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FRAGMENTS OF APPROXIMATE COUNTING

SAMUEL R. BUSS, LESZEK ALEKSANDERKOŁODZIEJCZYK, AND NEIL THAPEN

Abstract. Westudy the long-standing open problemof giving∀Σb1 separations for fragments of bounded
arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount
of induction they allow, we study Jeřábek’s theories for approximate counting and their subtheories. We
show that the ∀Σb1 Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that
includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that
includes the surjective weak pigeonhole principle for FPNP functions. We further give new propositional
translations, in terms of random resolution refutations, for the consequences of T 12 augmented with the
surjective weak pigeonhole principle for polynomial time functions.

§1. Introduction. In a series of papers [12, 14, 16], Jeřábek developed two theo-
ries of approximate counting in bounded arithmetic. In order to give them succinct
names, we will call these theories APC1 and APC2. The weaker theory, APC1, is
PV1 + sWPHP(PV1). Here sWPHP is the surjective version of the weak pigeon-
hole principle stating that there is no mapping from [x] onto [x(1 + 1/|x|)], and
PV1 stands for both a set of function symbols used to represent polynomial time
functions and a theory in which these functions are well-behaved. APC1 can reason
about the approximate size of a polynomial time subset X of an interval [0, a), up
to an error a polynomial fraction of the size a of the interval. This makes APC1
suitable for developing some parts of the theory of probability and probabilistic
computations [14].
The (conjecturally) stronger theory, APC2, is T 12 + sWPHP(PV2), where PV2
denotes the relativization of PV1 to an NP oracle. APC2 can reason about the
approximate size of anNP subsetX of an interval [0, a), up to an error a polynomial
fraction of the size of the set X . This allows APC2 to carry out many arguments
based on approximate counting and repeatedly subdividing a set, including the
usual proofs of the finite Ramsey theorem and the tournament principle [16].
The theories APC1 and APC2 are subtheories of the fragment T 32 of bounded
arithmetic (see Figure 1). It is of course an open question whether these theories
are distinct, and even whether S12 equals S2 = T2. However, separations are known
in the relativized setting where an uninterpreted predicate symbol α (an oracle) is
added to the language. In particular, as we discuss below, the three theories S12 (α),
T 12 (α), and T

2
2 (α) are known to be separated by their ∀Σb1(α) consequences. On the
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other hand, Si+12 is ∀Σbi+1-conservative over T i2 [6], and S12 + sWPHP(PV1) is ∀Σb1-
conservative over APC1 [12]. These conservation results also hold for the relativized
theories.
It is thus interesting to consider the strength of the relativized versions of the

theories APC1 and APC2 and other related theories. We would like to compare
or separate the ∀Σb1(α) consequences of these theories from those of others in the
bounded arithmetic hierarchy.
It is a long-standing open question whether there is some fixed k such that the

fragments T i2 (α) of the bounded arithmetic hierarchy can be separated by a ∀Σbk(α)
sentence, and, in particular, whether there is a ∀Σb1(α) sentence which is provable in
T2(α) but not in T 22 (α). We can ask a similar question about APC2(α):

Open Problem 1.1. Is there a ∀Σb1(α) sentence which is provable in full bounded
arithmetic T2(α), but not in APC2(α)?

This seems to be a hard question. It is interesting to note that we do not know any
inclusions between the ∀Σb1 consequences ofT 22 andAPC2, and that the two theories
T 22 and APC2 live at roughly the same level in the bounded arithmetic hierarchy,
namely between T 12 and T

3
2 . Thus T

2
2 and APC2 both lie on the boundary of

where we are unable to establish relativized ∀Σb1 separation results. A deeper reason
for seeking lower bounds for theories such as APC1 and APC2 that are based on
approximate counting is that the ∀Σb1 principles that are known to separate weak
bounded arithmetic theories tend to fall into two groups: either they are natural
principles coming from finite combinatorics (such as the weak pigeonhole principle
or the finite Ramsey theorem) for which we can prove lower bounds directly, or they
are principles which are in some sense “complete” (such as reflection principles for
propositional logic), for which unprovability follows from unprovability for some
principle in the first group. The principles in the first group all happen to be provable
using the amount of approximate counting available in APC2. So approximate
counting is an obstacle that we should expect to have to tackle when looking for
stronger unprovability results.
More generally, the importance of approximate counting in computational com-

plexity and finite combinatorics suggests strongly that the theory APC2(α) is worth
studying in its own right. Indeed, if all the ∀Σb1(α) consequences of T2(α) do turn
out to be provable in some weak fragment of T2(α), in many ways a theory for
approximate counting is a more natural candidate for that fragment than T 22 (α) is.
Thus, we feel that APC2(α) might be an even more natural choice for a “barrier”
theory than T 22 (α): namely, we might be able to separate the ∀Σb1(α) consequences
of theories below APC2(α), but not to separate APC2(α) from full T2(α).
Before stating our results, we briefly recall the best known (relativized) sepa-

rations for the theories shown in Figure 1. First, the theories PV1(α) and S12 (α)
are ∀Σb1(α)-separated from T 12 (α), as shown by Kraj́ıček [18] and Pudlák [28]; this
also follows from the PLS characterization of the ∀Σb1-definable functions of T 12 [8].
The theories T 12 (α) and S

2
2 (α) are ∀Σb1(α)-separated from T 22 (α), via versions of

the iteration principle, the pigeonhole principle, and the Ramsey principle [9, 10].
Finally, for i ≥ 2, T i2 (α) and Si+12 (α) are ∀Σbi+1(α)-separated from T i+12 (α) [8];
however, it is open whether they are ∀Σbi (α)-separated. There are also a number of
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PV1 S12 T 12 S22 T 22 S32 T 32

APC2 = T 12 + sWPHP(PV2)

S12 + sWPHP(PV1)

APC1 = PV1 + sWPHP(PV1)

∀Σb1
∀Σb2 ∀Σb3

∀Σb1

Figure 1. The prior-studied fragments of bounded arithmetic
based on approximate counting. The arrows show the direction
of inclusion, and the labels show conservativity. For instance, T 22
proves APC1 and S12 is ∀Σb1-conservative over PV1. In addition to
the inclusions shown, S12 + sWPHP(PV1) is a subtheory of APC2.

characterizations of the ∀Σbk-consequences of T i2 [1, 2,17,30,33], but none of these
have achieved any separations.
We are not able to prove a ∀Σb1(α) separation of APC2(α) and T 22 (α); instead,
we prove results for several fragments of APC2(α). In particular, we study (the
relativized versions of) the three theories shown in the middle of Figure 2. In the
figure, sWPHP is, as above, the surjective version of the weak pigeonhole principle,
whereas iWPHP is the more traditional injective version. Some care is needed
when defining the theory PV1 + sWPHP(PV2), because PV1 does not prove the
totality of PV2 functions. (Complete definitions are found in the next section and
Section 4.) In addition, we are not able to prove our separation results for the theory
PV1 + sWPHP(PV2), but instead work with its subtheory PV1 + sPHP

2a
a (PV2).

By a theorem of Wilkie (which appeared in [20], see also [35]), the ∀Σb1 sen-
tences provable in APC1 can be witnessed in probabilistic polynomial time. It
is known that this witnessing theorem can be used to show that APC1(α) does
not prove all the ∀Σb1(α) consequences of T 22 (α) [35].1 Two of our main results
below state that the same holds for the theories T 12 (α) + iWPHP(PV1(α)) and
PV1(α) + sPHP

2a
a (PV2(α)). In particular, neither theory proves the (relativized)

Herbrandized ordering principle (HOP), which we define in the next section. How-
ever, the relativized HOP is not a candidate for separating T 22 (α) from APC2(α),
as it is provable in both of those theories.
Somewhat surprisingly, even though in many contexts sWPHP seems weaker
than iWPHP, we have not been able to prove a ∀Σb1(α) separation result for
T 12 (α) + sWPHP(PV1(α)). On the other hand, we do prove a witnessing theo-
rem for this theory in terms of randomized polynomial local search problems. We
also discuss the notion of random resolution refutation and show that if a ∀Σb1(α)
sentence � is provable in T 12 (α) + sWPHP(PV1(α)), then for any probability dis-
tribution over truth assignments, the propositional translations of the negation

1Actually, it can be shown in a similar way that APC1(α) does not prove all the ∀Σb1 consequences
of T 12 (α).
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PV1

