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ABSTRACT

In this paper we describe a new approach to modelling the development of 
claims run-off triangles. This method replaces the usual ad hoc practical pro-
cess of  extrapolating a development pattern to obtain tail factors with an 
objective procedure. An example is given, illustrating the results in a practical 
context, and the WinBUGS code is supplied.

1. INTRODUCTION

Stochastic claims reserving methods have received considerable attention in 
the recent actuarial literature: Wüthrich and Merz (2008) provides a reasonable 
summary of many of the methods which have been developed. In many cases, 
the methods discussed have been based on currently used methods which
are sometimes described as “deterministic methods”, although they are only 
deterministic in the sense that a stochastic model has not been specifi cally 
written down when they are used. The methods in current use should therefore 
be regarded as models for the claims data, based on some (possibly implicit) 
assumptions, for which stochastic models can also be specifi ed. The stochastic 
models do not in themselves change the reserving results, and there is no reason 
to argue whether it is right to use a stochastic model as opposed to a deter-
ministic model. A more correct and useful discussion is to decide whether a 
stochastic model can help in a practical sense, or whether a simple estimate of 
the outstanding claims by itself  is suffi cient for all practical purposes. Recent 
developments in company management and regulatory requirements have 
increased the need for stochastic methods, and it is often the case that a simple 
“claims reserve” is no longer suffi cient by itself. The fi rst stage in the move 
towards the widespread application of stochastic reserving methods was to 
show how the most commonly used practical approaches can be formulated 
in statistical models. In this context, England and Verrall (2002) has enabled 
many actuaries to make the fi rst step in applying statistical models. England 
and Verrall (2002) covered quite a wide range of different approaches, but one 
of the most commonly used is the chain-ladder technique. The basic premise 
of  the chain-ladder technique is that there is no underlying pattern to the 
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run-off, and that each development year should be allocated a separate parameter. 
While it can be argued that this means that the chain-ladder technique will be 
applicable to a wide range of data, it could also be criticised for having too 
many parameters. It also means that some other assumptions have to be used 
to model any possible claims development beyond the latest development
year already observed. Actuaries often refer to this as modelling the tail, or 
applying tail factors. 

The purpose of this paper is to describe an approach to modelling the tail 
of the run-off, which uses as its basis some of the methods which are currently 
applied in practice. England and Verrall (2001) also considered this problem, 
although the approach in that paper was quite different. In this paper, we use 
Bayesian methods, using reversible jump Markov chain Monte Carlo methods 
in the package WinBUGS (Lunn et al, 2000). Makov (2001) provides a review 
of Bayesian methods in actuarial science and England and Verrall (2006) is a 
useful introduction to the application of Bayesian methods to claims reserving 
and the use of simulation methods. The application of Bayesian methods has 
been revolutionised by the use of Markov chain Monte Carlo (MCMC) methods: 
see, for example Gilks et al (1996). These methods have enabled statisticians 
to apply complex Bayesian models to a very wide range of applications, and 
books such as Congdon (2006) and Ntzoufras (2009) contain many such exam-
ples. In the actuarial literature, they have been used by Scollnik (2001), Ntzou-
fras and Dellaportas (2002) (see also the discussion by Scollnik, 2002, and de 
Alba, 2002), Verrall (2007) and Wüthrich (2007), for example. 

An important extension is the use of reversible jump MCMC (RJMCMC) 
methods (Green, 1995), which allow the analysis of trans-dimensional models. 
This means that it is possible to consider models where the number of variables 
is unknown, or equivalently, a whole class of models, each with a fi xed number 
of  variables. This allows us to consider an interesting range of  models for 
claims reserving. The essence of the approach is to start with a run-off pattern 
which has (like the chain-ladder technique) a separate parameter for each 
 column, and then let the RJMCMC method decide which ones are needed. 
We also include a simple parametric tail, so that we can also model the tail of 
the run-off. Thus, our method has a simple parametric model for the run-off, 
but allows departures from it when the data justify this. At one extreme, it 
would give a completely smooth run-off, determined by the parametric model, 
and at the other extreme, a parameter is included for each column and the 
model reverts to the chain-ladder technique. This is all contained within the 
model, and it is not necessary to make arbitrary decisions about when to 
replace the chain-ladder parameters by a parametric tail, as is often done in 
practice. Our approach is implemented within WinBUGS, using the RJMCMC 
procedures outlined in Lunn et al (2009).

Other papers to have considered RJMCMC methods and related issues 
include Ntzoufras et al. (2004), Katsis and Ntzoufras (2005), Peters et al (2009) 
and Verrall and Wüthrich (2010). This latter paper also considers modelling 
the run-off shape in claims reserving but uses a different approach from the 
current paper. There are two main differences between the approach adopted 
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in this paper and that of Verrall and Wüthrich (2010). The fi rst is that this paper 
uses WinBUGS rather than a specially written programme for this application. 
The advantage of using WinBUGS is that it makes it easier for users to consider 
how to adapt the approach to their own needs; the disadvantage is that it is more 
of a “black box” and does not facilitate changing things such as the sampler used. 
Thus, while we acknowledge that it is important to be aware of the potential dif-
fi culties associated with “mixing” between model subspaces in a RJMCMC 
chain, we simply have to accept the sampling approach which WinBUGS employs. 
The other difference is in the actual model of the run-off shape. In this paper the 
underlying model is piece-wise linear (on the log scale), but can be composed of 
a number of “pieces”, whereas in Verrall and Wüthrich (2010), it is assumed that 
the run-off is simply linear beyond a certain development period.

The paper is set out as follows. In Section 2, we outline the stochastic 
model for the claims run-off triangle that will be used in this paper. Section 3 
gives an introduction to MCMC methods, and the implementation in WinBUGS, 
as applied to our claims run-off triangle data. Section 4 contains an example 
to illustrate the method, and Section 5 contains the conclusions.

