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Robert I. Soare, Turing Computability, Theory and Applications of Computability,
Springer-Verlag, Berlin, Heidelberg, 2016, xxxvi + 263 pp.
This book has big shoes to fill. The author’s previous textbook (Springer-Verlag, 1987)

is today a classic in the field of computability theory, with several generations of students
of the subject having by now been “raised” on it around the world. The work under review
is intended in part as a new edition of that work, but mostly as an update. That much is
already clear from the updated title: from Recursively enumerable sets and degrees in the 1987
version, to Turing computability in the present one. Going beyond nomenclature, an update
is not a small task. Computability theory, over the past three decades, has enjoyed some truly
extensive developments, with major shifts in research focus and countless new results. The
field is certainly much larger, and much more specialized. At the same time, the 1987 book
arguably owes much of its success to not trying to be an all-encompassing reference, but
focusing instead on bringing the reader up to speed—meaning, to being able to understand
and think about research problems—as rapidly as possible. Perhaps this is a hallmark of
any great introductory text, but it clearly becomes more challenging for a broader subject.
Nonetheless, the book under review seems to find the right balance.
The principal theme of modern computability theory is that of relative computability, of

a set X of natural numbers being computed from another such set Y , meaning that there
is an algorithm that, given information about which numbers belong and do not belong to
Y , can answer which numbers belong and do not belong to X . This notion, along with a
precise formalization of the concept of an algorithm, was a seminal achievement of Alan
Turing in the 1930s. But it was Email Post who really developed this notion, and coined the
term Turing reducibility for the process of computing one set from another. And it was Post
who introduced the systematic study of (Turing) degrees, or equivalence classes under this
reducibility (which Post called degrees of unsolvability), as a way of calibrating how far a
given set of natural numbers—or by extension, a mathematical object that can be coded as
such a set—is from being computable.
Much of the work in this direction, which has come to be called degree theory, focused

on the degrees of computably enumerable (c.e.) sets—sets which can be effectively listed, but
not in any particular order, and which may consequently not be computable. Two natural
examples of such sets are the empty set, which is of course computable, and the halting set—
the set of all numbers 2x3y such that the algorithm with code x halts on input y—which,
famously, is not.Post’s problem, to find a c.e. set strictly in-between these two in Turing degree,
spurred on the initial work in degree theory, and set the stage for much of the work that would
take place in the coming decades. By the late 1980s, when Soare’s first textbook came out,
degree theory was a rich and widely investigated subject, responsible for the development of
myriad new techniques for building c.e. sets with various combinatorial and computational
properties. Many of those techniques are featured in the later chapters of the 1987 text, with
a view towards open problems and future research. Yet, the next decade would see a gradual
but steady waning of degree theory as the dominant focus of computability theory, yielding
to areas like computable structure theory, algorithmic randomness, and reverse mathematics.
While the powerful methods from the study of the c.e. degrees found application here, too,
each of these areas necessitated its own, different techniques and ideas.
And so it makes sense that we find in the book under review none of the advanced topics

from the 1987 version: there are no results about the lattice of c.e. sets under inclusion, no
mention of 0′′′-priority arguments, in fact, nothing in-depth on infinite injury methods at
all. Instead, the author largely sticks to themes that are common across all the different
facets of computability being worked on today. Of course, the omitted topics can still be
found in Soare’s older book, as well as in newer texts by Odifreddi (Classical Recursion The-
ory, North-Holland, 1989), by Lerman (A Framework for Priority Arguments, Cambridge
University Press, 2010), and others. With updated terminology and notation, it is now easy
to segue from the new book to these and other specialized texts, especially those—like
Ash and Knight (Computable Structures and the Hyperarithmetical Hierarchy, North-
Holland, 2000), Downey and Hirschfeldt (Algorithmic Randomness and Complexity,
Springer, 2010), and Simpson (Subsystems of Second Order Arithmetic, Springer-Verlag,
1999), to name just a few—that became standard references in their respective subfields after
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Soare’s 1987 textbook was first published. The new book provides a rigorous but accessible
common foundation to them all.
Not much in this book is in any sense a re-edition of anything in the 1987 text. Only Part

III (out of five parts in total), on minimal degrees, covers material that can be wholly found
in the original. That goes even for Part I, which is the main introduction to the subject. This
comprises the first seven chapters, which are roughly analogous to the first seven in the old
book. We see the basic definitions of computable sets and functions, and of c.e. sets; standard
first results like the s-m-n theorem and the recursion theorem; the definition of the jump
operator and the arithmetical hierarchy, and Post’s theorem relating the two; an exploration
of the Δ02 sets and the limit lemma; key notions like immunity and hyperimmunity, and their
applications to Post’s problem; and essential techniques like permitting, finite extensions
and forcing, and finite injury arguments. But there are key differences here. For one, the
author begins straight away with the definition of Turing machines, omitting any mention of
the primitive recursive functions or the unbounded search operator, or any lengthy formal
analysis of the equivalence between the partial recursive functions and Turing computations.
Rather, the author postpones this material to the largely expository Part V, on the history
of computability. This is a departure from most standard introductions to the subject, but it
very much reflects the contemporary view.
Instead, there are a great number of new topics added here. Chapter 2, for example, covers