T 12 T 22

T 32

APC1

T 12 + iWPHP(PV1)

T 12 + sWPHP(PV1)

PV1 + sWPHP(PV2)

APC2

Figure 2. The present paper obtains results for relativized APC1
and for relativized versions of theories intermediate betweenAPC1
and APC2. Sections 3 and 4 show that, in the relativized set-
ting, HOP is not a consequence of T 12 + iWPHP(PV1) or PV1 +
sWPHP2aa (PV2). Section 5 discusses propositional translations of
∀Σb1-consequences of T 12 + sWPHP(PV1).

of � have polylogarithmic width random resolution refutations (or, equivalently,
quasipolynomial size random treelike Res(log) refutations). We conjecture that for
certain probability distributions HOP and iWPHP have no such refutations, but
we are not able to prove this. In particular, it seems to be difficult to adapt the
usual lower bound techniques for narrow resolution (or the methods for showing
unprovability from T 12 (α)) to work in this case.
The question of finding a ∀Σb1(α) separation of T 12 (α) + sWPHP(PV1(α)) from

stronger fragments of bounded arithmetic thus appears to be the natural next step
towards a solution of Open Problem 1.1 and related problems. As far as we know,
T 12 (α) + sWPHP(PV1(α)) is the weakest relatively natural bounded arithmetic
theory whose ∀Σb1(α) consequences have not been separated from those of full
T2(α).
The remainder of the paper is organized as follows. Section 2 discusses definitions

and backgroundmaterial, and presents a generalized “Student-Teacher” algorithm,
which can be used to witness high complexity consequences of universal theories.
The Student-Teacher game is applied in Section 4 to the case of PV1(α). Section 3
shows that T 12 (α) + iWPHP(PV1(α)) does not prove the relativized HOP, and
briefly discusses a similar result in which the weak pigeonhole principle is replaced
with a weak version of the finite Ramsey theorem. Section 4 shows that PV1(α) +
sPHP2aa (PV2(α)) also does not prove the relativized HOP. Section 5 studies the
∀Σb1(α) consequences ofT 12 (α)+sWPHP(PV1(α)) andproves ourwitnessing results
and propositional translations based on random resolution refutations.

§2. Preliminaries. We assume that the reader has some familiarity with bounded
arithmetic (see [5,7,11,20]), but we recall the basic definitions below, and fix some
notation and terminology in the process.
We take the basic language of bounded arithmetic to consist of the symbols

+, ·,#, |x|, �x/2y�,≤, 0, 1, where |x| is �log2(x + 1)� (length in binary) and x#y is
2|x|·|y|. (A more traditional choice would have been to use �x/2� instead of �x/2y�,
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but the latter facilitates sequence coding and makes some theories more robust,
see [13].)
A hierarchy of bounded formulas in this language is defined as follows. The class
Σb0, or Π

b
0 , consists of formulas in which all the quantifiers are sharply bounded, i.e.,

bounded by a term of the form |t|. For i ≥ 1, the class Σbi is the closure of Πbi−1
under ∧,∨, bounded ∃, and sharply bounded quantifiers, while Πbi is defined dually.
In the standard model of arithmetic N, the Σbi formulas define exactly those sets
that lie on the i-th level of the polynomial hierarchy, Σpi .
The theory T i2 is axiomatized by a finite universal theory BASIC, which fixes the
meaning of the symbols, and the induction scheme for Σbi formulas. In the theory
Si2, the usual Σ

b
i induction scheme is replaced by length induction:

�(0) ∧ ∀x<|c| (�(x)→ �(x + 1))→ �(|c|).
Full bounded arithmetic, S2 = T2, is the union of T i2 over all i . It is well-known
that

S12 ⊆ T 12 ⊆ S22 ⊆ T 22 ⊆ · · ·
and the fundamental problem of bounded arithmetic is whether this hierarchy of
theories collapses.
The theory Si+12 is ∀Σbi+1-conservative over T i2 ([6]; for i = 0, this result is due to
[13] and requires the presence of �x/2y�, cf. [4]). Moreover, all ∀Σbi+1 consequences
of Si+12 are witnessed by polynomial time functions with a Σpi oracle [5]. Conversely,
all FPΣ

p
i functions have provably total Σbi+1 definitions in S

i+1
2 (and hence in T i2 ). In

particular, the ∀Σb1 consequences of S12 are witnessed by polynomial time functions,
and all polynomial time functions are provably total in S12 .
The ∀Σb1 consequences of T 12 are witnessed by polynomial local search (PLS)
problems [8]. A PLS problem is given by a term u and polynomial time functionsC
andN (the cost and neighborhood functions), all of which take an extra parameter c.
The function N always maps the interval [0, u(c)) to itself, and a solution to the
PLS problem on input c is any s < u(c) such that C (N(s)) ≥ C (s). The PLS
problem witnesses the formula ∀x ∃z �(x, z) if some polynomial time function F
takes every solution of the PLS problem on input c to a witness for ∃z �(c, z).
For i ≥ 1, Si2 proves a replacement principle which implies that every Σbi formula
is equivalent to a strict Σbi , or Σ̂

b
i , formula, which has the form

∃x1<t1 ∀x2<t2 · · ·Qxi<ti �,
with � sharply bounded. For this reason, we typically do not distinguish between
Σbi and Σ̂

b
i when working in a theory that contains S

i
2. However, we do use the Σ̂

b
i

notation when dealing with theories which do not prove the relevant replacement
principles (as in Section 4 of the present paper).
PV1 is a universal theory in a language with symbols for all polynomial time
computable functions, whichmaybe taken to contain the basic languageof bounded
arithmetic. The notation PV1 is also commonly used for this set of function symbols
itself. The axioms of PV1 include defining equations for the PV1 functions and
a form of induction for all open formulas in the language. PV1 is often simply
called PV in the literature. For i ≥ 1, an analogous theory and set of symbols
PVi+1 corresponding to FP

Σbi functions can also be defined. PVi+1 is a conservative
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extension of T i2 , and the two theories are often identified (though for a number
of reasons the notation PV1 is more common than T 02 ). In particular, all PV1
functions are already Σb1 definable in T

0
2 , and hence we may treat them as part of

the language of bounded arithmetic without changing significantly the complexity
of the formulas we are interested in. In the rest of this paper, PV1 function symbols
will be used freely in terms.
A simple but important property of bounded arithmetic, first proved in [25],

is known as Parikh’s theorem: if bounded arithmetic proves ∀x ∃y �(x, y) for
bounded �, then it actually proves ∀x ∃y<t(x) �(x, y) for some term t.
All bounded arithmetic theories can be relativized by adding an uninterpreted

predicate, or “second order parameter”, α (and more predicates, if convenient) to
the language. The predicate α is allowed in atomic formulas, and Σbi induction is
replaced with Σbi (α) induction. In the case of PVi , the relevant changes include
modifying the definition of the PVi functions so that they are allowed to make
oracle queries to α. The relativized versions of T i2 , S

i
2 and PVi+1 are commonly

denoted T i2 (α), S
i
2(α), and PVi+1(α).

All the provability and conservativity results mentioned above carry over to the
relativized case. On the other hand, as discussed in the introduction, a number of
separations are known for relativized theories. Since the present paper is primarily
interested in the relativized case, and deals with theories whose names are long
enough already and sometimes have multiple second-order parameters, we often
suppress the “(α)” notation and treat relativization as implicit. More precisely, we
adhere to the following conventions. First, our positive results, about provability
and witnessing, are stated without relativization, and hold for both the relativized
and unrelativized cases (whenever they make sense). Second, our negative results,
about unprovability, are stated in the form “In the relativized language with the
symbols · · · , the theory T � ϕ”, where it is implicitly understood that T is actually
T (· · · ), and that ϕ typically contains symbols from · · · in addition to those from
the basic language of arithmetic. (Since we do not have any unprovability results
for the unrelativized cases, there should be no risk of confusion.)
Other notational conventions include the following. Interval notation such as

[a, b) always stands for the appropriate interval in the integers. We often write [a]
for [0, a). Wheneverf is a function of more than one argument, the notationfe(u)
means exactly the same thing as f(e, u), and is intended to emphasize that we treat
u as the “actual argument” and e as a parameter.