2. STOCHASTIC RESERVING MODELS

Without loss of generality, we assume that we have a triangle of data, which is 
indexed by row (i) and column ( j). The row usually refers to the underwriting 
year or accident year, and the column refers to the delay in receiving the claim. 
The data consist of aggregated claims, and could be either reported or incurred 
claims. The cumulative claims are denoted by Dij , and the triangle of data is 
{Dij  :  1  #  i  #  n, 1  #  j  #  n  –  i  +  1}. Equivalently, we use the incremental claims, 
denoted by I  =  {Cij  :  1  #  i  #  n, 1  #  j  #  n  –  i  +  1}, where 
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The standard chain-ladder development factors, fj, are usually calculated using 
the following formula:
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Since the development factors are only available up to j  =  n, the chain-ladder 
technique can only forecast up to delay year n. The usual forecasts of future 
cumulative claims are  {Dij  :  i  =  2, 3,  …,  n;    j  =  n  –  i  +  2, n  –  i  +  3,  …,  n}, where 
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for j  =  n  –  i  +  2, n  –  i  +  3, …, n.
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In order to include forecasts for outstanding claims beyond delay year n, it is 
necessary to consider tail factors. This is often done by assuming that the 
development factors follow some parametric curve beyond a certain delay year, 
and then extrapolating this forward to later delay years. For example, it is 
often assumed that the development factors follow an exponential decay pat-
tern: in other words, the log of the development pattern follows a straight line. 

2.1. Stochastic models for claims data in a run-off triangle

There are a number of candidates for the stochastic model that gives the same 
estimates of outstanding claims as the chain-ladder technique. In this paper, 
we use the over-dispersed Poisson model suggested by Renshaw and Verrall 
(1998); for a more extensive discussion of this model, see England and Verrall 
(2002). This model is an example of  a generalised linear model, which, in 
general terms, can be expressed in terms of the fi rst two moments only. Thus, 
for a random variable Y,

 E [Y ]   =   m  (3)

and 

 
(

Y
f

Var[ ]
)

w
V m

=  (4)

where f denotes a scale parameter, V(m) is the so-called variance function
(a function of the mean) and w are weights (often set to 1 for all observations). 
More details of  the theory of  generalized linear models can be found in 
McCullagh and Nelder (1989). Of course, it would also be possible to use other 
distributions for the data, but the over-dispersed Poisson distribution is suffi -
cient for the purposes of this paper and has the advantage of giving the same 
estimates of outstanding claims if  the appropriate model is used for the mean. 
The over-dispersed Poisson model is similar to a Poisson model, in that the 
variance function is equal to the mean, but it also includes the dispersion param-
eter, f. Thus, it is assumed that the incremental claims, Cij, are distributed as 
independent over-dispersed Poisson random variables, with mean and variance 

 E [Cij ]   =   mij (5)
and 

 Var[Cij ]   =   fmij. (6)

For the Bayesian approach used in this paper, it is necessary to specify the full 
distributional assumptions. For the over-dispersed Poisson model, this can be 
expressed as 

 
ij ij

f f
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m
ij + f p (7)
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where f  >  0 is assumed to be a known constant.
Within this general distributional assumption, many different models can 

be applied through the choice of the structure for the mean mij. In order to 
produce the same forecast values as the chain-ladder technique (under suitable 
positivity conditions), the mean is chosen so that 

 log(mij)   =   c  +  ai  +  bj. (8)

Note that constraints have to be applied to the sets of parameters, which could 
take a number of different forms. In this paper, we use the corner constraints 
where a1  =  b1  =  0. Throughout this paper, we are concerned with the modelling 
of  the “development pattern”. The development pattern can be considered 
through a number of  different parameterisations, but in this paper we are 
considering specifi cally the log-development parameters, bj.

The scale parameter, f is usually then treated as a “plug-in” estimate and 
not counted as a parameter. In a fully Bayesian model, it might be considered 
appropriate to specify distributional assumptions for f, but this is not some-
thing addressed in this paper. For this reason, we follow what is usually done 
with classical estimation methods and simply replace the dispersion parameter 
by an estimate. Allowing for over-dispersion does not affect estimation of the 
parameters, but has the effect of  increasing their standard errors. It is also 
possible to relax the restriction that the scale parameter is constant for all 
observations so that it depends on the development period j: see England
and Verrall (2006) for more details. However, in the examples in this paper,
we use the straightforward over-dispersed Poisson model with a constant scale 
parameter. It should be noted that the use of this model does not imply that 
it is only suitable for data consisting exclusively of positive integers. Instead, 
a “quasi-likelihood” approach is used (see McCullagh and Nelder, 1989), where 
the likelihood is the same as a Poisson likelihood up to a constant of propor-
tionality. The straightforward application of the over-dispersed Poisson model 
with the mean structure defi ned in (8) gives the same estimates of outstanding 
claims as the chain-ladder technique. As was mentioned in the introduction, 
the chain-ladder technique has a separate parameter for each delay year, as 
does the mean structure (8). An alternative to this is to use a parametric curve 
for the development pattern, such as the so-called Hoerl curve, where the mean 
structure is:

 ij a( ) ( )log logc j ji g= + + +bm . (9)

This curve has a tail which declines exponentially: in other words, log (mij) 
follows a straight line for larger values of j. An advantage of using a parametric 
curve, such as (9), is that it is straightforward to extrapolate forwards and obtain 
tail factors for the claims run-off. Within this spirit, a hybrid model is sometimes 
used which follows the chain-ladder model (8) for the early delay years, but then 
assumes that log (mij) follows a straight line for the later development years:
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Clearly the choice of k is important in such as model, and it is usually chosen 
by ad hoc trial-and-error methods. Björkwall et al. (2011) recently proposed 
choosing k automatically in (10) by means of model selection criteria such as 
AIC, BIC and bootstrap estimates of mean squared error of prediction. 

In this paper, we use an approach which is somewhat similar to (though 
not the same as) (10), and employ Bayesian estimation methods. The models 
used in this paper for the run-off  pattern are defi ned in Section 3.3. How-
ever, before we can defi ne the specifi c models used, we need to consider the 
parameters for the run-off  shape, {bj   :   j  =  2, 3,  …,  n}, and we do this in the 
Section 2.2.

