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ABSTRACT

Traditionally, actuaries have modeled mortality improvement using determin-
istic reduction factors, with little consideration of the associated uncertainty.
As mortality improvement has become an increasingly significant source of
financial risk, it has become important to measure the uncertainty in the
forecasts. Probabilistic confidence intervals provided by the widely accepted
Lee-Carter model are known to be excessively narrow, due primarily to the
rigid structure of the model. In this paper, we relax the model structure by
considering individual differences (heterogeneity) in each age-period cell.
The proposed extension not only provides a better goodness-of-fit based on
standard model selection criteria, but also ensures more conservative interval
forecasts of central death rates and hence can better reflect the uncertainty
entailed. We illustrate the results using US and Canadian mortality data.
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1. INTRODUCTION

The estimation of uncertainty involved in mortality forecasts is of critical
importance to the management of longevity (mortality improvement) risk.
Unlike traditional diversifiable mortality risk, that is, the random variation
around a fixed mortality probability, longevity risk affects the entire portfolio
and thus cannot be mitigated by selling a large number of policies. On the
other hand, there is a lack of mortality derivative securities that can be used
for hedging longevity risk. Therefore, risk capital is often required to cushion
against longevity risk, and such capital is, of course, determined by measures
of uncertainty associated with mortality projections. The computation of mea-
sures of uncertainty requires a stochastic methodology; examples include
the Lee-Carter model (Lee and Carter, 1992), the P-splines regression (Currie
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et al., 2004) and the parameterized time-series approach (McNown and Rogers,
1989).

Since its introduction in 1992, the Lee-Carter model has been widely used
in diverse actuarial and demographic applications. For instance, it has been used
as the basis of stochastic forecasts of the finances of the U.S. social security
system and other aspects of the U.S. federal budget (see Congressional Budget
Office of the United States, 1998). It has also been successfully applied to pop-
ulations in Scandinavia (Li and Chan, 2005) and the G7 countries (Tuljapurkar
et al., 2000). An advantage of the Lee-Carter model is that the number of
parameters is small relative to other stochastic mortality models. The parsi-
monious model structure gives constraints to the behavior of future death rates,
resulting in a stable age pattern of mortality in the projections. This effectively
prevents mortality crossovers, that is, a non-monotonicity in adulthood and
senescent mortality over age1, and various anti-intuitive behaviors that may
be encountered in some other stochastic approaches.

Nevertheless, the stringent model structure has been seen to generate overly
narrow confidence intervals (see Lee and Miller, 2001). This narrowness may
result in underestimation of the risk of more extreme outcomes, defeating the
original purpose of moving on to a stochastic framework. This phenomenon
is an example of model risk (see Cairns, 2000), which can be reduced by relaxing
the model structure. One way to relax the Lee-Carter model structure is
to consider extra bilinear terms (see, e.g., Renshaw and Haberman, 2003;
Booth et al., 2002). Although the extra bilinear terms can explain a portion of
temporal variance that is not captured by the original model, the time-varying
components in the extra bilinear terms are typically highly non-linear, making
forecasting more complicated2. Another way to relax the model structure is
to introduce a dispersion parameter. Renshaw and Haberman (2006) and Del-
ward et al. (2007) introduced a single (non-age-specific) parameter to the orig-
inal model, aiming at a better goodness-of-fit. However, they made no attempt
to consider the impact of the additional parameter on the width of prediction
intervals. Furthermore, as we demonstrate in Section 4, the variation of disper-
sion over age is highly significant, implying that the use of a single dispersion
parameter is insufficient.

Our objective in this paper is to explore the feasibility of extending the
model from a different angle, by considering individual heterogeneity at the cell
level. In more detail, the implementation of any mortality model requires the
division of the Lexis plane into cells. The original Lee-Carter model allows
death rates to vary between cells, but not within each cell; that is, individuals
within a single cell are assumed to be homogeneous. However, researchers have
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1 In principle, parameter bx could be negative for some ages, indicating that mortality at those ages
tends to rise when falling at other ages. In this situation, which might happen when data are sparse,
a crossover may occur in a mortality projection. However, this situation does not seem to occur
when the model is applied to national populations and large pension plans from which we have data
with an adequate number of exposures.