2.1. Weak pigeonhole principles. For a functionf, possibly with parameters, and
elements a < b, the injective pigeonhole principle iPHPba(f) says that f does not
map b pigeons injectively into a holes:

∃x<b f(x)≥a ∨ ∃x1<x2<b f(x1)=f(x2).
For a class of functions Γ (typical choices include Γ = PV1,PV2 etc.) and a term t
such that t(x) > x, the scheme iPHPt(a)a (Γ) consists of the universal closures of
iPHPt(a)a (f) for f ∈ Γ.
The principle is referred to as a “weak” pigeonhole principle, and denoted

iWPHP, when t(x) is “much bigger” than x. The weak pigeonhole principle has
been the object of extensive study in both bounded arithmetic, beginning with [26],
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andpropositional proof complexity.Traditionally, t(x) “muchbigger” thanx meant
t(x) = x#x, x2, or 2x. We use t(x) = x(1 + 1/|x|) for reasons that have more to
do with the surjective variant of WPHP (see below), but in most settings of interest
to us the exact choice of t is irrelevant, due to amplification ([15, 26, 34]). Given
a polynomial time function f violating iPHPa(1+1/|a|)a (f) and an element b > a,
the theory PV1 can amplify f to give another polynomial time function g violating
iPHPba(g) (the only new parameter used by g is b, and this could be replaced by any
other parameter which is not superpolynomially smaller than b). Thus, already over
the base theory PV1, the scheme iWPHP(PV1) = iPHP

a(1+1/|a|)
a (PV1) is equivalent

to iPHPa#aa (PV1) and all the intermediate schemes.
The scheme iWPHP(PV1) is known tobeprovable inT 22 [24] and, in the relativized
setting, unprovable in S22 [31].
The surjective (or dual) pigeonhole principle sPHPba(f) says thatf does notmap
a arguments surjectively onto b values:

∃v<b ∀u<a (f(u) �= v).
Note that this is a Σ̂b2 formula about a, b, and f, unlike iPHP

b
a(f), which is Σ̂

b
1 .

For a class of functions Γ, the scheme sPHPt(a)a (Γ) consists of universal closures of
sPHPt(a)a (f) for f ∈ Γ.
As before, the principle is referred to as “weak”, and denoted sWPHP,
when t(x) is “much bigger” than x. Originally, sWPHP was less studied than
iWPHP. It gained prominence when Jeřábek showed first that a basic notion of
approximate cardinality of polynomial time sets can be developed in the theory
PV1 + sPHP

a(1+1/|a|)
a (PV1) [14], and later that T 12 + sPHP

a(1+1/|a|)
a (PV2) supports a

more robust notion of approximate cardinality, powerful enough to formalize typ-
ical combinatorial arguments using approximate counting [16]. These arguments
include proofs of many combinatorial principles used to separate low levels of the
relativized bounded arithmetic hierarchy.
We let sWPHP(Γ) stand for sPHPa(1+1/|a|)a (Γ). We let APC1 stand for the theory
PV1 + sWPHP(PV1) and APC2 stand for T 12 + sWPHP(PV2).
The situation with amplifying sPHP is more complicated than with iPHP. In par-
ticular, the three relativized schemes sWPHP(PV1), sPHP

2a
a (PV1) and sPHP

a2

a (PV1)
are all distinct over PV1 [15]. On the other hand, they are all equivalent over S12 .
Moreover, already over PV1 there is a conservativity result: PV1 + sWPHP(PV1) is
∀Σb1-conservative over PV1 + sPHPa#aa (PV1) (noted in [15] as a corollary of earlier
results).
Similarly to iWPHP(PV1), sWPHP(PV1) is provable in T 22 but its relativized
version is unprovable in S22 . It follows from the provability result that APC1 is a
subtheory of T 22 , and APC2 is a subtheory of T

3
2 .

The known relationships between the relativized versions of iWPHP(PV1) and
sWPHP(PV1) are as follows:

• S22 (α) + iWPHP(PV1(α)) does not prove sWPHP(PV1(α)) [15].
• On the other hand, already PV1 + iWPHP(PV1) proves all the ∀Σb1 conse-
quences of PV1 + sWPHP(PV1) [12].

• S12 (α) + sWPHP(PV1(α)) does not prove iWPHP(PV1(α)) [35].
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• The provability of iWPHP(PV) in S22 + sWPHP(PV1), or equivalently in T 12 +
sWPHP(PV1), is an open problem. In general, the strength of (the relativized
version of) T 12 + sWPHP(PV1) is not very well understood (see Section 5).

Both iPHPt(a)a (PV1) and sPHP
t(a)
a (PV1) are officially infinite schemes. How-

ever, they are equivalent over PV1 to the single sentences ∀a, e iPHPt(a)a (fe)
and ∀a, e sPHPt(a)a (fe), where fe(x) = f(e, x) is the universal polynomial time
machine with a parameter (which we think of as computing the circuit e on input x).
Normally,WPHP(Γ), in whatever version, is studied in a context where functions

from Γ are represented by function symbols or at least provably total definitions.
However, in Section 4 of this paper we study sWPHP for PV2 functions over the
theory PV1, which is too weak to prove the totality of FP

NP functions. We defer
discussing the issues this raises until Section 4.

2.2. Ordering principles. As our sentence that separates various fragments of
APC2 from T 22 , we will use a weak, Herbrandized version of the following principle.

Definition 2.1. The ordering principle is the universal closure of a Σb2 (in fact,
Σ̂b2) formula with a size parameter c and a second order parameter for a binary
relation � on [c]. It asserts that if � is a partial ordering, then it has a minimal
element.

We will write x ≺ y for x � y ∧ x �= y.
Proposition 2.2. The ordering principle is provable in T 22 .

Proof. This is proved by a straightforward induction on c. �
Theorem 2.3. The ordering principle is provable in APC2.

Proof. If weweaken the principle to “if� is a totalordering, then it has aminimal
element”, then it follows easily from the tournament principle, which is provable in
APC2 [16]. This is because the total ordering directly defines a tournament on [c]
by the rule “x beats y if and only if x ≺ y”. By the tournament principle, this
tournament has a logarithmic size dominating set. We can find the minimal element
of this set by a brute force search, and this element must then be minimal for the
whole interval.
For the full principle, we use a more sophisticated argument due to Jeřábek [per-

sonal communication]. Say that a partial ordering is directed if every two elements
have a common lower bound. We can find a minimal element in a directed order
in much the same way as in a total one: define a tournament by “x beats y if and
only if either x is�-comparable to y and x ≺ y, or x is not�-comparable to y and
x < y”. (We could use an arbitrary polynomial time antisymmetric relation instead
of <.) Let S be the logarithmic size dominating set. Since � is directed, by brute
force using Σb1 length induction we can find a point q which is a �-lower bound
for S. Then q must be a �-minimal element of [c]. Otherwise there would exist a
point r ≺ q, which would therefore beat every member of S, but that is impossible.
It remains to show that the case of general � reduces to that of directed �. For

p < c, write Lp for the set {x < c : x � p}. We first find a point p for which the
ordering� restricted toLp is directed. Informally, we do this by finding p for which
the size |Lp| is “approximately minimal”, meaning that there is no point q with
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|Lq | < |Lp|/2. Once we have such a p, it must be the case that � is a directed
ordering on Lp, since otherwise there would exist two points q1, q2 ≺ p with no
common lower bound, implying that Lq1 and Lq2 are disjoint, and hence that one
of them must have size less than |Lp|/2.
This argument can be formalized using the machinery of [16]. We write X �ε s
for Jeřábek’s relation “X is ε-approximately smaller than s”. Fix ε = 1/10. Let
�(p, s) express Lp �ε s . By Σb2-length minimization, which we can use by Corollary
1.15 of [12], find a pair 〈p, s〉 for which �(p, s) holds and |s2| is minimal. Suppose
there are q1, q2 ≺ p with Lq1 and Lq2 disjoint. By Theorem 3.17 of [16], if we let
r = �s/2�, then since Lq1 ∪Lq2 �ε r + r +1 we must have either Lq1 �ε r(1 + 2ε) or
Lq2�ε r(1+2ε).Now (r(1+2ε))

2 ≤ (s2/4)(12/10)2 < s2/2, so |(r(1+2ε))2| < |s2|
and in either case we contradict the minimality of |s2|.
Change� by totally ordering the set [c]\Lp according to the standard< ordering
and putting its elements above all elements of Lp, which remain ordered by the old
�. Then the new� is directed, but since Lp was nonempty, we have not introduced
any new minimal elements. �
Definition 2.4. The Herbrandized ordering principle HOP is the universal clo-
sure of a Σb1 (in fact, Σ̂

b
1) formula with a size parameter c and two second order

parameters, one for a binary relation � on [c] and one for a unary function
h : [c]→ [c]. The formula asserts that the following cannot all be true:
1. � is a total ordering on [c];
2. for all x < c, h(x) ≺ x;
3. for all x, y < c, it is not the case that h(x) ≺ y ≺ x.
In other words: in a finite total ordering, it is not possible for every element to have
an immediate predecessor.

