge − χ

i(0)
k,0 Gi +

4
πa3ndκ2

e

[
1 + τ + z − (τ + z)Fe − z

τ
(Fi − 1)

]
Rk (2.17)

Bk =
1
P

Ge − 1 + P

P
Gi +

(
Fi − τ + z

z
Fe

)
Rk (2.18)

and

Rk ≡ 1 + P (τ + z)(vT i/vTe)(z/τ)GM
e + PGM

i

1 + τ + z − (τ + z)FM
e − FM

i
. (2.19)

3. Numerical results
The difference between the multi-component result and the result including the
effects of the charging collisions depends on the parameters P, z and τ (they are
not independent if a charging equation is included) and on the frequency in the
dust susceptibility. For a Maxwellian dust distribution this is given by

χ
d(eq)
k,ω =

ω2
pd

k2v2
T d

(
1 − 2ye−y2

∫ y

0

et2 dt

)
(3.1)
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Figure 1. The relative difference in the susceptibility between the dusty and the multi-
component results, as a function of the dimensionless wavenumber κe, for two values
of τ and different values of P . The discontinuity, visible for large κe, is discussed in the
text.

with y = ω/(
√

2kvT d). As an estimate, the difference is shown at a frequency
ω = ωpd, which is representative of most of the low-frequency dusty plasma modes.
A calculation for a particular mode is given at the end of this section. The dust
Debye radius can be written as

v2
T d

ω2
pd

= d2
d = d2

i
1 + P

P

Td
TiZd

= d2
i
nd
ne

1 + P

P 2
(3.2)

where the last equality is for Td � Ti. The ratio of dust to electron density is
therefore an additional parameter. Figure 1 shows the relative difference in the
susceptibility δχcoll/χ(0) as a function of κe, for Te = 104 K and of the ratio
a/∆ = 10−2 between the grain radius and the inter-dust particle distance, two
values of τ and different values of P , with z calculated as a function of P and τ
from the orbit limited motion equation for grain charging. Notice that, for small
κe, both δχcoll and χ(0) go as 1/κ2

e with opposite sign so that their ratio goes to
−1, corresponding to εκ,ω → 1 at small κe, quite different from the behavior of
ε
(0)
κ,ω = 1 + χ

(0)
κ,ω . For large κe, δχcoll goes to zero as 1/κe, while χ(0) reduces to χdκ,ω

which is−1, then their ratio goes to zero as 1/κe and εκ,ω → ε
(0)
κ,ω . This behavior also

explains the discontinuity visible in the figure at large κe. In fact, the discontinuity
is located at χ(0) = 0, i.e. essentially at χ

i(0)
κ,0 � 1 or κ2

e � 4ζ(1 + P )/(πa3ndP ).
The difference between the two approaches is negligible only for very large values
of κe.
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Finally, as an example of the effect on the real and imaginary parts of the
frequency of a particular mode, the case of streaming dust (with velocity v0 with
respect to the plasma) is considered. Taking the dust susceptibility as

χ
d(eq)
k,ω =

ω2
pd

Ω2
; Ω = ω − k · v0 (3.3)

and defining

ak,0 = 1 + χ
e(0)
k,0 + χ

i(0)
k,0 (3.4)

ak = 1 + χek,0 + χik,0 + χd,e,ik,0 (3.5)

bk = 1 +
q̃k ,0

qeq
+ χ̃d,e,ik,0 (3.6)

the solution of the dispersion relation is given by

Ω2 = −ω2
pd

bk

ak
. (3.7)

In the multi-component case (bk = 1, ak = ak,0 > 0) the solution for the complex
frequency ω = ω0

r + iω0
i is

ω = k · v0 + i
ωpd√
ak,0

. (3.8)

In the general case the solutions depend on the sign of bk/ak (which can change
depending on the parameter regime). For bk/ak > 0 it is

ω = k · v0 + iωpd

√
bk

ak
(3.9)

while for bk/ak < 0 the solution is real (no instability):

ωr = k · v0 + ωpd

√
−bk

ak
. (3.10)

The relative differences between the imaginary parts and the real parts are shown
in Fig. 2 for several values of the parameters. Again, it is clear that the dusty
mode can be very different from the multi-component one. In particular, the largest
differences are in the imaginary part of the solution for P > 1, while they appear
in the real part of the solution for P < 1, whatever the values of τ . The variations,
both in the imaginary and real parts, depend strongly on τ , the dusty solution
becoming almost an order of magnitude more instable for τ = 0.01 and large P ,
while the instability is reduced with respect to the multi-component solution for
τ = 1 for all the P values we investigated.