2 Section 2 gives a further discussion on this problem.
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noted that individuals at the same age may differ substantially in their endow-
ment for longevity, and that individual differences are important to population-
based mortality studies (see, e.g., Hougaard, 1984; Vaupel et al., 1979). The pri-
mary contribution of this paper is to relax the model structure by incorporating
individual differences into the Lee-Carter model. To justify our contribution,
the proposed extension must satisfy the following criteria.

1. Provision of wider confidence intervals. Taking account of additional varia-
tions, the interval forecasts should encompass a broader range of probable
outcomes.

2. Improvement of goodness-of-fit. The improvement of fit should be significant
enough that the introduction of additional parameters is worthwhile.
We base our conclusions on standard model selection criteria.

3. Retention of the appealing features in the original version. Relaxation of the
model structure should be done carefully so that criteria 1 and 2 can be
satisfied without distorting the stability in the projected age patterns and the
linearity in the time-varying component.

The rest of this paper is organized as follows: Section 2 provides a brief review
of the Lee-Carter methodology; Section 3 specifies our proposed extension
and provides theoretical justifications for it; this section also details how mean
and interval forecasts of death rates and other demographic quantities can be
computed using our proposed extension; Section 4 compares the performance
of our proposed extension with the original model, using US and Canadian
mortality data; finally Section 5 concludes the paper.

2. THE LEE-CARTER MODEL

The Lee-Carter model describes the central rate of death (mx,t) at age x and
time t by three series of parameters, {ax}, {bx}, and {kt}, in the following way:

ln(mx,t) = ax + bxkt + ex,t , (1)

where ax is an age-specific parameter that indicates the average level of mor-
tality at age x; {kt} is a time-varying parameter that signifies the general speed
of mortality improvement; bx is another age-specific parameter that character-
izes the sensitivity of ln(mx,t) to changes in kt; and ex,t is the error term that
captures all remaining variations.

Mortality forecasting is performed in two stages. In the first stage, we esti-
mate {ax}, {bx}, and {kt} using historical mortality data. Note that all para-
meters on the right hand side of equation (1) are unobservable. As a result,
we cannot fit the model by simple methods like the ordinary least squares.
To solve this problem, researchers have proposed a few alternative approaches
including the method of singular value decomposition considered by Lee and
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FIGURE 1: The i th time-varying component, kt
(i), in the augmented Lee-Carter model fitted to

Canadian mortality data.

Carter (1992), the method of maximum likelihood estimation implemented by
Wilmoth (1993) and Brouhns et al. (2002), and the method of generalized linear
models employed by Renshaw and Haberman (2006).

In the second stage, fitted values of kt are modeled by an autoregressive inte-
grated moving average (ARIMA) process, determined by the Box and Jenkins
(1976) approach. Then we extrapolate kt through the fitted ARIMA model to
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obtain a forecast of future death rates. Let T be the forecast origin and kT+ s be
the s-period ahead forecast of kt. The s-period ahead forecast of mx,t is given by 

mx,T+ s = e ax+bx kT + s. (2)

In recent years, researcher have extended the original Lee-Carter model by
introducing extra bilinear terms. Their extension generalizes equation (1) to 

ln(mx,t) = ax +
i

p

1=

! bx
(i)kt

(i) + ex, t. (3)

For instance, Renshaw and Haberman (2003) considered p = 2 and Booth et al.
(2002) considered p = 5. Although the extra bilinear terms can improve the
goodness-of-fit to the historical data, they make forecasting more complicated
because the additional time-varying components kt

(i), i = 2, 3, ..., p, are highly
non-linear (see Figure 1), which may not be well handled by ARIMA processes.