Note that HOP is not strictly a Herbrandization of the ordering principle, since
we have added condition 3, that h computes an immediate predecessor. The reason
for the addition is that in the constructions we use it is convenient for h to have this
property, and including condition 3 makes HOP weaker (that is, easier to prove)
and so makes our unprovability results for HOP stronger. On the other hand,
Proposition 2.5 below still holds without condition 3.
As defined, HOP is a relativized principle and uses two second order parameters,

� and h. These could be coded by a single unary predicate α by letting α encode
both the binary predicate � and the bit graph of h. HOP can also be used as an
unrelativized principle, by letting � and h be replaced by arbitrary predicates and
functions from PV1.

Proposition 2.5. HOP is provable in T 22 and in APC2. �
We also note the following:

Proposition 2.6. HOP is provable in PV1 + PHP(PV1).

Proof. SupposeHOP fails. Then define an injectionf : [c]→ [c] \ {0}by setting
f(x) to be x for x � 0 and h(x) otherwise. �
Similar sentences, called generalized iteration principles, were considered in [9]
and shown to separate T 12 (α) from T

2
2 (α). Versions of the ordering principle are

also used in propositional proof complexity, under the name graph ordering principle
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or graph tautology. In particular, a natural bounded-width DNF (analogous to Σ̂b1)
version arises by fixing a bounded-degree expander graph and considering orderings
defined only on edges in the graph [32].

2.3. A generalized Student-Teacher game. The Student-Teacher game variant of
Herbrand’s theoremwas first introduced byKraj́ıček, Pudlák, and Takeuti [22], and
has subsequently been used for a number of other similar applications in bounded
arithmetic. Pudlák presented a generalized version of the game in [29]. We present
below a somewhat simplified version in which the Student and Teacher establish
the truth of a prenex formula by taking turns writing formulas on a blackboard.
The Student uses terms to instantiate existential quantifiers, and the Teacher replies
with values for universal quantifiers.
Our application below (Theorem 4.4 in Section 4) will use the theory PV1 and

the standard model N. However, for the sake of generality, we define the Student-
Teacher game for an arbitrary modelM of an arbitrary fixed universal theory T in
a language L. Let Φ(z) be a formula

∃x1 ∀y1 · · · ∃xn ∀yn φ(z, x1, y1, . . . , xn, yn),
where φ is quantifier-free.2 Let m ∈ M . The game is played by two players, the
Student and the Teacher, who construct a sequence of formulas. We think of these
formulas being written one after another on a blackboard, with no formula ever
erased. These formulas will all be substitution instances of subformulas of Φ, where
we allow certain elements of M to appear in the formulas. The Student wins the
game when (and if) a quantifier-free formula which is true inM is written on the
blackboard.
To begin the game, the formula

∃x1 ∀y1 · · · ∃xn ∀yn φ(m,x1, y1, . . . , xn, yn)
is written on the blackboard.
In the i-th round of the game, the Student chooses one of the non quantifier-free

formulas on the blackboard (possibly one he has chosen before). This formula has
the form

∃xj ∀yj · · · ∃xn ∀yn φ(m, a1, b1, . . . , aj−1, bj−1, xj , yj , xj+1, yj+1, . . . , xn, yn),
where a1, . . . , aj−1 are elements of M that were selected by the Student in earlier
rounds, and b1, . . . , bj−1 are elements of M that were selected by the Teacher
in earlier rounds. The Student chooses an element a′ of M as a value for the
existentially quantified xj . The Teacher now chooses an element b′ ofM as a value
for the universally quantified yj . Then, the formula

∃xj+1 ∀yj+1 · · · ∃xn ∀yn φ(m, a1, b1, . . . , aj−1, bj−1, a′, b′, xj+1, yj+1, . . . , xn, yn)
is written on the blackboard.
A strategy for the Student is a sequence of pairs 〈t1, j1〉, 〈t2, j2〉,. . . , 〈tk, jk〉, where

each ti is an L-term ti (z, z1, . . . , zi−1) with only the variables shown. The strategy
indicates that, in the i-th round, the Student chooses the ji -th formula written

2For simplicity, we treat the variables z, xi , and yi as single variables, but the construction extends
readily to the case where they are vectors of variables.
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on the blackboard and uses the term ti to compute his move from the Teacher’s
earlier moves, so that the element he plays is ti(m,m1, . . . , mi−1), wheremk was the
element b′ played by the Teacher in the k-th round.
A winning strategy is a strategy, of some finite length k, such that for anyM � T
and for any choice ofm inM and any choices for elementsmi played by the Teacher,
the Student wins by the end of the k-th round.

Theorem 2.7. Let T be a universal theory, and Φ be as above. Suppose T � Φ.
Then the Student has a winning strategy.

Note that since the same winning strategy works for all modelsM ofT , it follows
that its correctness is provable in T .

Corollary 2.8. If Φ is provable in PV1, then there is a constant k ∈ N and a
polynomial time strategy for the Student, using which the Student always wins the
game within k rounds, provably in PV1.

Theorem 2.7 follows readily from the usual Herbrand theorem. Nonetheless, for
the sake of completeness, we give a sketch of amodel-theoretic proof. Enumerate, for
i = 1, 2, . . ., all pairs 〈ti , ji 〉, where ti is an L-term and ji ∈ N such that ji < i and
such that each term ti involves only (at most) the free variables z, z1, . . . , zi−1. This
enumeration constitutes an infinitely long strategy for the Student. Let c, c1, c2, . . .
be new constant symbols, and consider the following process. Initially write Φ(c)
on the blackboard. For the i-th round, if the ji -th formula on the blackboard,
Φji , is not quantifier-free, substitute the term ti(c, c1, . . . , ci−1) for the outermost
(existential) quantifier of Φji and then substitute the constant symbol ci for the
outermost universal quantifier.Write the resulting formula on the blackboard as the
next formula Φi . If, however, Φji is quantifier-free, just write Φji on the blackboard
again.
Let Γ be the set of quantifier-free formulas that are written on the blackboard
after infinitely many rounds. Let Δ = {¬φ : φ ∈ Γ}. If Δ is inconsistent with T ,
then by compactness, some finite subset Δ0 is inconsistent with T . In particular,
for any model M of T and choice of interpretations for the constants c, c1, c2, . . .
in M , some member of Δ0 is false in M . Thus, in any model M and any choice
of interpretations, some member of the corresponding finite subset Γ0 of Γ is true
inM . Thus, choosing k large enough so that all members of Γ0 have been written on
the blackboard after k rounds implies that the enumeration, truncated to k rounds,
is a finite winning strategy for the Student.
Finally, we claim that Δ cannot be consistent with T . Otherwise, since T is
universal, we can construct a Henkin model M of T ∪ Δ which has as domain
exactly the closed L-terms that use also the constant symbols c, c1, c2, . . .. By the
definition of Δ, every quantifier-free formula in Γ is false inM . It is easy to show,
by induction on quantifier complexity, that each Φi written on the blackboard is
false in M . This means that Φ itself is false in M , contradicting the assumption
that T � Φ.