4. Conclusions
The charging collisions of plasma particles with dust and the dust charge fluc-
tuations can modify the dusty plasma response and low-frequency dusty plasma
modes in a substantial way, compared with the response of multi-component theory
which neglects the charging collisions and considers a fixed dust charge. The effects
are summarized in (2.15) as a change in the plasma susceptibilities and are shown
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Figure 2. The relative difference in the imaginary parts δωi/ω0
i =

√
ak ,0bk /ak − 1 (top

panels) and in the real parts δωr/ω0
r = ωpd

√
−bk /ak /k · v0 (bottom panels) of the solution

of the dispersion relation between the dusty and the multi-component results, versus the
dimensionless wavenumber κe, for two values of τ and different values of P . The relative
difference in the real parts has been evaluated for a streaming velocity v0 of the order of the
thermal dusty speed, vT d.

in Fig. 1 for several values of parameters. The effect is particularly enhanced for
larger values of the density parameter P .
The particular example of drift instability shows differences (with respect to

the multi-component theory) not only in the phase velocity (it can be orders of
magnitude) but notably in the imaginary part of the frequency which can be smaller
(reduced instability) or larger (enhanced instability) than the multi-component
(MC) result depending on the ion to electron temperature ratio.
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Appendix. Analytical expansions
The correction to the multi-component result is given in terms of the functions
Ge, Gi, Fe, Fi, GM

e , GM
i , FM

e and FM
i defined in [2]. Here we give analytical

expansions for them expressing both the electronic and ionic functions in terms of
the electronic dimensionless wavenumber, κe, and of the parameters z and ζ = z/τ ,
respectively. The analytical expansions are very accurate in the following ranges
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Table A.1. Coefficients for the expansions of Ge and GM
e for κe < min[ 1

2
, 1/(1 + z)].

Ge(κe) GM
e (κe)

fe0(z) 2e−z

√
z

π
+ erfc(

√
z)

2e−z

√
π

{√
z

(
π

2
− 2

3

)

+
4z − 1

8z
√

z
−

√
z[C + ln(z) + E1(z)]

+
√

π erfc(
√

z)

(
1 − z − z2

6

)

+

√
ze−z

2

(
11

6
+

z

3
− 3

4z
+

1

4z2

)}

fe1(z) 0 −2

√
z

π
e−z

fe2(z) 2ze−z

√
z

π

(
π

4
− 5

3

)
2

√
z

π
e−z

(
3 − 2z

)(
π

8
− 5

6

)

fe3(z) 0 0

fe4(z) e−z erfc(
√

z)

(
5z2

2
− 5z

3
− 1

3

)
2e−z

√
π

{√
z(15 − 20z + 4z2)

(
π

48
− 3

32

)

+

√
ze−z

12
√

π
{(−15 + 7e−z ) +

√
z

12
(8 + 6z − 3z2) −

√
ze−z

3

(
13

4
− 2z

)

+20[ln z + C + E1(z)]z −
√

π

6
erfc(

√
z)(2 − 10z + 5z2)

+ (10π − 37 − 22e−z )z +

√
z

24
(4z2 − 20z + 15)[C + ln(z) + E1(z)]

}

+ [26 − 4π − 8E1(z)]z2

− 8(C + ln z)z2}

fe5(z)
2ze−z

3

√
z

π

(
5

2
− z

) √
z

π

e−z

12
(15 − 20z + 4z2)

of κe:

fe(κe, z) =




fe0(z) + fe1(z) ln κe + fe2(z)κe

+fe3(z)κe ln κe + fe4(z)κ2
e + fe5(z)κ2

e ln κe

(
κe < min

[
1
2
,

1
(1 + z)

])

Fe1
κe

+
Fe2
κ2
e

(κe > 1)

(A 1)
(fe ≡ Ge, G

M
e , Fe, F

M
e )

fi(κe, ζ) =




fi0(ζ) + fi2(ζ)κ2
e (κe < 1)

Gi1(ζ)
κe

+
Gi2(ζ)
κe

√
κe

+
Gi3(ζ)

κ2
e

+
Gi4(ζ)
κ2
e
√

κe
(κe > max[2, 1 + ζ])

Fi1(ζ)
κe

+
Fi2(ζ)

κe
ln κe +

Fi3(ζ)
κ2
e

+
Fi4(ζ)

κ2
e

ln κe (κe > max[2, 1 + ζ])

(A 2)
(fi ≡ Gi, G

M
i , Fi, F

M
i ).
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Table A.2. Coefficients for the expansions of Fe and F M
e for κe < min[ 1

2
, 1/(1 + z)].