3. THE PROPOSED EXTENSION

In the original Lee-Carter model, it is assumed that the observed number of
deaths is a realization of the Poisson distribution with mean equal to the
expected number of deaths under the Lee-Carter model; that is,

Pr[Dx, t = y ] =
,x t

! ,y
el y l t- ,x

(4)

lx, t = E(Dx, t) = Ex,t e ax+bx kt; Dx, t and Ex, t are the number of deaths and expo-
sures-to-risk at age x and time t, respectively.

There are several drawbacks associated with the original setting. In assum-
ing Poisson models, we are imposing the mean-variance equality restriction
on the random variable Dx, t. In practice, however, the variance of Dx, t can be
greater than the mean. This situation is referred to as overdispersion. McCul-
lagh and Nelder (1989) pointed out that overdispersion is commonplace and
therefore it should be assumed to be present to some extent unless it is shown to
be absent. If overdispersion exists, the analysis of data using a single parameter
distribution such as Poisson will result in overestimating the degree of precision.
In other words, in mortality forecasting, the interval forecasts of death rates and
other demographic quantities under the assumption of Poisson death counts will
be overly narrow. Cox (1983) also pointed out that there is a possible loss of
efficiency if a single parameter distribution is used when overdispersion exists.

Motivated by the mean-variance equality restriction in the original Lee-
Carter model, we consider the modeling distribution for the number of deaths.
In the original model, it is assumed individuals in each age-period cell are
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homogeneous and have the same probability of death. However, other than
age and time, there are various factors affecting human mortality, for exam-
ple, ethnicity, education, occupation, marital status and obesity (Brown and
McDaid, 2003). These factors may divide the age-period cells into clusters,
so that individuals in the same cell but different clusters will have different
likelihood of death. The presence of clustering will not only violate the assump-
tion of homogeneity, but also induce extra variation that is not reflected in the
interval forecasts based on the original Lee-Carter model.

To account for the possibility of clustering, we segregate each age-period
cell into smaller clusters of equal size. The number of clusters Nx in an age-
period cell is age-specific and is assumed to be non-random. That is, the i th clus-
ter will have Ex, t /Nx exposures-to-risk and Dx, t(i) deaths, where i = 1, 2, ..., Nx.
The total number of deaths, Dx, t, in an age-period cell is therefore given by

x

.i, ,x t x t
i 1

=
=

N

D D! ] g (5)

We assume that Dx, t(i) and Dx, t( j) are independent for all i ! j, and that 

Dx, t(i) | zx(i) + Poisson
x

,i
l ,

x
x tz N]e g o (6)

where zx(i) is an age-specific random variable that accounts for heterogeneity
of individuals. We further assume that E(zx) =1, which implies that on average,
the clusters have the same mortality level as the cell to which they belong.

Note that zx(i) varies from cluster to cluster. When zx(i) > 1, individuals
in cluster i are more frail than the overall, and similarly when 0 < zx(i) < 1,
individuals in cluster i are less frail. Although any distribution with a positive
support can be a candidate for modeling zx(i), here we assume a Gamma dis-
tribution for mathematical tractability. In fact, Gamma distributions are often
utilized in modeling heterogeneity (see, e.g., Hougaard, 1984; Vaupel et al., 1979;
Wang and Brown, 1998).

Assuming that zx(i) follows a Gamma distribution with E[zx(i)] = 1 and
Var[zx(i)] = ix, where ix > 0, we can easily show that the probability mass dis-
tribution for Dx, t(i) is given by 

Pr[Dx, t(i) = y ] =
x

x

!y

y
p

i

i

G

G
i

+

1

1

-

-

x
1-

`

`

j

j
(1 – p)y, (7)

and that the moment generating function for Dx, t(i) can be expressed as

MDx, t (i) (z) = ,
p e

p
1 1 z

i

- -

x
1-

^
f

h
p (8)
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Given that Dx, t = !Nx
i =1 Dx, t(i) and that Dx, t(i) and Dx, t( j ) are independent

for all i ! j, we have the following moment generating function for Dx, t :
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which immediately implies that Dx,t follows the Negative Binomial distribution
with the following probability mass function:

Pr[Dx, t = y ] =
x
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where ax = ix /Nx .
Summing up, the introduction of Gamma-distributed heterogeneity in age-

period cells is equivalent to the assumption that Dx,t follows a Negative Binomial
distribution instead of a Poisson one. Note that 

E(Dx, t) = lx, t = Ex,t e ax+bx kt, (11)

which means our generalization still complies with the Lee-Carter specification.
More importantly, we have 

Var(Dx, t) = E(Dx, t) + ax [E(Dx, t)]
2, (12)

which means that our generalization explicitly allows for overdispersion.
The dispersion parameters ({ax}) are age-specific, allowing for different degrees
of overdispersion at different ages. As the mean-variance equality is relaxed,
measures of uncertainty obtained from the proposed extension can capture a
large part of the variation that is ignored in the original model. Note that the
limiting case ax " 0 yields a Poisson distribution.

Furthermore, the proposed extension gives an additional series of para-
meters to the model without altering the structure specified by equation (1).
As a result, the desirable features of the original model are preserved.

We may use maximum likelihood to estimate the model parameters. The log-
likelihood function is given by 

x
x xx ,ln ln ln

a
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where c is a constant that is free of ax, bx, kt, and ax. Note that the model is
overparameterized. For example, if {ax}, {bx}, {kt}, and {ax} form one set of
parameters for the model, then {ax}, {bx /A}, {Akt}, and {ax} will be an exactly
equivalent set for any constant A. In most applications of the model includ-
ing the pioneering work of Lee and Carter (1992) for the US population, a
unique representation is obtained by setting the sum of kt and bx to zero and
one, respectively. The Newton’s procedure for maximizing the log-likelihood
function subject to the constraints for parameter uniqueness is provided in
Appendix 1.

However, if we set !t kt = 0 and !xbx = 1, the model will not fit the age-
specific mortality data exactly at the forecast origin; that is, mx,T is not neces-
sarily equal to e ax+bx kT. This situation would inevitably lead to error, which
would be especially important in the early years of forecast. Bell (1997) and Lee
and Miller (2001) noted that the error at the forecast origin caused significant
bias in the forecasts for the first decade. This problem can be resolved by let-
ting ax = mx,T and kT = 0, thereby fitting the age-specific mortality data at the
forecast origin exactly. While the correction will not alter the log-likelihood
function, it will require some modifications to the Newton’s procedure for max-
imizing the log-likelihood3. We integrate the forecast origin correction into our
proposed extension. The revised Newton’s procedure is given in Appendix 2.

Having estimated the model parameters, we can fit an ARIMA process to
{kt} and extrapolate kt to the future. The mean forecasts of future central death
rates can be obtained by using equation (2).

The computation of interval forecasts is not straightforward. Here we extend
the parametric bootstrap procedure proposed by Brouhns et al. (2005) to form
the following algorithm for computing interval forecasts based on our pro-
posed extension.

1. Simulate N realizations from the Negative Binomial distribution specified
by equation (10).

2. For each of these N realizations:
(a) re-estimate {ax}, {bx}, and {kt} using maximum likelihood;
(b) specify a new ARIMA process for the re-estimated {kt};
(c) simulate future values of kt, that is, kT+ s, s = 1, 2, ..., using the newly

specified ARIMA process;
(d) compute future values of mx, t, that is, mx,T+ s, s = 1, 2, ..., using the re-

estimated {ax} and {bx}, and the simulated future values of kt.

3. Step (2) gives an empirical distribution of mx,T+ s for all x and s = 1, 2, ....
The 2.5th and the 97.5th percentiles of the empirical distribution respectively
gives the lower and upper limit of the 95% interval forecast of mx,T+ s.
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3 When we apply the correction, parameter ax is treated as a constant rather than a free parameter.
Therefore, even though the log-likelihood function remains unchanged, the resulting log-likelihood
value will be lower due to the additional constraints imposed on the model parameters.

https://doi.org/10.2143/AST.39.1.2038060 Published online by Cambridge University Press

https://doi.org/10.2143/AST.39.1.2038060


It is noteworthy that the above algorithm allows both sampling fluctuations in
the model parameters and stochastic error in the forecast of kt be included in
the interval forecasts. In addition, the algorithm does not require the assump-
tion of normality and this makes an asymmetric confidence interval possible.
Furthermore, the algorithm allows us to obtain interval forecasts for other
variables such as life expectancies and annuity pure premiums. In more detail, the
values of mx,T+ s, s = 1, 2, ..., in Step (2(d)) can be used to compute empirical
distributions and hence confidence intervals for life expectancies and annuity
values.