§3. T 12 + iWPHP(PV1).
Theorem 3.1. In the relativized language with second order parameters � and h,
T 12 + iWPHP(PV1) � HOP.
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Corollary 3.2. The theory T 12 (α) + iWPHP(PV1(α)) is separated by ∀Σb1(α)
consequences from T 22 (α) and APC2(α).
The corollary follows from (the relativized version of) Proposition 2.5, and the

fact that α can encode both � and the bit graph of h.
Proof of Theorem 3.1. By amplification, we can use the a2-to-a version of

iWPHP. Suppose
T 12 + ∀a ∀e iPHPa2a (fe) � ∃z �(c, z),

where ∃z �(c, z) stands for the Σb1 part of HOP. (We are using the notation T 12 to
mean the relativized form; the function fe has oracle access to � and h.)
Again by amplification, wemaywithout loss of generality assume that the param-

eter e is the same as the size parameter a (since from f we can construct a PV1
function f̃ such that f̃e,b is an injection from 〈e, b〉2 into 〈e, b〉 whenever fe is an
injection from b2 into b). Furthermore, we may assume that the output of f is
always smaller than a and that we only need iPHPa

2

a for values of a of size at least c.
So, writing iPHPa

2

a out in full, negating it and moving it to the right hand side, and
using Parikh’s theorem to give a term t bounding a, we get

T 12 � ∃a∈[c, t) (∀x1<x2<a2 fa(x1)�=fa(x2)) ∨ ∃z �(c, z).
Wewould like to have a Σb1 formula on the right so that we can use the PLSwitnessing
theorem forT 12 . Sowe introduce new function symbols r1 and r2 as Skolem functions
to get rid of the universal quantifiers, giving

T 12 � [∃a ∈ [c, t) (r1(a)<r2(a)<a2 → fa(r1(a))�=fa(r2(a)))
] ∨ ∃z �(c, z).

The theory T 12 is now understood to be relativized with the four symbols �, h, r1,
and r2.
The Σb1 formula can now be witnessed by a PLS problem with oracles �, h, r1

and r2. That is, there is a term u (in c), a cost function C , a neighborhood function
N : [u] → [u], and an oracle-free reduction function F such that for any solution
s < u with C (N(s)) ≥ C (s), we have that F (s) is a pair 〈a, z〉 witnessing the right
hand side. Furthermore, we may bound the running times of C ,N , and F by some
number k, polynomial in |c|. Let � be a similar bound on the running time of fa
over all a < t. Note that C and N can make oracle queries to �, h, r1, and r2, but
that f can only query � and h.
Choose c large enough that c > 12�2 and c/3 > 16k� .
The key to obtaining a contradiction is to show that we can partially define �

and h in such a way that we never introduce a witness to HOP, but we are still able
to find a collision in the function f whenever we are asked for one. For this, we
need the following definition and claim.
A good partial structureH consists of:
1. A set of points P ⊆ [c];
2. A set of numbers A ⊆ [c, t);
3. A relation � which defines a total ordering on P and is undefined elsewhere;
4. A partial function h, undefined outsideP and undefined on the�-least element
of P, but giving the immediate �-predecessor of any other element of P;

5. Functions r1, r2 with domain A such that for all a ∈ A, r1(a) < r2(a) < a2
and fa(r1(a)) and fa(r2(a)) are defined and equal, where “defined” means
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that all oracle queries to� and h made when computing fa are defined in the
structure.

Define the size |H | of a goodpartial structureH to be |P|. Given two such structures
H andH ′, we say thatH ′ extendsH if the sets, relations, and functions ofH ′ extend
those of H .

Claim 1.Given any good partial structureH which is not too big (in particular,
|P| < c/3), and any query of the form “p � q?”, “h(p) = ?”, or “r1(a) = ? and
r2(a) = ?”, there is a good partial structureH ′ extendingH in which an answer to
this query is defined.

Given Claim 1, we may complete the proof by using a standard lower bound
argument for PLS witnessing. We will first need a bound on how much of the
structure needs to be specified to define a computation.

Claim 2. SupposeM is a deterministic Turing machine which can ask queries of
the form “p � q?”, “h(p) = ?” or “r1(a) = ? and r2(a) = ?” and which runs for
exactly n steps on input s < u. Then given a good partial structureH in which the
computation ofM on input s is defined, we can define a good partial structure H ′

of size at most 4n� in which the computation of M on input s is defined and is
identical to the computation in H .

Proof of Claim 2. Say that a point p is touched in a computation if, for any
point q, the computationmakes an oracle query of the form“p � q?” or “h(p) = ?”,
or makes a query of the form “h(q) = ?” and gets p as a reply. Now suppose that
H is a good partial structure and the computation of MH (s) is defined. Let the
“substructure”H ′ of H be defined as follows. Let A′ be the set of numbers a in A
such that the computation queries r1(a) and r2(a). Let P′ consist of every point
in P that is touched in the computation ofMH (s), or is touched in the computation
of fHa (r1(a)) and f

H
a (r2(a)) for any a in A

′. Let r′1, r
′
2, and�′ be induced fromH ,

and let h′ be the predecessor function arising from�′ on P′ (this may disagree with
h on some points, which is why it is not entirely correct to callH ′ a substructure of
H ). Then the computation of MH

′
(s) is identical to the computation of MH (s),

but the size of H ′ is at most 4n� , since in the worst caseM makes n queries of the
form “r1(a) = ? and r2(a) = ?” and each computation of fa(r1(a)) or fa(r2(a))
makes � queries of the form “p � q?”.
We now explain how the theorem follows fromClaims 1 and 2, and then complete
the argument by proving Claim 1.
Consider the set of pairs (s,H ) where s < u andH is a good partial structure of
size ≤ 12k� in which CH (s), the cost of s in H , is defined. It follows from the two
claims that this set is nonempty: by repeatedly invokingClaim 1 to answer successive
queries made by C and Claim 2 to control the size of the arising structures, we can
extend the empty structure to a suitable good partial structureH of size ≤ 4k� . Let
(s,H ) be a pair in this set for which the cost CH (s) is minimal. We may assume
that |H | ≤ 4k� .
Extend H to H ′ in which the neighbor s ′ := NH

′
(s) of s is defined and has a

defined cost CH
′
(s ′). We may assume that |H ′| ≤ 12k� .

By the choice of (s,H ), we must have CH
′
(s ′) ≥ CH (s) = CH ′

(s). Thus s is
a solution to the PLS problem for any oracle extending H ′. Let F (s) = 〈a, z〉.
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Using Claim 1 again, we may extend H ′ to a good partial structure H ′′ in which
r1(a), r2(a) are defined, as are the queries needed to determine whether z codes a
witness toHOP. By the definition of a goodpartial structure, in anyoracle extending
H ′′ we have r1(a)<r2(a)<a2 ∧fa(r1(a))=fa(r2(a)), but z does not code a witness
to HOP. This is a contradiction.

Proof of Claim 1. Queries of the form “p � q?” and “h(p) = ?” are easy
to handle by adding new points to P as necessary and extending � so that the
new points are below all the old points in P. So consider the last form of query,
and suppose we have a good partial structure H and are queried “r1(a) = ? and
r2(a) = ?” for some c ≤ a < t.
Extend H to a “total” good partial structureH0 by extending the ordering � to

all points in [c], putting all the new ones belowP, arbitrarily ordered, and extending
h accordingly, so that it is defined everywhere except for the �-minimal point. Call
this minimal point p0. Given any pigeon x ∈ [a2], we can simulate a computation
of fa(x) running withH0 as an oracle, up until the first time “h(p0) = ?” is queried
(if this ever happens). At this point we will simply abandon the simulation.
LetX0 be the set of pigeons x ∈ [a2] such thatfa(x), when runwithH0 as oracle,

never queries “h(p0) = ?”. If |X0| > a, then we are done, because by the strong
PHP there must exist x1, x2 in X0 with x1 < x2 such that fa(x1) and fa(x2) are
defined and equal, when run with H0 as oracle, so we can define r1(a) = x1 and
r2(a) = x2.
If |X0| ≤ a, let Y0 be the set of pigeons which do query “h(p0) = ?” when run

withH0. That is, Y0 = [a2]\X0. As before, say that a pigeon x ∈ Y0 touches a point
p under H0 if, in the course of computing fa(x), any query of the form “p � q?”,
“q � p?”, or “h(p) = ?” occurs, or some query “h(q) = ?” gets p as a reply (for
any q). Let S0 := P ∪ {p0} be the set of settled points, whose ordering we will not
change through the construction. Call all other points tentative.
Each pigeon in Y0 touches (under H0) at most 2� of the c − |P| − 1 tentative

points. Hence by an averaging argument there must exist some tentative point p1
which is touched by nomore than |Y0| ·2�/(c−|P|−1) ≤ a2 ·4�/c < a2/3� pigeons
in Y0. LetZ0 be the set of pigeons in Y0 which do not touch p1 underH0. Note that
|Z0| ≥ a2 − a − a2/3� ≥ a2 − a2/2� .
Now construct a new “total” good partial structureH1 ⊇ H fromH0 by moving

p1 to the bottom of the ordering, directly below p0. Change h accordingly, so that
h(p0) = p1, and h(p1) is undefined, and if q and q′ in H0 were such that h(q) = p1
and h(p1) = q′, then h(q) = q′ in H1.
Consider any pigeon x ∈ Z0. Under H0, the computation of fa(x) proceeded

until it queried “h(p0) = ?”, at which point we abandoned the simulation, and at
no step did it touch p1. Therefore, under H1, the first steps of the computation up
to and including the query to h(p0) will be the same, but the computation can now
continue after this point, since we can reply to the query with p1. What we have
gained is that, under H1, every pigeon in Z0 wastes at least one step in querying a
pigeon which is not the least element.
We can now repeat the construction, but replacing [a2] with the smaller domain