2.2. A re-parameterisation of the run-off shape

In this section, we re-parameterise the run-off shape so that the trans-dimen-
sional approach in Section 3.3 can be applied. This model is based on the 
chain-ladder model with an underlying exponentially-decaying tail. Although 
this is the basis for the model, the tail will not follow this exactly, because the 
Bayesian model will allow departures from this. However, this is the underlying 
shape of the run-off. This means that the log of the run-off follows a straight 
line, in which case, the second differences of the parameters {bj   :   j  =  2, 3,  …,  n} 
will be close to zero. Note that the requirement for the application of  this 
approach is that the parameters should be “tested” to see whether they could 
assumed to be zero. Thus, any parameterisation which had parameters that 
could be compared with zero would be appropriate. In this section we use
what we believe is the most obvious choice for this parameterisation, but it is 
possible that there are other such parameterisations which could also be inves-
tigated. Thus, we consider the differences
 
 dbj   =   bj – bj – 1,   j = 2, 3,  …,  n 

and second differences
 
 d2bj   =   bj – 2bj – 1  +  bj – 2,   j = 3, 4,  …,  n 

of  these parameters. Note that dbj measures the gradient of  the log of  the 
development pattern, and  d2bj measures the change in the gradient. Thus,
if  d2bj is zero, the log development pattern follows a straight line, and non-
zero values of  d2bj indicate departures from this. A matrix representation of 
the relationaship between the fi rst and second differences of the development 
parameters is given below.
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 (11)

This representation will be used in the trans-dimensional Bayesian model and 
coincides with Lunn et al. (2009). Note also that it is straightforward to obtain 
the parameters b3, b4, …, bn, since bj  =  bj  –  1   +  dbj, j  =  3, 4,  …,  n.

For forecasting purposes, we will extrapolate beyond the latest development 
year to obtain tail factors by assuming that d2bj   =   0 for j  =  n  +  1, n  +  2, …, 
so that 

 bj  =   2bj  –  1  –  bj  –  2  for  j = n  +  1, n  +  2, … (12)

 For estimation purposes, it is suffi cient to estimate either {bj}
n
j  =  2 or b2, db3 

and {d2bj}
n
j  =  3: if  maximum likelihood estimation were used, we would get 

exactly the same results for outstanding claims etc. The reason for considering 
the latter set of parameters is that it means that it is possible to apply the trans-
dimensional Bayesian models to {d2bj}

n
j  =  3. This is considered in Section 3.3, 

but fi rst an introduction to Bayesian modelling using MCMC methods is given 
in the following section.

3. BAYESIAN MODELS, RJMCMC AND WINBUGS

This section contains a very brief  overview of the Bayesian techniques used 
to give priority between models, which we then use to estimate the models 
which we apply to the claims run-off triangles. There is an extensive literature 
on these modern Bayesian methods, such as the books by Gelman et al (1995) 
and Congdon (2006), and the web page for the BUGS project contains links 
to many on-line resources (http://www.mrc-bsu.cam.ac.uk/bugs). Bayesian 
modeling is based on Bayes theorem, where all parameters are assumed to be 
unknown random variables. We assume that we have observed data I whose 
distribution, f (I | q,M), depends on the model M and a number of parameters q 
of  that model, with dimensionality depending on M. We assume that M 
belongs to a class M of  models and that both of  M and q are unknown.
Prior distributions, f (M) and f (q |M) are assigned to the model and model 
parameters within a particular model, and the posterior distribution is given 
by 

 f (M, q | I)    \    f (I | q, M)  f (q | M)  f (M). (13)
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In the context of Section 2.2, model M could be indentifi ed with a subset of 
the integers {4, 5,  …,  n} and the parameter vector for model M is 

 q   =   (c,  a2,  …,  an,   b2,db3, d2bj ;  j  ! M ),

of  which c, {ai ; i  =  2, 3, …,  n}, b2 and db3 are always included, whereas each 
one of the second difference parameters could either be included or excluded. 
The model class M thus consists of 2n  –  3 models, depending on which second 
difference parameters we choose to include or exclude.

3.1. Forecasting with trans-dimensional models

In many statistical applications, the main purpose is to identify the best model 
and to use that model to make inferences from the data. In claims reserving, 
the aim is slightly different in that it is the predictive distribution of the future 
claims which is of  greatest importance (see England and Verrall, 2006, for 
more details of  predictive distributions in the context of  Bayesian claims 
reserving). Conditional on received triangle of claims data I and model M, 
the predictive (posterior) distribution for each future incremental claims, Cil 
where i  +  l > n  +  1, is 

 , ,M MqI,Mil il I| ( | ) ( | ) .f C f f dC q= q^ h #  (14)

To account for model uncertainty, it is possible to take two different approaches 
within the context of trans-dimensional models. Broadly, these are to choose 
the most likely model from the Bayesian analysis and use that to produce 
predictive distributions; or to estimate the predictive distribution by averaging 
over all models using as weights the posterior probabilities for the models from 
the Bayesian analysis. The fi rst case is known as the “maximum a posteriori” 
(MAP) estimator, and the forecast distribution is given by 

 MIil il I| | ,f f max.C C^ ^h h (15)

where Mmax  !  M maximises P(M | I) among M  !  M. The second case, which 
can be referred to as “Bayesian model averaging” (BMA), gives the following 
forecast distribution 

 il ilI I I| | , | .f f M P M
MM!

C C=^ ^ ^h h h/  (16)

In this paper, we use (16) since it is often not clear that one particular model 
should be preferred outright over all others, and also because we believe that 
this gives the best refl ection of the underlying uncertainty in the predictive 
distribution. For a more extensive discussion of  the relative advantages of 
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BMA, see Hoeting et al. (1999).  Often the main interest is in predicting cumu-
lative claims, in particular their sum over all accident years i. The procedure 
to obtain the predictive distribution is then the same as in (14) and (16), pro-
vided we replace Cil by the quantity we wish to predict.