4. TWO EXAMPLES

4.1. The data

In this section, we evaluate the performance of our proposed extension using
US and Canadian mortality data. These data have a wide range of applications,
particularly in the area of social security finances (see, e.g., Congressional Bud-
get Office of the United States, 1998; Lee and Anderson, 2005).

In recent years, mortality derivatives have become increasingly popular.
Most of these securities, such as JP Morgan’s ‘Q-forward,’ are linked to the
mortality of national populations. We believe that our illustrations, which are
based on US and Canadian data, would be useful for users of these securities
to assess the potential hedging error involved in a hedging exercise.

For both populations, the number of deaths (Dx, t) and exposures-to-risk
(Ex,t) by single year of age from 0 to 99 are provided by the Human Mortality
Database (2006). As in Tuljapurkar et al. (2000), we consider the post-war period
from year 1950 to 2004.

4.2. Parameter estimates

We fit both the original model and our proposed extension (with the forecast
original correction) to the historical data. Figures 2 and 3 display the parameter
estimates for the United States and Canadian populations, respectively. Note
that {ax} from both models are identical as we have imposed the constraint
ax = mx,T in the forecast origin correction. Our proposed extension has a minor
effect on {bx} and {kt}. Nevertheless, the long-term stability in the time-varying
component {kt} is well preserved.

Next, we analyze the series of dispersion parameters ({ax}) that we intro-
duced to the original model. It is clear that the values of ax are not uniform
over age. This observation has two important implications: (1) the degree of
heterogeneity (individual differences) varies significantly with age; (2) it is
insufficient to handle over-dispersion in the Lee-Carter model with a single
(non-age-specific) dispersion parameter.

We observe a few peaks in the estimates of {ax} for both populations. Note
that the higher the value of ax is, the more individual differences at age x. The
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FIGURE 2: Estimates of parameters ax, bx, kt, and ax for the United States population.

first peak at age 0 to 1 may be attributed to the fact that infant mortality is
divided into many categories4. In addition, there exist other factors, for exam-
ple, birth weight, that have been proven to be influential to mortality in infancy
and childhood (Prager, 1994). The second peak, which is centered at age 20,
can be explained by the mortality differentials due to occupational differences
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4 Infant mortality is divided into three main categories: (1) perinatal mortality only includes deaths
between the foetal viability (28 weeks gestation) and the end of the seventh day after delivery;
(2) neonatal mortality only includes deaths in the first 28 days of life; (3) post-neonatal death only
includes deaths after 28 days of life but before one year. These three mortality rates are significantly
different (see, e.g., World Health Organization, 2006).
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FIGURE 3: Estimates of parameters ax, bx, kt, and ax for the Canadian population.

(Burnett et al., 1997). The final peak at around age 95 can be justified by the
classification of the elderly by their activity of daily living (ADL) limitations
(Kassner and Jackson, 1998). There is empirical evidence for the positive rela-
tionship between mortality and the number of ADL limitations (Pritchard, 2006).

4.3. Goodness-of-fit

Here we give, on the basis of the log-likelihood, a formal evaluation of the
goodness-of-fit. The log-likelihood function of our proposed extension is given
in equation (13), while that of the original model can be found in Brouhns et al.
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(2002). Table 1 compares the log-likelihood of the two models. The significant
increase in log-likelihood suggests that our proposed extension provides a better
fit to the historical data. However, under the principal of parsimony, we should
make use of the least possible number of parameters for adequate represen-
tations, and it is therefore inappropriate to base the conclusion only on the
increase in log-likelihood, as we have introduced an additional series of para-
meters ({ax}). To account for the extra parameters, we can use the following
model selection criteria.