Lachlan games, giving an especially elegant way to think of and organize various c.e. set
constructions, and obtain c.e. sets satisfying desired requirements. There is much more on
games in Part IV (Chapters 14–16), including on Banach-Mazur games and Gale-Stewart
games, along with a brief discussion of determinacy. This material complements that in Part
I very nicely, and could easily be added to it in any first graduate course in computability.
The end of Chapter 3 covers trees and the low basis theorem, fixing something that, while

not a serious omission in the old book when it came out in 1987, has certainly turned into
one since then. Indeed, it is a bit of a historical irony that one of Soare’s most famous
theorems—the low basis theorem, proved jointly with Carl Jockusch (Π01 classes and degrees
of theories, Journal of Symbolic Logic, vol. 173 (1972), pp. 33–56)—appears merely as
an exercise in the 1987 text, with no broader discussion. That theorem is today among
the most widely and ubiquitously used results in the entire field, and Chapter 3 gives it a
nice introduction. Trees, Π01 classes, and various other basis results are further explored in
Part II of the book (Chapters 8–11), alongwith somemuchmore recent related topics, like the
anti-basis theorems of Kent and Lewis (On the degree spectrum of a Π01 class,Transactions of
the American Mathematical Society, vol. 362 (2010), pp. 5283–5319). Theorem 10.3.3 in this
section gives a nice equivalence between different characterizations of a set having PA degree,
i.e., computing a complete consistent extension of Peano arithmetic. This, too, is a central
topic, yet this equivalence is not commonly found in book form. Chapter 11 gives a brief
introduction to randomness, mostly as a means of further illustrating some of the utility of
Π01 classes, but with a number of important results included.
The aforementioned Part V at the end of the book covers (some of) the history of com-

putability theory in the 20th century, starting with Hilbert’s issuance of his ICM problems
in 1900, and subsequently his Entscheidungsproblem in 1928. We are told about some of the
key figures in this history, and the author makes the compelling and convincing case for why,
morally, “Turing got it right” with his model of computation, over, say, Kleene’s 	-recursive
functions, or the more syntactic Herbrand-Gödel functions, even though formally these are
all equivalent. The subsequent discussion of the development of relative computability is
fascinating. To be sure, there is much that happened later in the subject that is not covered
here, but that is for other books to talk about. The author focuses on a narrow but important
early time for the subject, and the inclusion of this discussion feels appropriate even for an
otherwise highly technical text, making the case (all too often disregarded in mathematics)
for why we are studying what we are studying, and also for how we are studying it. It is a
pleasure to read for both expert and non-expert alike.
At a time when computability theory is enjoying remarkable activity and fruitfulness, and

benefiting from having a large number of students and young researchers, there is no question
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that the subject is ready for a new standard introductory text. The present book shares all
the features that helped its predecessor become such a standard thirty years ago, and at the
same time, it is modern, and it is relevant to today’s state of the field. The subject will be
well-served by it.
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G.O. Jones and A.J. Wilkie, editors, O-Minimality and Diophantine Geometry. London
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Picture yourself a country with trails, grasslands, etc., inhabited by beautiful unicorns,

in quite a number. In fact, most of the trails avoid those unicorns, but a few of them have
the astonishing particularity of hosting herds of unicorns. Similarly, the unicorns are quite
scarce on many grasslands, while on others they do appear but only along the trails, and
on still other grasslands they appear in surprisingly large numbers throughout. For a long
time, geographers could not really understand what was so special about the geography of
those trails and grasslands, that were fully inhabited by unicorns, despite an attractive and
convincing suggestion by unicorn ecologists. Remarkably, this inspired nereid ecologists to
wonder whether a similar suggestion could explain the population of nereids in some rare
rivers and ponds of a neighboring country.
This small book aims at unveiling a similar mathematical mystery.
Our mathematical countries, no less fantastic but absolutely real, are the Abelian varieties

and the Shimura varieties, named after the mathematicians Niels Abel (1802–1829) and
Goro Shimura (1930–). There is less poetry, however, in the name given to our magical
beasts, respectively torsion points or special points.
By varieties, wemean here algebraic varieties, that is, loci defined by polynomial equations,

say, with complex coefficients. Our trails are curves, our grasslands, surfaces, etc.
The most elementary examples of Abelian varieties are given by elliptic curves, each of

them being the set of solutions in the projective plane of some cubic equation with nonzero
discriminant. By Weierstrass’s theory of bi-periodic functions, elliptic curves can also be
described as the quotient of the complex plane C by a lattice Z + Z
, where 
, a complex
number of positive imaginary part, is an element of Poincaré’s upper half plane h.
More generally, Abelian varieties are those irreducible varieties which are endowed with a

group law, defined by polynomials as well, and are, moreover, “compact” or, more precisely,
projective; they can also be understood from the point of view of complex function theory,
where they appear as (particular) complex tori, quotients of a complex affine space Cg by
a lattice Λ. Torsion points are then defined as in group theory. A basic property is that
an Abelian variety of dimension g contains n2g points a such that n · a = 0, for every
integer n ≥ 1; these are the images modulo Λ of the points of n−1Λ.
Around 1960, Yuri Manin and David Mumford had conjectured that irreducible subva-

rieties of an Abelian variety which contain a dense set of torsion points must be Abelian
subvarieties, or the image of such a subvariety under that translation by a torsion point.
By “dense”, we mean that those points are not contained in a subvariety of a smaller
dimension—on remarkable grasslands, unicorns are not soleley populated along a few trails.
This conjecture has been proved by Michel Raynaud in 1983 and many new beautiful proofs
have been given since.
The simplest example of a Shimura variety is the modular curve, which parameterizes

elliptic curves. Namely, it is just the quotient of the upper half plane by identifying two
elements 
 and 
′ for which the lattices Z + Z
 and Z + Z
′ give rise to the same elliptic
curve. It comes out that this corresponds to quotienting the upper half-plane h by the group
SL(2,Z) acting by homographies. In this case, the Jacobi j-function identifies this quotient
with the complex planeC.More generally, Shimura varieties are relatively easily defined from
the point of view of complex function theory, where they appear as quotients of “symmetric

https://doi.org/10.1017/bsl.2017.1 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.1