3.2. Reversible Jump MCMC

The fi rst step is to combine (14) and (16) and formally rewrite the predictive 
distribution of an outstanding incremental claim as 

 ,M q IIil il| ( | ) ( , | ) ( , ),f f f M d M= q qC C^ h #  (17)

integrating over the posterior distribution in (13). In some cases, this distribu-
tion may be obtained in exact terms, straightforwardly. However, when the 
model is unknown and the parameter vector is high dimensional, or complex, 
it is usually not possible to obtain the posterior distribution in closed form.
In these cases, simulation methods can prove to be highly effective and the 
recent advances use simulation based on Markov chains: the so-called Mar-
kov chain Monte Carlo methods. The idea is to generate a Markov chain 
{(M (b), q (b))}3b  =  1 whose equilibrium distribution equals the posterior distribu-
tion in (13). One then approximates the predictive distribution (17) by a Monte 
Carlo average

 MI il| ( | , )f C N f1 ( ) ( )
il

a

N
B ta B ta

1
.

=

+ +qC ,^ h /  (18)

where B is the burn-in time (i.e. the time before the Markov chain has con-
verged to its equlibrium distribution) and t a thinning parameter, so that only 
every tth simulation from the Markov chain is used. Often t  =  1 is used, but if  
the serial correlation of the output Markov chain is high, one may reduce it 
by choosing t  >  1. The MCMC methodology provides a general framework of 
generating the Markov chain. Given the current state (M (b), q (b)), a subsequent 
state (M, q) is drawn from some proposal distribution p and is either accepted 
or rejected, so that the next state 

 ( , )
( , ), if ( , ) is accepted,

( , ), if ( , ) is rejected.
M

M M

M M
( )

( )
b

b
1 =+q

q q

q q
( )

( )
b

b
1+ *

The ingenious part is to devise the acceptance probability of (M, q) so that a 
certain reversibility condition is maintained. This virtually means that less likely 
states should be proposed more seldomly than states with a high probability. 
If  a state is proposed too often, this is compensated by a small acceptance 
probability. 
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In (blockwise) Gibbs sampling (Geman and Geman, 1984, and Gelfand 
and Smith, 1990) the model M  =  M (b) is kept fi xed, whereas (a block of) one 
parameter(s) in q is updated according to its conditional posterior distbution. 
In this case all proposals are accepted, since the proposal distribution is the 
optimal one. When the conditional distribution is diffi cult to sample from, one 
employs the more general Metropolis-Hastings (MH) algorithm, which means 
choosing some other proposal distribution for (a block of) one parameter(s) 
of q, still keeping M  =  M(b) fi xed, with 

 
,

,
qM

M q
I

I
(accept( , )) ,

( | ) ( | )
( | ) ( | )

.minP M
f
f

1 ( ) ( ) ( )

( )

b b b

b

=q
p

p ( )bq
q

q
q

f p  (19)

The reversible jump(RJ) MCMC is a generalizaton of  the MH algortihm 
which also allows for jumps between different models, i.e. M  !  M (b). Write 
q  =  q(q(b),  u ) and q(b)  =  q(b) (q, v) for proposed moves back and forth between 
q(b) and q. Dimension matching requires that dim(M (b))  +  dim(u) equals 
dim(M )  +  dim(v). A proposed move is accepted with probability 
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 (20)

where the major difference compared to (19) is the presence of the Jacobian 
term, which accounts for different parameterisations of the two models. In this 
paper, a proposed jump between models always means adding (dim(u)  =  1, 
v  =  0) or deleting (u  =  0, dim(v)  =  1) a parameter to the current model.

The better the choice of proposal distribution p, the more candidates are 
accepted, which implies less serial correlation (smaller burn in time) and faster 
mixing. In practice, one typically combines Gibbs, MH and RJ moves, where the 
updates with worst mixing are repeated more frequently. For instance, Roberts 
and Rosenthal, (2007) have shown that any such adaptive MCMC algorithms 
that satisfy certain bounded convergence and diminishing adaptation conditions 
yield ergodic Markov chains and convergent estimators. Roberts and Rosenthal 
(2009) investigate a number of adaptive MCMC algorithms by simulation and 
notice that they generally have better performance than the nonadaptive ones. 
The trandimensional adaptive learning algorithm of Nevat et al. (2009) suc-
cessfully employs stochastic approximation in order to improve mixing of the 
RJMCMC chain. Fan et al. (2009) propose the use of marginal density estima-
tors to construct between-model proposal distributions for moves that alter M.

3.3. Trans-Dimensional Models in WinBUGS

While it is possible to construct computer programmes separately from fi rst 
principles for each application, WinBUGS (which is freely available) has been 
designed to be “fl exible software for the Bayesian analysis of complex statistical 
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models using Markov chain Monte Carlo (MCMC) methods”. We make use of 
WinBUGS, together with the suite of add-ons which allow the application of 
some reversible jump MCMC methods (these are available from the BUGS pro-
ject web site, together with “WinBUGS Jump Interface: User Manual”). These 
allow the analysis of trans-dimensional models (|M |  >  1), where the structure 
of the model itself is unknown. In particular, Lunn et al (2009) describe two 
main classes of models that can be used within WinBUGS, one of which is well-
suited for the application in this paper and which is described in this section. 

The trans-dimensional model of Lunn et al (2009) is defi ned in terms of 
an unknown number of “entities of interest”. In our application, these will be 
parameters associated with the shape of the run-off. Thus, we use the re-par-
ametrisation of the run-off shape specifi ed in Section 2.2, and use {d2bj  :  j  =
4, 5,  …,  n} as the “entities of interest”. The idea of trans-dimensional models 
is that the number of these parameters which should be included in the model 
is not known a priori. Thus, the number of parameters to be included is denoted 
by k, and is regarded as another parameter whose distribution must be assigned 
as part of the prior specifi cation. A priori, each of the second differences is 
equally likely to be included or excluded, and hence the prior distribution of k 
is specifi ed as a binomial distribution with parameters n  –  3 and 1/2. An impor-
tant part of  the output is the posterior distribution for k, which gives an 
indication of how many optional parameters should be included, together with 
the information on which parameters these are. 