1. Akaike Information Criterion (AIC) (Akaike, 1974), defined by l – j, where
l is the log-likelihood and j is the number of parameters. AIC takes account
of the increase in the number of parameters. Models with a higher value of
AIC are more preferable.

2. Schwarz-Bayes Criterion (SBC) (Schwarz, 1978), defined by l – 0.5j ln(n),
where n is the number of observations. The intuitions of SBC and AIC
are similar, but SBC adjusts for sample size. Again, we prefer models with
a higher SBC.

3. Likelihood-ratio test (LRT) (see, e.g., Klugman et al. 2004). The null
hypothesis of LRT is that there is no significant improvement in the more
complex model. Let l1 and l2 be the log-likelihood of the original model
and our proposed extension, respectively. The test statistic is 2(l2 – l1). Under
the null hypothesis, the test statistic has a chi-square distribution, with degrees
of freedom equal to the number of additional parameters.

The values of AIC and SBC (see Table 1) indicates that our proposed exten-
sion gives a better fit than the original model even after penalizing for the extra
parameters. The p-values of the LRT for both populations are less than 10–6,
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TABLE 1

COMPARISON OF SELECTION INFORMATION FOR THE ORIGINAL MODEL AND

OUR PROPOSED EXTENSION.

The original model Our proposed extension 

The United States

Number of Parameters 255 355
Log-likelihood –125,980 –41,886
AIC –126,230 –42,241
SBC –127,080 –43,415

Canada

Number of Parameters 255 355
Log-likelihood –40,730 –29,734
AIC –40,985 –30,089
SBC –40,828 –31,263
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providing further evidence for the improved goodness-of-fit. Although the new
model specification introduces more flexibility, the projected age patterns
of mortality remains stable, as shown in Figure 4. From Figure 4 we also
observe that the proposed extension makes little change to the central mor-
tality projections. However, the resulting interval forecasts, which we will show
in Section 4.4, are substantially different.

4.4. Interval forecasts

Given the parameter estimates, we compute forecasts of future central death
rates using the parametric bootstrap procedure discussed in Section 3. In Fig-
ures 5 and 6, we present the results for some representative ages. Note that the
forecast origin correction has resulted in an exact fit in year 2004 when the fore-
casts were made.

The interval forecasts from our proposed extension are significantly wider
than that from the original model. The increase in width varies by age, and
depends on the degree of overdispersion in the historical data. For Canada,
the increase ranges from 25% to 92%; and for the United States, it ranges from
18% to more than 180%. This observation agrees with our assertion that the
mean-variance equality restriction in the original model has lead to under-
stating the variations.

The increase in width has important implications to insurers. To illustrate,
let us suppose that an insurer requires an estimate of m30 in 2014 (10 year from
the forecast origin) for pricing a term-life insurance product. Based on the
US mortality data, the original model gives the insurer a mean estimate of
0.000834 and a 95% confidence interval of (0.000633, 0.001060). The difference
0.001060 – 0.000834 = 0.000226 can be considered a probabilistic margin for
adverse deviation. If the original model is correct, this margin ensures that
there remains no more than 2.5% chance that the mortality is underestimated.
However, under our proposed extension, which models the uncertainty involved
more realistically, the margin of 0.000226 is far less prudent: the chance that
the mortality is underestimated is 24%, which is almost 10 times the original
probability!

Readers are reminded the limitations of our extension. First, even though
the model structure is relaxed, model risk still exists. For instance, our exten-
sion has not taken into account the possibility of outliers and structural
changes in the time-varying component, {kt}. Therefore, forecasters are still
required to monitor the experience and re-calibrate the model from time to time.
Second, the statistical tests can only tell us that, given the data we consider,
our proposed extension gives a better fit than the original model. They do not
indicate the model provides an adequate fit to the data, and do not imply our
proposed extension outperforms other types of mortality models. We refer the
interested readers to Cairns et al. (2009) for a comparison of the goodness-of-
fit provided by various stochastic mortality models.
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4.5. Backtesting

A way to test a projection model is to carry out backtesting, that is, to con-
sider what results would have been produced if the model had been used in
the past5. We use this approach to test the original model and our proposed
extension, particularly on the interval forecasts they generate. Using this
approach, we rebase the mortality projections only on the data as at 1994 (i.e.,
10 years before the original forecast origin), starting the forecasts in 1995.
Then we compare the ‘‘forecasts’’ with the actual values.