Z0 of pigeons and adding p1 to the set of settled points. That is: we define X1 to
be the set of pigeons in Z0 which do not query “h(p1) = ?” under H1. If |X1| > a
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we are done; otherwise define Y1 to be Z0 \ X1. Find a tentative point p2 which is
touched by no more than a2/3� members of Y1, define Z1 to be the set of pigeons
in Y1 which do not touch p2, and define H2 to be H1 with the point p2 moved to
be �-minimal. Now every point in Z1 queries h of both p0 and p1 under H2, and
|Z1| > a2 − 2 · a2/2� .
We repeat the construction � times, stopping if at any stage i < � we have a
set Xi which contains a collision that does not query h of the current least point.
If there is no such stage i , then we will have Z�−1, H� , and p0, . . . , p� , such that
|Z�−1| ≥ a2 − � · a2/2� = a2/2, so Z�−1 must contain a collision. But every pigeon
in Z�−1 queries h of every point p0, . . . , p�−1, hence is unable to query the least
point p� ofH� , since it has run out of time. Either way, we are done. �
We conclude this section by observing that the proof of the theorem above relies
on the fact that the injective WPHP is very over-determined, in the sense that even
relatively small subsets of the a2 pigeons must already contain a collision. A similar
phenomenon occurs if we consider a weak form of another principle studied in
proof complexity, the finite Ramsey theorem.
The usualRamsey principle RAMstates thata → (|a|/2)22, that is, that any graph
on a vertices contains a clique or independent set of size |a|/2. This was shown to
be provable in bounded arithmetic in [27]. It was later shown that the standard
proof of the principle can be formalized in APC2 [16], and it is conceivable that
T 12 + RAM already proves all of the ∀Σb1 consequences of APC2.
We show that, in the relativized setting, HOP does not follow from T 12 extended
by a weak version of RAM. Natural versions to consider would be those saying
something like a → (|a|/4)22 or, say, a → (|a|/10)22. Unfortunately, there are dif-
ficulties related to the fact that although coloring a relatively small subgraph of a
graph of size a does give a homogeneous set of size |a|/10, it is not true that coloring
a relatively small number of edges already gives a homogeneous set of that size. For
this reason, we are only able to prove independence of HOP from a weaker Ramsey
principle (which, however, is still unprovable in relativized S22 ).

Definition 3.3. The weak finite Ramsey theoremWRAM takes a first order size
parameter a, a first order parameter b, and a ternary second order parameter E for
the edge relation of a graph parameterized by an extra argument. It states that the
graph Eb induced on [a] by E with parameter b contains a homogeneous subset
of size at least |a|1/f(a), where f is some nondecreasing function with f(a) ≥ 2.
We take f here to be log∗(a). (Since our f is nonconstant, we should perhaps be
calling this the “very weak” Ramsey theorem.)

Theorem 3.4. In the relativized language with second order parameters � and h,
T 12 plusWRAM for PV1 graphs does not proveHOP.

Proof (sketch). The proof is similar in outline to that of Theorem 3.1, and we
only describe the main differences. We have to derive a contradiction from the exis-
tence of a PLS problem whose solutions produce either witnesses to HOP or pairs
〈a, b〉 below some t(c) such that r(a, b) is not a |a|1/ log∗ a-sized Eb-homogeneous
subset of [a]. HereE is a PV1 relation with oracle access to� and h, while r is a new
function symbol which plays the role of r1, r2 from the previous proof; note that we
cannot identify the parameter b with the size parameter a.
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Once again, the proof comes down to formulating the right notion of good partial
structure and proving an analogue of Claim 1 on extending good partial structures.
In our new definition of good structure, parts 1, 3 and 4 are unchanged. Part 2 now
speaks about a set A of pairs 〈a, b〉 rather than single numbers a. In part 5, we set
d := c1/3 and for all 〈a, b〉 ∈ A require r(a, b) to be an Eb-homogeneous subset of
[min(a, d )] of size |min(a, d )|/2.Note that, without loss of generality, |min(a, d )|/2
exceeds |a|1/ log∗ a .
Our version of Claim 1 again says that good partial structures of size < c/3 can

be extended to answer a query. The proof splits into two entirely symmetrical cases
of a ≥ d and d ≥ a; we sketch the former. The basic construction is as before,
except that there are more stages and at each stage we now branch depending on
whether there is any pair {x, x′} of points below d for which Eb(x, x′) queries h
of the current �-least point. If not (case 1), we are done. Otherwise (case 2), we
can choose a new least point which is not touched by any of the

(
d
2

)
pairs {x, x′};

in this way, we ensure that at least one pair progresses at least one more step in its
computation without querying h of the least point. After at most 2�

(
d
2

)
stages, we

have to end up in case 1. �

§4. PV1 + sWPHP(PV2). The aim of this section is to show, in the relativized
setting, the unprovability ofHOP in PV1 extended by the surjective weakpigeonhole
principle for PV2 functions. However, as earlier noted, with only PV1 as the base
theory even making the notion of “surjective weak pigeonhole principle for PV2
functions” precise requires some care.
The first difficulty encountered is that PV1 is too weak to prove the totality of

PV2 functions. For f ∈ PV2, possibly with a side parameter, we want sPHPt(a)a (f)
to state that

∃v<t(a)∀u<a f(u)�=v, (1)

but “f(u) = v” can be formulated as either a Π̂b2 formula or a Σ̂
b
2 formula, and

the meaning of (1) depends on the choice. There are reasons to prefer the Σ̂b2
formulation. For instance, the Σ̂b2 formulation allows (1) to be expressed as a Σ̂

b
3

formula, and this seems preferable to the alternative of using a Σ̂b4 formula. More
importantly, a statement of the weak pigeonhole principle using the Π̂b2 formulation
of “f(u) = v” would imply that f must be total, and this would push the strength
of the theory well up towards PV2, which seems undesirably strong.
Thus, we formalize the surjective WPHP for PV2 functions using the Σ̂b2 formu-

lation of “f(u) = v”. To do this, we think of f as computed by a polynomial time
machine which can make oracle queries to some NP set Ω. (Note that, for simplic-
ity, if the language itself includes symbols for oracles we assume that f accesses
those oracles via queries to Ω.) We say that w is a computation of fe(u) provided
w encodes in some natural way

(i) a correct computation of the polynomial time machine on input 〈e, u〉,
(ii) the string of oracle answers obtained during the computation,
(iii) a sequence of witnesses showing correctness of the “Yes” answers to queries

to Ω,
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and also has the property that
(iv) all the “No” answers to queries to Ω are correct.

It is important to note that even though w includes witnesses for “Yes” oracle
answers, the machine computingf does not get to see these witnesses, but only sees
the binary Yes/No answers to the oracle queries. It follows that, provably in PV1,
there is at most one possible output of a computation of fe(u). This lets us use the
expression “w is a computation of fe(u) = v” to mean “w is a computation of
fe(u) with output v”.
The property “w is a computation of fe(u)” is expressed naturally as a Π̂b1
formula, where the universal quantifier is needed for condition (iv). The principle
sPHPt(a)a (f) is then defined as the universal closure of

∃v<t(a)∀u<a ∀w [“w is not a computation of fe(u) = v”].
Note that the quantifier ∀w is implicitly bounded, since |w| can be polynomially
bounded in terms of |e| and |u|. The notation sPHPt(a)a (PV2) stands for the scheme
{sPHPt(a)a (f) : f ∈ PV2}.
The second decision to make when formalizing sWPHP for PV2 functions in PV1
is the choice of the size function t(a). As noted in Section 2, PV1 cannot use iteration
to amplify failures of sWPHP even for PV1 functions, so there is no reason to expect
sPHPt(a)a (PV2) for various choices of t to be equivalent over PV1. Moreover, in
contrast to the case of PV1 functions, there are no known ∀Σb1-conservativity results
between the different theories PV1 + sPHP

t(a)
a (PV2).