With the parameterisation of the model given in Section 2.2 we defi ne c 
as follows:
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Note that this notation, in particular c, has been chosen to coincide with 
Lunn et al. (2009) enabling a direct comparison to be made with that paper. 
Note also that cj  =  dbj  +  2 for j  =  1, 2,  …,  n  –  2 and  the parameters b3, b4, …, bn 
can be obtained from c as bj  =  bj  –  1  +  cj  –  2, j  =  3, 4,  …,  n.

With this parameterisation, it is possible to construct a Bayesian model 
using trans-dimensional models in WinBUGS where each second difference
of  the run-off  parameters, {d2bj  :  j  =  4, 5,  …,  n}, is treated as an “optional 
parameter” which can either be included or excluded. In more detail, the algo-
rithm alternates between the following three types of moves: 

 Dimension moves: Propose new |M|, M and q in this order.
 Confi guration moves: Propose new M and q in this order, with |M| fi xed.
 Coeffi cients moves: Propose a new q, with M fi xed.
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The model is completed by the specifi cation of the prior distributions, which 
are given in the following section.

3.4. Specifi cation of the Prior Distributions

The model consists of the distribution of the data, given the parameters, (7), 
together with prior distributions for all the parameters. For a trans-dimensional 
model, it is necessary fi rst to condition on the current model, M. As mentioned 
above, the prior distribution of M is uniform, P(M)  =  2  –  (n  –  3) for all members 
of the model class. Since we are using the trans-dimensional modelling proce-
dure specifi ed by Lunn et al. (2009) and implemented in WinBUGS, some of 
the prior distributions are specifi ed by default. In particular, conditional on M, 
the prior distributions of the optional parameters, {d2bj  :  j  =  4, 5,  …,  n}, is 
set by default such that they are independently normally distributed with 

 j jVarb b0, .E 2 2= = td d9 9C C  (22)

We specify a prior distribution for the hyperparameter t which is an inverse-
gamma distribution whose variance, 1000, is large:

 t –1   +  G(0.001, 0.001). (23)

Conditional on M, we use non-informative priors distributions for the remain-
ing parameters which are all normal with mean zero and variance 10,000:

 c   + N (0, 10,000), 
 {ai  :  i  =  2, 3,  …,  n}   + independent N (0, 10,000), 

(24) b2   + N (0, 10,000), 
 db3   + N (0, 10,000). 

Whenever a Bayesian approach is used, it is necessary to ensure that the prior 
distributions are chosen appropriately. In many cases, as here, non-informative 
prior distributions are used and it is expected that these will therefore not 
infl uence the results, which should just depend on the data and the structure 
of the model. However, it is well-known that even a seemingly non-informative 
prior distribution can have some effect on the data. This is known as the Jeffreys-
Bartlett-Lindley paradox and it means that, even though a non-informative 
prior distribution is used, the form of the prior distribution chosen can result 
in slightly different results being obtained. For a more detailed discussion
in the context of  claims reserving and the chain-ladder model, we refer to 
England et al. (2010), which investigated various forms of the prior distribu-
tions and showed that these could result in small differences in the estimates 
of outstanding claims. In the context of this paper, we believe that the choices 
of prior distributions are appropriate to illustrate the method. Finally, it should 
be noted that the variance of the prior normal distributions is chosen to be 
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relatively large. Clearly, the results would be altered if  this value was to be 
signifi cantly reduced since the prior distributions would then be expected to 
infl uence the results. It would be possible to make the prior variance even 
larger (100,000, say), but we have found that this does not have any signifi cant 
effect on the results. We believe that 10,000 is a suffi ciently large value for all 
practical purposes, but the reader can experiment with the WinBUGS code 
supplied in the Appendix.

3.5. Convergence Diagnostics

In order for the MCMC procedure to work, it is crucial that the Markov chain 
{(M (b), q (b))} reaches the equlibrium posterior distribution (13), and, after that, 
is run for a suffi ciently long time. This is achieved by appropriate choice of 
burn-in time B, thinning parameter t and chain length N in (18). In most 
applications, it is very diffi cult to estimate the theoretical rate of convergence of 
the Markov chain towards equlibrium. For this reason, a number of conver-
gence diagnostics tools have been developed. For instance, Geweke (1991) con-
siders Gibbs sampling and data augmentation, and suggests testing differences 
between the posterior means of the early and late parts of a single Markov 
chain by means of  spectral methods from time series analysis. Since then, 
many different methods of convergence diagnostics have been proposed, as 
reviewed by Cowles and Carlin (1996) and Brooks and Roberts (1998). 

There is different software available for monitoring MCMC convergence, 
and we will use the R package boa (Smith, 2007). Although several convergence 
criteria are included in boa, we will focus on a method originally proposed by 
Gelman and Rubin (1992). First, a certain variable is selected, which is some 
scalar function of  the parameter vector q that can be computed regardless
of model M. For instance, this could be ai, bj or the outstanding reserve for 
accident year i. Here we will mainly focus on the total outstanding reserve 
though, with or without a tail assumption. Secondly, m  $  2 parallel chains
are run and the variable of interest is monitored. After burn in and possible 
thinning, the length of all chains is N. Thirdly, the within sample variance W 
of  the m chains is compared with the between sample variance B/N for the 
chosen variable, by means of the potential scale reduction factor 

 PSRF N
N

mN
m

W
B1 1= - + + , (25)

which should be close to 1 in order to indicate convergence. Thirdly, a corrected 
scale reduction factor 

 CSRF df 1
3df=

+
+

is computed, to account for sampling variability in the estimate of the true 
variance of the variable of interest, where df is a method of moments estimate of 
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the degrees of freedom, based on a t approximation in the posterior inference. 
Quantiles can be computed for CSRF, assuming a normal distribution. The boa 
software outputs the 0.5 and 0.975 quantiles of CSRF for the chosen variable(s). 
As a rule of thumb, a 0.975 quantile greater than 1.20 is interpreted as evidence 
of non-convergence for a variable (Smith, 2007).