We consider three measures in the backtesting exercise; they are (1) the
expectancy of life at birth (e0), (2) the pure premium of a unit benefit whole life
insurance sold to a life-aged-30 (A30), and (3) the actuarial present value of a
whole life annuity due of $1 sold to a life-aged-60 (a60). Measure (1) is often
used as a convenient summary of the mortality of a population, while measures
(2) and (3) have a wide range of actuarial applications. In Figures 7 to 9 we
display the results for both populations.

The confidence level of 95% means that there is a 95% probability that the
actual value is covered by the confidence interval. In other words, it is expected
that, in each of the diagrams in Figures 7 to 9, there is no more than one
true value lying outside the interval. However, in the original Lee-Carter
forecasts of A30 and a60 for the Canadian population, the coverage of actual
values is less than 60%. In the forecast of A30 for the United States population,
there are also two true values lying outside the interval based on the original
model. The empirical results provide further evidence that the original Lee-
Carter model tends to understate the uncertainty involved in estimating future
mortality.

On the other hand, for all three measures we considered, the 95% proba-
bility bounds based on our proposed extension contain all actual values.
The empirical results support the use of our proposed extension, particularly
in applications for which the uncertainty associated with the central projections
is important.
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FIGURE 4: Projected age patterns of mortality in 2054 for the United States and
Canadian populations.
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FIGURE 5: The fit (1950-2004) and projection (2005-2054) of central death rates at representative ages,
the United States population.
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FIGURE 5: (cont’d).
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FIGURE 6: The fit (1950-2004) and projection (2005-2054) of central death rates at representative ages,
the Canadian population.
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FIGURE 6: (cont’d).

UNCERTAINTY IN MORTALITY FORECASTING 155

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

−5.8

−5.6

−5.4

−5.2

−5

−4.8

−4.6

−4.4

−4.2

−4

Year (t)

ln(m
x,t

)

Raw data
Mean forecast (the original model)
95% interval (the original model)
Mean forecast (our extension)
95% interval (our extension)

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

Year (t)

ln(m
x,t

)

Raw data
Mean forecast (the original model)
95% interval (the original model)
Mean forecast (our extension)
95% interval (our extension)

https://doi.org/10.2143/AST.39.1.2038060 Published online by Cambridge University Press

https://doi.org/10.2143/AST.39.1.2038060


FIGURE 7: Projected life expectancy at birth (e0), 1995-2004.
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FIGURE 8: Projected pure premium of a unit-benefit whole life insurance
sold to a life-aged-30 (A30), 1995-2004.
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FIGURE 9: Projected actuarial present value of a whole life annuity due of $1
sold to a life-aged-60 (a60), 1995-2004.
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5. CONCLUDING REMARKS

We have demonstrated that confidence intervals from the original Lee-Carter
model are not sufficiently prudent, which can result in underestimating the cap-
ital required for cushioning against longevity risk. We addressed this issue by
adapting the original Lee-Carter model for a better measurement of uncertainty.

The adaptation incorporates the uncertainty that arises from individual
differences other than age and year of birth into the modeling of future mortal-
ity dynamics. The adapted model yields significantly wider (more conservative)
confidence intervals, taking account of the uncertainty that is ignored in the orig-
inal version due to the assumption of homogeneity of individuals in each age-
period cell. In the back-testing exercise, we found that the adapted model gives a
more realistic measurement of the variability of mortality rates in the past decade.