We keep the notation sWPHP(PV2) for sPHP
a(1+1/|a|)
a (PV2), because of the

importance of that particular choice of t in formalizing approximate counting.
However, we are unable to prove a separation for PV1 + sWPHP(PV2), and work
with the possibly weaker variant PV1+sPHP

2a
a (PV2) instead. The power of this the-

ory is not verywell understood, but it is at least strong enough to prove iWPHP(PV1)
in the natural way. Indeed a slightly stronger result holds:
Proposition 4.1. PV1 + sPHP

a#a
a (PV2) � iWPHP(PV1).

Proof. It suffices to show that PV1+sPHP
a#a
a (PV2) proves iPHP

a#a
a (PV1), since

amplification will then give iPHPa(1+1/|a|)a (PV1) over PV1.We argue inside PV1, and
suppose thatf : [a#a]→ [a] is an injective PV1 function.We define a newmapping
g, essentially equal to the inverse of f. The function g takes as input a value u < a
and seeks a value v < a#a such that f(v) = u by using NP queries to determine
bit-by-bit the value of v if such a value v exists. If v exists, g(u) outputs v. Otherwise,
g(u) outputs 0. Clearly, g is a PV2 function. Moreover, given v < a#a we can use
a PV1 procedure to find u < a and a computation of g(u) = v: namely, u is f(v),
and a query in the computation of the form “∃y<a#a (bit(y, i) = 1∧f(y) = u)?”
gets the answer “Yes” (with v as witness) whenever the i-th bit of v is 1, and the
answer “No” otherwise. Thus g is a counterexample to sPHPa#aa (PV2). �
Although PV1 is not strong enough to polynomially amplify PV2 functions vio-
lating the pigeonhole principle, it can compose PV2 functions and define them by
cases. This allows us to prove the following lemma, which will simplify the proof of
Theorem 4.4.
Lemma 4.2. Let f and g be PV2 functions.
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1. PV1 + ¬sPHP2aa (f) � ¬sPHP4aa (k), for some PV2 function k(x) = k(x, a).
2. PV1 + ¬sPHPt1a1 (f) + ¬sPHPt2a2 (g) � ¬sPHPt1+t2a1+a2 (k), for some PV2 function
k(x) = k(x, a1, t1).

3. PV1 + ¬sPHP2aa (f) � c > 0 → ¬sPHP2caca (k), for some PV2 function
k(x) = k(x, a, c).

4. PV1 + ¬sPHP2aa (f) � a ≤ b → ¬sPHP2bb (k), for some PV2 function
k(x) = k(x, a, b).

If f and g have extra side parameters, then k also has these parameters.
Proof. Note that the PV2 functions are closed under composition and definition

by cases, provably in PV1. To prove item 1, define k as

k(x) =

{
f(f(x)) if f(x) < a

f(f(x)− a) + 2a otherwise,

where we have suppressed all side parameters of f and k in the notation.
To prove item 2, define k by

k(x) =

{
f(x) if x < a1

g(x − a1) + t1 otherwise.
Item 3 is proved similarly. To prove item 4, argue in PV1 to find a value c such that
ca ≤ b < 2b ≤ 4ca, then use 1 and 3 to get a surjective mapping from ca to 4ca.
This immediately gives a surjective mapping from b to 2b. �
In the proof, we will need to build a partially defined linear ordering on which we

can run many computations in parallel, while limiting the number of computations
that find the least element. For this we will use the following lemma. Notice that
while the lemma is phrased in terms of constructing a new ordering, it can also be
used to extend an existing ordering � by setting R to be the domain on which � is
undefined, together with the �-minimal point d .
Lemma 4.3. Let X be any set of Turing machines (with parameters) querying

oracles � and h on a domain R, with each machine running in time p, where |R| ≥
8p2+4p+1. LetR have some distinguished element d . Furthermore, let each machine
in X have some positive real number assigned as its weight. Then there exists a set
Y ⊆ X , a set S ⊆ R, a total ordering � on S, and the associated predecessor
function h defined on all but the �-minimal element of S, such that: Y contains at
least weighted fraction 1/2 of the machines in X ; R \ S has size at least |R|/8p; d is
the �-maximal element of S; and each machine in Y has its computation completely
defined in the partial structure (�, h), and, in particular, does not query the oracle h
on the �-minimal element of S.
Proof. Consider the uniform distribution over all pairs (�′, h′), where �′ is a

total ordering ofRwith d as the greatest element and h′ is the associated predecessor
function. Letting b stand for the �′-minimal element, we claim that for a fixed
machine A in X , the probability over (�′, h′) that A queries “h(b) = ?” is at most
1/4.
To see this, argue as follows. Say that A ∈ X touches an element s ∈ R if, when

run on (�′, h′), it makes a query of the form “s � s ′?”, “s ′ � s?”, or “h(s) = ?”,
or makes a query “h(s∗) = ?” where s∗ is the �′-successor of s . If A ever queries
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“h(b) = ?”, then there exists some i = 1, . . . , p such that the i-th query made by
A touches one of the p − i bottom elements of �′. By case analysis of the various
possible forms of the i-th query, the probability that the i-th query is the first query
for which this occurs is bounded by (2p− 2i+1)/(|R|− 2i − 1), which is clearly no
more than (2p + 1)/(|R| − 1). Since A makes at most p queries, the union bound
implies that the probability thatA queries “h(b) = ?” is at most (2p2+p)/(|R|−1),
and thus at most 1/4 by our assumptions on p and |R|.
Therefore, there exists a choice for �′ and h′ such that the weighted fraction of
machines in X which query “h(b) = ?” is less than 1/4. Fix some such choice for
�′ and h′, and let X ′ be the set of machines in X which do not query “h(b) = ?”.
Each machine can touch at most 2p many elements. Hence the average (over
s ∈ R) weighted fraction of machines in X ′ touching an element s is at most
2p/|R|. Now let S− be the subset of R of size |S−| = |R|/8p consisting of those
s ∈ R that are touched by the smallest weighted fraction of the machines in X ′.
Then the total weighted fraction of machines in X ′ touching any s ∈ S− is at most
(2p/|R|)(|R|/8p) = 1/4.
TakeY to beX ′ without all themachinesA that touch any point in S−. Take S to
be (R\S−)∪{d}, take� to be�′ restricted toS, and take h to be the�-predecessor
function on S without its �′-minimal element (note that h(s) will equal h′(s) only
if the �′-predecessor of s is in S, which will be the case if “h(s) = ?” is queried by
any machine in Y ). �
Before proving the main result of this section, Theorem 4.4, we outline a proof of
a simpler special case to illustrate the main ideas. Suppose for a contradiction that
for some particular PV2 function f and term t,

PV1 + sPHP
2t
t (f) � HOP.

(Here t and f have access to the size parameter c of HOP, but for tidiness we
will usually not write c. The function f has oracle access to both � and h.) The
difference between this and the full sPHP2aa is thatwe have taken away the universally
quantified parameters a and e.
Rearranging, we get that

PV1 � ∀v<2t ∃u<t ∃w (w is a computation of f(u) = v) ∨ ∃z �(z),
where ∃z �(z) is the sentence HOP for oracles � and h on the domain [c]. That
is, �(z) expresses that z gives a value or tuple of values which falsify one of the
conditions 1-3 of the definition of HOP.
In the Student-Teacher game for this formula, the Student is first given a num-
ber v. Then in each round the Student either (i) specifies values for u andw, claiming
thatw is a computation off(u) = v or (ii) specifies a value for z, claiming that �(z).
In case (i), the Teacher must reply with a number y which witnesses that w is not
such a computation; otherwise, the Student wins. In case (ii), the Student wins if
�(z) is true. By Corollary 2.8, there is a fixed k ∈ N and a polynomial p such that
Student has a winning strategy, computable in time p(|c|) in each round, which
allows him to always win within k rounds against arbitrary Teacher moves.
Wemay assume, without loss of generality, that the Student algorithm is designed
never to output a value z (case (ii) above) without first checking that it satisfies
�(z). This assumption will allow us to ignore case (ii) from now on, because in our
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construction we will make sure that the Student never knows any correct value of z.
We also assume without loss of generality (w.l.o.g.) that, before making a move
of type (i), the Student is required to check the syntactic correctness of w and the
correctness of the witnesses for the “Yes” answers to the NP oracle queries.
Our goal is to find a number v < 2t and definitions of � and h such that the