However, it is generally a good idea to provide additional diagnostics
for transdimensional models, due to the well known diffi culties of attaining 
 convergence, see for instance the discussion in Subsection 3.2 of this paper or 
Subsection 2.5 of the RJMCMC review paper by Sisson (2005). For this reason, 
we also consider a more robust convergence diagnostic, the multivariate poten-
tial scale reduction factor (MPSRF) of Brooks and Gelman (1998). It can be 
used to monitor simultaneous convergence of a prechosen set of p  $  1 variables. 
Essentially, B and W become p  ≈  p matrices, and B/W is replaced by the largest 
eigenvalue of W  – 1B in (25). The MPSRF has the property of being at least
as large as the maximum PSRF of the variables to be examined, and it should 
also be close to 1.

4. EXAMPLE

We illustrate this method using the data from Taylor and Ashe (1983), which 
are shown in Table 1, along with the results from the chain-ladder technique 
in Tables 2 and 3 for comparison purposes. As was explained in Section 3.2, we 
will use (16) and its approximation (18) to estimate the predictive distribution. 
Hence, the posterior probability is of  greater interest than which particular 
model was most likely (a posteriori). The WinBUGS code for this example is 
supplied in the Appendix.

Fitting the chain-ladder over-dispersed Poisson model, (5), (6) and (8), 
gives the maximum likelihood parameter estimates shown in Table 4.

TABLE 1

INCREMENTAL CLAIMS DATA FROM TAYLOR AND ASHE (1983).

i \ j 1 2 3 4 5 6 7 8 9 10

1 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948

2 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046

3 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405

4 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286

5 443,160 693,190 991,983 769,488 504,851 470,639

6 396,132 937,085 847,498 805,037 705,960

7 440,832 847,631 1,131,398 1,063,269

8 359,480 1,061,648 1,443,370

9 376,686 986,608

10 344,014
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TABLE 4

MAXIMUM LIKELIHOOD ESTIMATES OF THE PARAMETERS OF THE OVER-DISPERSED POISSON MODEL.

c 12.5063

a4 2 0.3313 b2 0.9126

a4 3 0.3212 b3 0.9589

a4 4 0.3060 b4 1.0261

a4 5 0.2194 b5 0.4353

a4 6 0.2701 b6 0.0801

a4 7 0.3723 b7 – 0.0063

a4 8 0.5534 b8 – 0.3944

a4 9 0.3690 b9 0.0094

a4 10 0.2421 b10 – 1.3799

TABLE 2

CHAIN-LADDER DEVELOPMENT FACTORS.

j fj

2 3.4906
3 1.7473
4 1.4574
5 1.1739
6 1.1038
7 1.0863
8 1.0539
9 1.0766
10 1.0177

TABLE 3

CHAIN-LADDER RESERVE ESTIMATES.

j

2 94,634
3 469,511
4 709,638
5 984,889
6 1,419,459
7 2,177,641
8 3,920,301
9 4,278,972
10 4,625,811

Overall 18,680,856
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It is possible to construct estimates of outstanding liabilities for as many 
future development years as are required. In this example, we will consider
5 more development years beyond the triangle: in other words, we will con-
sider forecasts up to development year 15. 

We implemented the Bayesian model using the Reversible Jump add-in 
of  Lunn et al (2009) in WinBUGS. In order to determine the appropriate 
burn-in time B, thinning parameter t and chain length N, we fi rst performed 
convergence diagnostic tests, as described in Section 3.5. The results are sum-
marized in Table 5 for different runs of  m parallell Markov chains of  various 
lengths:

TABLE 5

CONVERGENCE DIAGNOSTICS FOR THE TOTAL OUTSTANDING RESERVE WITH AND WITHOUT TAIL FACTORS, 
USING THE POTENTIAL SCALE REDUCTION FACTOR (PSRF), THE MEDIAN (CSRF50) AND 97.5%

QUANTILE (CSRF975) OF THE CORRECTED SCALE REDUCTION FACTOR DISTRIBUTION,
AND THE MULTIVARIATE POTENTIAL SCALE REDUCTION FACTOR (MPSRF).

RUN 1 AND 2 ARE BASED ON THE SAME RJMCMC OUTPUT, WITH DIFFERENT THINNING.
RUN 6 (8) IS OBTAINED FROM RUN 5 (7) BY DISCARDING ONE OF THE 5 PARALLELL CHAINS.

Chain parameters Reserve without tail factors Reserve with tail factors Multivar.

m B  +  tN B t PSRF CSRF50 CSRF975 PSRF CSRF50 CSRF975 MPSRF 

4 61 699 32 349 1 1.049 1.052 1.151 1.212 1.261 1.674 1.643 

4 61 699 32 349 5 1.049 1.052 1.151 1.208 1.256 1.661 1.644 

5 100 000 50 000 5 1.124 1.139 1.339 2.074 2.348 3.955 2.927 

5 200 000 100 000 1 1.010 1.010 1.028 1.267 1.325 1.776 1.528

5 804 996 405 000 1 1.048 1.052 1.133 1.328 1.585 4.261 1.399 

4 804 996 405 000 1 1.004 1.005 1.015 1.089 1.157 1.445 1.182 

5 1 000 000 502 500 1 1.029 1.030 1.080 1.213 1.352 2.126 1.293 

4 1 000 000 502 500 1 1.010 1.011 1.033 1.138 1.210 1.618 1.284 

We see from Table 5 that the outstanding reserve values converge well when 
tail factors are excluded, but less well when the tail factors are included.
For this reason, results for the outstanding reserve with tail factors included 
should be interpreted with some caution, even if  one believes the model for 
the tail factors to be correct. We also included MPSRF based on p  =  2 vari-
ables, the outstanding reserve with or without a tail assumption. The fact that 
MPSRF is rather high indicates the convergence problems for the outstanding 
reserve with a tail. An even more robust version of MPSRF could be defi ned 
by adding, for instance, several runoff parameters bj.