Fe(κe) F M
e (κe)

fe0(z) 1 1

fe1(z) 0 0

fe2(z) 0 z

(
π

4
− 5

3

)

fe3(z) 0 0

fe4 z2

(
π

6
− 3

4

)
−1

3
+

(
π

3
− 7

6

)
z +

(
13

12
− π

6

)
z2

− [1 + 2z − z2(C + ln z)]

3
+

z(2 − z)(C + ln z)

3

fe5(z)
z2

3

z(2 − z)

3

Table A.3. Coefficients of the expansions of the electronic functions for κe > 1.

Fe1(z) Fe2(z)

Ge(κe)
√

πze−z + π
(

1
2

− z
)
erfc(

√
z) −2e−z

√
z

π
(1 + 2z) − (1 − 4z − 4z2) erfc(

√
z)

GM
e (κe) π erfc(

√
z) 4

√
z

π
e−z − (2 + 4z) erfc(

√
z)

Fe(κe)
π

2
[1 − z + z2ez E1(z)] −1 + 2z + z2 − z2ez (3 + z)E1(z)

F M
e (κe)

π

2
[1 − zez E1(z)] −1 − z + zez (2 + z)E1(z)

Table A.4. Coefficients of the expansions of the ionic functions for κe < 1.

fi0(ζ) fi2(ζ)

Gi(κe) 1
2ζ

3

[(
2 − 1

2ζ
+ ζ

)
−

√
πζeζ erfc(

√
ζ)

(
5

2
+ ζ

)]

GM
i (κe) 2ζ[1 −

√
πζeζ erfc(

√
ζ)] −2ζ

3

[(
1 +

9ζ

4
+

ζ2

2

)

−
√

πζeζ erfc(
√

ζ)

(
15

8
+

5ζ

2
+

ζ2

2

)]

Fi(κe)
1 + ζ

ζ
−1

3

[
1 − ζ

ζ
+ ζeζ E1(ζ)

]

F M
i (κe) 1 −1 + ζ − ζ(2 + ζ)eζ E1(ζ)

3

The explicit expressions of all the coefficients are given in Tables A.1–A.6. The
results are shown in Figs A.1 and A.2 where the expressions are compared to the
results of numerical calculations of the functions for their expressions in [2]. As
the figures show the analytic expressions provide an excellent representation of
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Table A.5. Coefficients of the expansions of the ionic functions Gi for κe > max[2, 1 + ζ].

Gi(κe) GM
i (κe)

Gi1(ζ) π
(
ζ + 1

2

)
πζ

Gi2(ζ) −2ζ3/2

√
π

(
π +

10
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)
−2ζ

√
ζ

7
√

π
(10 + 7π)

Gi3(ζ) (4ζ2 − 4ζ − 1) 2ζ(2ζ − 1)

Gi4(ζ)
2ζ3/2

3
√

π

[(
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9
− 5π

2

)
− ζ

(
314

45
− π

)]
ζ3/2

3
√

π
(3 − 2ζ)

(
314

45
− π

)

Table A.6. Coefficients of the expansions of the ionic functions Fi for κe > max[2, 1 + ζ].

Fi(κe) F M
i (κe)
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2
+ C + ln ζ

]
ζ

(
1 − ζ

2

)[
5

6
− π + 2(C + ln ζ)
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+ ζ2 + ζ − 1 + 3ζ
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Figure A.1. The electronic functions, computed numerically (full line) and according to the
expansions given in the text (dotted line). The curves are labeled with the value of the
parameter z, which, for the parameters used in this work, ranges from zmn = 0.51 to zmx =
3.42. In the range min[ 1

2
, 1/(1 + z)] < κe < 1, we have used the expansions valid for κe > 1.
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Figure A.2. The ionic functions, computed numerically (full line) and according to the
expansions given in the text (dotted line). The curves are labeled with the value of the
parameter ζ, being ζmn = 1.32 and ζmx = 194. In the range 1 < κe < max[2, 1 + ζ] we have
used the expansions valid for κe < 1.

these functions, in a wide range of the parameters z and ζ, except in ‘small’ regions
between, at worst, min[12 , 1/(1 + z)] < κe < 1 and 1 < κe < max[2, 1 + ζ] for the
electronic and the ionic functions, respectively.
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