From a technical viewpoint, the adapted model allows for overdispersion
through the age-specific dispersion parameters, {ax}. The additional parameters
are justified for several reasons. First, the adapted model gives a better goodness-
of-fit to historical data even if the increase in number of parameters is penal-
ized. Second, since the new parameters do not alter the main model specification,
the adaptation preserves the long-term stability of {kt} and age-patterns of mor-
tality. Third, the dispersion parameters, which originate from the probability
distribution function for modeling individual differences, have an intuitive inter-
pretation. They convey invaluable information about the relative levels of het-
erogeneity at different ages.

Overdispersion in the Lee-Carter model has been considered previously by
Renshaw and Haberman (2005) and Delward et al. (2007). Renshaw and Haber-
man set Var(Dx, t) = ƒE(Dx, t), where ƒ is a non-age-specific scale parameter,
while Delward et al. use a Negative Binomial distribution with a scale para-
meter k. Renshaw and Haberman’s method suffers from the problem that the
relationship between E(Dx, t), Var(Dx, t) and the probability function of Dx, t is
internally inconsistent. It is noteworthy that in both methods, the allowance
of overdispersion entirely depends on a single parameter. However, as shown
in Section 4.2, overdispersion in the Lee-Carter model is far from being con-
stant over age. It is clear that age-specific parameters are required for adequate
modeling. Furthermore, both Renshaw and Haberman (2005) and Delward et
al. (2007) have made no attempt to consider uncertainty, which is our primary
concern.

For mathematical convenience, we used a single parameter Gamma distri-
bution for modeling the unobserved heterogeneity. Although we can replace
the Gamma distribution with any continuous distribution that has a positive
support, the mixture of distributions may not be carried out analytically.
In this case, the maximum likelihood estimates of the model parameters may
have to be determined by a combination of numerical integrations and the
EM algorithm (see Brillinger, 1986).

In all versions of the Lee-Carter model, the modeling proceeds in two
steps: the model parameters ax, bx, kt, and ax (if applicable) are estimated;
then an ARIMA process is fitted to parameter kt for extrapolation. Czado
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et al. (2005) pointed out that this two-step procedure may give rise to incoherence.
They proposed using the Markov Chain Monte Carlo (MCMC) method, which
combines the two steps and thus may lead to desirable smooth variations over
the Lexis plane. It would be interesting to incorporate our proposed extension
with the MCMC method for a deeper understanding of the uncertainty asso-
ciated with the parameter estimates and forecasts.
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APPENDIX

APPENDIX 1. An algorithm for estimating model parameters
without the forecast origin correction

Let ax
(v), bx

(v), kt
(v), and ax

(v) be the estimates of ax, bx, kt, and ax in the vth itera-
tion, respectively. We define the following functions:
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The Newton’s procedure for estimating the model parameters in our proposed
extension (without the forecast origin correction) is as follows.
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ax
(v +2) = ax
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(v +1). For all t, kt
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(v +1).
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For all x, ax
(v +3) = ax

(v +2), bx
(v +3) = bx

(v +2), and ax
(v +3) = ax

(v +2).

• Update on {ax} 

For all x,
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4

4

ax
(v +4) = ax

(v +3), and bx
(v +4) = bx

(v +3). For all t, kt
(v +4) = kt

(v +3).

The iteration stops when the change in the log-likelihood function (equation (13))
is sufficiently small, say 10–6. The starting values can be arbitrary, but a faster
convergence can be achieved if they are set to the Poisson maximum likelihood
estimates.
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APPENDIX 2. An algorithm for estimating model parameters
with the forecast origin correction

To correct the potential error at the forecast origin, the procedure for updating
{ax} and {kt} in Appendix 1 should be changed as follows.

• Update on {ax} 

For all x, ax
(v +1) = Dx,T /Ex,T (i.e., we keep ax unchanged), bx

(v +1) = bx
(v), and

ax
(v +1) = ax

(v). For all t, kt
(v +1) = kt

(v).

• Update on {kt} 

For all t,
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For all x, ax
(v +3) = ax

(v +2), bx
(v +3) = bx

(v +2), and ax
(v +3) = ax

(v +2).
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