 Based on the results in Table 5, we decided to proceed with an initial burn-in 
of 500,000 updates, followed by a sample of 500,000 updates and no thinning, i.e. 
t  =  1. The results indicate that none of the optional parameters d2b4,  …,d2bn, 
should defi nitely be excluded. The posterior marginal probabilities for each 
parameter, as shown in Table 6 give an indication of where the run-off pattern 
departs from an exponential decay. 
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Estimates of parameters for the Bayesian model, together with maximum 
likelihood estimates of  the over-dispersed Poisson chain-ladder model are 
shown in Table 7. For the Bayesian approach, we approximate the parameter 
estimates by c  =  E(c | I), a4 i  =  E(ai | I) and bj  =  E(bj | I) from the MCMC out-
put, similarly as in (18).

TABLE 7

COMPARISON OF ESTIMATES OF THE PARAMETERS FROM THE OVER-DISPERSED POISSON MODEL AND THE 
BAYESIAN MODEL, WITH 95% PREDICTION INTERVALS FOR THE LATTER.

ODP
Posterior 

mean
Posterior PI ODP

Posterior 
mean

Posterior PI

c 12.5063 12.4807 (12.1316,  12.4834)

a4 2 0.3313 0.3539 (0.0558,  0.6600) b2 0.9126 0.9322 (0.6531,  1.2250)

a4 3 0.3212 0.3200 (0.0119,  0.6348) b3 0.9589 0.9248 (0.6897,  1.2347)

a4 4 0.3060 0.3165 (0.0006,  0.6386) b4 1.0261 0.9678 (0.6603,  1.2746)

a4 5 0.2194 0.2256 (– 0.1091,  0.5611) b5 0.4353 0.5448 (0.2328,  0.8545)

a4 6 0.2701 0.2797 (– 0.0546,  0.6179) b6 0.0801 0.1106 (– 0.3182,  0.5261) 

a4 7 0.3723 0.4008 (0.0605,  0.7440) b7 – 0.0063 – 0.0339 (– 0.3640,  0.3101)

a4 8 0.5534 0.5600 (0.1959,  0.9225) b8 – 0.3944 – 0.1904 (– 0.6273,  0.2453)

a4 9 0.3690 0.3588 (– 0.1183,  0.8147) b9 0.0094 – 0.4025 (– 1.0180,  0.1602)

a4 10 0.2421 0.1922 (– 0.7360,  0.9943) b10 – 1.3799 – 0.6375 (– 1.5143,  0.1285)

Figure 1 shows a comparison of the development parameters for the Bayesian 
model and the chain-ladder technique. 

Table 8 shows the estimates of outstanding claims together with their pre-
diction errors (PE), for the over-dispersed Poisson model and the Bayesian model 
(without and with the tail factors). The prediction error is the standard devia-
tion of  the predictive distribution, expressed as a percentage of  the estimate 

TABLE 6

POSTERIOR MARGINAL PROBABILITIES FOR THE OPTIONAL PARAMETERS.

Nr. Optional parameter Marginal probability 

1 d2b4 0.2610

2 d2b5 1.0000

3 d2b6 0.1775

4 d2b7 0.7597

5 d2b8 0.2782

6 d2b9 0.3202

7 d2b10 0.3499
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FIGURE 1: Development parameters for the Bayesian model,
together with chain-ladder estimates, on the log scale

of outstanding claims. Note that the Bayesian prediction errors are, in general, 
lower than those from the standard ODP model (particularly for the earlier 
accident years). This is a refl ection of  the smoothing of  the run-off  shape 
inherent in the Bayesian method.

One of the advantages of stochastic models is that it is possible in many 
cases to estimate the full predictive distribution of outstanding claims. This is 

TABLE 8

ESTIMATES OF OUTSTANDING CLAIMS FROM THE BAYESIAN MODEL AND THE OVER-DISPERSED POISSON 
MODEL, TOGETHER WITH THEIR PREDICTION ERRORS (PE).

ODP
Bayesian Model 

without tail
Bayesian Model 

with tail

Row Estimate PE Estimate PE Estimate PE

1 516,379 79%
2 94,634 116% 217899 42% 960,835 79%
3 469,511 46% 466,227 36% 1,191,371 63%
4 709,638 37% 772,393 30% 1,499,630 54%
5 984,889 31% 1,029,486 24% 1,694,783 45%
6 1,419,459 26% 1,483,139 18% 2,180,434 35%
7 2,177,641 23% 2,360,039 16% 3,141700 27%
8 3,920,301 20% 4,002,315 16% 4,919,216 23%
9 4,278,972 24% 4,313,685 21% 5,070,645 25%
10 4,625,811 43% 4,781,149 42% 5,468,297 44%

Total 18,680,856 16% 19,426,333 15% 26,643,290 28%
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FIGURE 2: Predictive distribution for total outstanding claims for the Bayesian model,
without tail factors (solid line) and with tail factors (dashed line)

often done using simulation methods, such as bootstrapping. When MCMC 
methods are used, which are inherently based on simulation, it is completely 
straightforward to estimate the predictive distribution of any desired quantity. 
To illustrate this, Figure 2 shows the estimated predictive distributions of total 
outstanding claims with and without tail factors for the Bayesian model. 

5. CONCLUSIONS

This paper has set out a new approach to modelling claims run-off triangles, 
using reversible jump Markov chain Monte Carlo methods. The advantage of 
this new method is that it is objective, and can be used to replace the ad hoc 
procedures used in practice. We believe that this method has great potential 
for further application in this area.

One of the aspects of WinBUGS which can be seen as either a positive 
feature or a negative feature is that it is not necessary to specify the sampling 
procedures in detail. This makes it easier to reach a point where a model of 
interest can be implemented, but it also means that it is not possible to inter-
vene directly in the proposal method. The approach taken in this paper is to 
use winBUGS because we believe that its accessibility is important for non-
expert users who are interested in exploring the feasibility of the models which 
might be applied. However, we also acknowledge the potential diffi culties this 
necessarily brings with it, such as issues around mixing and between-model 
moves. Indeed, in Section 4 we found that the predictive distribution of the total 
reserve with tail factors to be a bit unreliable due to non-convergence of the 
Markov chains. We would anticipate that a specially written programme, based 
on adaptive RJMCMC (see Subsection 3.2) might be deemed more appropriate 

10000000 20000000 30000000 40000000 50000000

95371_Astin42-1_02_Verrall.indd   5395371_Astin42-1_02_Verrall.indd   53 5/06/12   13:515/06/12   13:51

https://doi.org/10.2143/AST.42.1.2160711 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.1.2160711


54 R. VERRALL, O. HÖSSJER AND S. BJÖRKWALL

than WinBUGS if such a method, or a closely related method were to be adopted 
for a practical application. 
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APPENDIX 

This Appendix contains the WinBUGS code used for the example. Note that 
it is fi rst necessary to download and install the Jump Interface.

Note that “scale” is the plugged in value of the scale parameter, f; “tau” 
is the reciprocal of the hyperparameter t; and “k1” is the parameter k in the 
text of the paper.

model
{
# The likelihood is constructed using the zeros trick. The data 
are fi rst divided 
# by 1000 for computational eff iciency.
for( i in 1 : 55 ) { 
Z[i] <- Y[i]/1000
log(mu[i]) <- cons+alpha[row[i]] + beta[col[i]];
zeros[i]<- 0
zeros[i] ~ dpois(phi[i])
phi[i] <- ((mu[i]-Z[i])-Z[i]*log(mu[i]/Z[i]))/scale   # MINUS 
log likelihood
} 

# psi is not available directly, and so we create an artifi cial 
variable, b1,
#which is essentially equal to psi.
for (i in 1:8) {
b1[i]~dnorm(psi[i],100000)
}

# This section sets up the trans-dimensional model for the 
run-off  parameters
beta[1]<-0
beta[2]<-beta2
beta2~dnorm(0,0.0001)
for (i in 1:8) { beta[i+2]<-beta[i+1]+b1[i]}
for (i in 1:5) { beta[10+i]<-beta[9+i]+b1[8]}
psi[1:8]<-jump.lin.pred.int(X[1:8,1:7],k1,tau,0,0.0001)
tau~dgamma(0.001,0.001)

id<-jump.model.id(psi[1:8])
k1~dbin(0.5,7)

# As suggested by England and Verrall (2006), we use a gamma
#distribution with the same mean and variance as the ODP for 
forecasting.
for( i in 56 : 100 ) {
log(mu[i]) <- cons+alpha[row[i]] + beta[col[i]];
fa[i] <-max(0.01,1000*mu[i]/scale)
fb[i] <- 1/scale
Z[i]  ~  dgamma(fa[i], fb[i])
}
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for( i in 1 : 100 ) {
fi t[i] <- Z[i]
}

for(i in 1:50) {
log(muT[i])<- cons+alpha[rowT[i]]+beta[colT[i]]
faT[i]<-max(0.01,1000*muT[i]/scale)
fbT[i]<-1/scale
ZT[i]~dgamma(faT[i],fbT[i])
}

for (i in 1:10) {
Tail[i]<-sum(ZT[5*(i-1)+1:5*i])
}

scale <- 52.601
cons~dnorm(0.0,0.0001)
alpha[1]<-0
for (k in 2:10) {alpha[k]~ dnorm(0.0,0.0001)}

R[1] <- 0
R[2] <- fi t[56]
R[3] <- sum(fi t[57:58])
R[4] <- sum(fi t[59:61])
R[5] <- sum(fi t[62:65])
R[6] <- sum(fi t[66:70])
R[7] <- sum(fi t[71:76])
R[8] <- sum(fi t[77:83])
R[9] <- sum(fi t[84:91])
R[10] <- sum(fi t[92:100])
Total <- sum(R[2:10])

for (i in 1:10) {
RT[i]<-R[i]+Tail[i]
}
TotalT<-sum(RT[1:10])
}

#INITIAL VALUES
list(alpha = c(NA,0,0,0,0,0,0,0,0,0), b1 = c(0,0,0,0,0,0,0,0),
cons=0, tau=10, beta2=1)

# DATA
list(row=c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3, 
3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8,9,9,10,
2,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,
9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10),
col=c(1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,
1,2,3,4,5,6,7,1,2,3,4,5,6,1,2,3,4,5,1,2,3,4,1,2,3,1,2,1,
10,9,10,8,9,10,7,8,9,10,6,7,8,9,10,5,6,7,8,9,10,
4,5,6,7,8,9,10,3,4,5,6,7,8,9,10,2,3,4,5,6,7,8,9,10),
Y=c(357848,766940,610542,482940,527326,574398,
146342,139950,227229,67948,
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352118,884021,933894,1183289,445745,320996,
527804,266172,425046,
290507,1001799,926219,1016654,750816,146923,
495992,280405,
310608,1108250,776189,1562400,272482,352053,
206286,
443160,693190,991983,769488,504851,470639,
396132,937085,847498,805037,705960,
440832,847631,1131398,1063269,
359480,1061648,1443370,
376686,986608,
344014,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA),
ZT=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA),
rowT=c(
1,1,1,1,1,
2,2,2,2,2,
3,3,3,3,3,
4,4,4,4,4,
5,5,5,5,5,
6,6,6,6,6,
7,7,7,7,7,
8,8,8,8,8,
9,9,9,9,9,
10,10,10,10,10),
colT=c(
11,12,13,14,15,
11,12,13,14,15,
11,12,13,14,15,
11,12,13,14,15,
11,12,13,14,15,
11,12,13,14,15,
11,12,13,14,15,
11,12,13,14,15,
11,12,13,14,15,
11,12,13,14,15),
X=structure(
.Data = c(
0,0,0,0,0,0,0,
1,0,0,0,0,0,0,
1,1,0,0,0,0,0,
1,1,1,0,0,0,0,
1,1,1,1,0,0,0,
1,1,1,1,1,0,0,
1,1,1,1,1,1,0,
1,1,1,1,1,1,1),
.Dim = c(8,7)))

95371_Astin42-1_02_Verrall.indd   5895371_Astin42-1_02_Verrall.indd   58 5/06/12   13:515/06/12   13:51

https://doi.org/10.2143/AST.42.1.2160711 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.1.2160711