Teacher is able to survive in the game on v for k rounds, meaning that in each round
the Teacher finds a witness showing that the Student’s computation w is incorrect.
We do this by playing 2t games in parallel, one for each possible value of v < 2t,
and constructing � and h in stages. In each stage some subset of the games will
advance by at most one round (in which we will make sure that the Student does
not win). At the end of the construction we will show that one of the games must
have advanced by k rounds, giving a contradiction.
We now formally describe what happens in a stage. At the beginning of each

stage, the function h and predicate � are defined on a set S ⊆ [c], so that � is a
total ordering of S, and h is the predecessor function on S. Thus, the domain of h
is the set S except for its �-minimum element. In each of the parallel games, either
it is the Student’s turn to move next, in which case we say the game is in state (WS)
(“Waiting for Student”), or it is the Teacher’s turn, which we call (WT) (“Waiting
for Teacher”). At the beginning of the construction S is empty and all games are in
state (WS).
Each stage proceeds in two steps. In step one, we take the set X of all games in

state (WS) and consider the p(|c|)-time algorithm computing the Student’s strategy
for the next round in those games. We use Lemma 4.3 to extend S in such a way
that, for at least half of the games in X , the Student can compute his strategy
without finding a witness to HOP and without touching any point outside S. For
these games we then actually run the Student’s strategy, play the output (u,w) as
the Student’s move, and mark the game as (WT).
In step two, we consider each game that is (now) in state (WT). Let (u,w) be the

Student’s move in the current round. The Teacher considers whether there is any
NP query in the computationw which receives the answer “No” inw, but for which
there exists a witness y that shows the answer is “Yes”, using only the currently
defined values of � and h (on the set S as extended in step one). If there is no
such y, then the Teacher does nothing and the game remains in state (WT). If there
is such a y, then the Teacher answers with some such y (say, the least one) and the
game advances to state (WS).
The key observation is that at the end of the stage, at most t games can be in state

(WT). To see this, for each such game, consider the last move (u,w) made by the
Student. We will show that each u < t appears in at most one of these games. For
suppose that there exist v, v′ in which (u,w) is the Student’s last move in the game
on v, and (u,w ′) is the Student’s last move in the game on v′. If v �= v′, then the
computationsw andw ′ cannot be the same, sincew has output v andw ′ has output
v′. So there must be some first NP query which gets different Yes/No answers in w
andw ′. Since the witness provided by one of them for the “Yes” answer has already
been verified by Student using only defined values of � and h, it can be used by
the Teacher as a valid counterexample y to the other computation’s “No” answer.
Thus, if both games remain in the form (WT) at the end of the stage, it must be the
case that v = v′.

https://doi.org/10.1017/jsl.2013.37 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2013.37


516 SAMUEL R. BUSS, LESZEK ALEKSANDERKOŁODZIEJCZYK, AND NEIL THAPEN

It follows that at the start of each stage, at least half of the games are in state
(WS). Therefore, in step one of each stage, at least a quarter of the games advance
from state (WS) to state (WT). Hence after 4(k + 1) stages have been completed,
at least one of games must have advanced from state (WS) to state (WT) at least
k + 1 many times. Hence in that game the Teacher was able to survive for k many
rounds and we are done.
We now prove the general result.

Theorem 4.4. In the relativized language with second order parameters � and h,
PV1 + sPHP

2a
a (PV2) � HOP.

Corollary 4.5. The theory PV1(α) + sPHP2aa (PV2(α)) is separated by ∀Σb1(α)
consequences from T 22 (α) and APC2(α).

Proof of Theorem 4.4. Suppose for the sake of contradiction that HOP is prov-
able in PV1 + sPHP

2a
a (PV2). As in the case of more typical versions of WPHP,

even though sPHP2aa (PV2) is technically an infinite family of axioms, it is actually
equivalent (already over PV1) to sWPHP for a single universalf ∈ PV2. Therefore,
PV1 proves

[∃a ∃e ∀v<2a ∃u<a ∃w (w is a computation of fe(u) = v)] ∨ ∃z �(z),
where ∃z �(z) is HOP. Asmentioned above, the existential quantifier∃w is bounded
in terms of a and e; hence by Parikh’s theorem, the values of a and e can be
bounded in terms of the free variable c. Therefore, using the construction of part 4
of Lemma 4.2, f can be amplified so as to always have a = t for some fixed term
t(c). Thus PV1 proves

[∃e ∀v<2t ∃u<t ∃w (w is a computation of fe(u) = v)] ∨ ∃z �(z).
The generalized Student-Teacher game for this formula consists of the Student
in each round specifying either

(i) a value for e,
(ii) values for u and w, together with which pair of earlier e and v values they
are associated with, or

(iii) a value for z.

In case (i), the Teacher then specifies a value v < 2t associated with that e. In
case (ii), the Teacher must specify a value y that falsifies one of the “No” answers
in the computation w, otherwise the Student wins. In case (iii), if �(z) is true,
then the Student wins. By Corollary 2.8, the Student has a strategy computable in
time p(|c|) in each round, which will always win within k rounds against arbitrary
Teacher moves, where k is a fixed constant and p is a polynomial.
As before, we may assume that the Student never plays a move of type (iii)
without first checking that �(z) holds, and as a result our construction will ensure
that no move of this type ever occurs. We also assume that, before making a move
of type (ii), the Student checks the syntactic correctness of w and the correctness of
the witnesses for the “Yes” answers to the NP oracle queries; and that the Student
algorithm only queries the oracles h or� when making a move of type (ii), but not
when making a move of type (i). Finally, we assume for simplicity that the Student
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alternates between moves of type (i) and type (ii). So the Student’s and Teacher’s
moves in any partial play of the Student-Teacher game will follow the pattern

e1, v1, 〈j1, u1, w1〉, y1, e2, v2, 〈j2, u2, w2〉, y2, e3, v3, 〈j3, u3, w3〉, y3, . . . ,
where the values ei and the triples 〈ji , ui , wi〉 are the Student’s moves, and the values
vi and yi are the Teacher’s moves, and we call each such sequence of four moves a
round. The triple 〈ji , ui , wi〉 has 1 ≤ ji ≤ i and indicates the Student is asserting
that wi is a correct computation of f(eji , ui) = vji .
All these assumptions can be made without loss of generality by atmost doubling

the number of Student moves.
We shall prove that no such Student algorithm exists. For this, we choose c ∈ N

sufficiently large, and construct the function h and the binary predicate � in stages
while simultaneously keeping track of many possible plays of the Student-Teacher
game. In the earlier proof, we used one function f and ran 2t copies of the game in
parallel, one for each candidate v for a number outside the range of f. This time
we will need to consider 2t many values v for every parameter e for f proposed
by the Student. Hence we will construct a 2t-branching tree T of possible plays,
all working with the same partially defined h and �. To get a contradiction it will
suffice to show that the tree has a branch of length k + 1, since this will describe a
play in which the Teacher survives for k rounds.
We now formally describe our construction. The root of the treeT is labeled with

the empty string. All other nodes ofT will be labeled with certain partial plays of the
game. Namely, nodes at depth i correspond to the i-th round of a Student-Teacher
game, and are labeled with sequences either of the form

e1, v1, 〈j1, u1, w1〉, y1, e2, v2, 〈j2, u2, w2〉, y2, . . . , ei , vi (WS)

or of the form

e1, v1, 〈j1, u1, w1〉, y1, e2, v2, 〈j2, u2, w2〉, y2, . . . , ei , vi , 〈ji , ui , wi〉 (WT)

Leaves of T labeled with sequences of type (WS) correspond to the situation where
the Student must calculate a value for 〈ji , ui , wi〉 as his next move. Leaves labeled
with sequences of type (WT) correspond to the situation where the Teacher should
provide a counterexample to the correctness of the computationwi as her nextmove.
Internal nodes of T will always have labels of type (WT). As usual, the sequence
labeling a node is an initial subsequence of the labels of its children.
The weight of a node at depth i is defined to equal 1/(2t)i . Consequently, the

total weight of the leaves of T always equals 1.
Initially h and � are completely undefined. To initialize the tree T , run the

Student algorithm on input c and let it produce a value e1. (This is possible since
the Student does not query h or � when computing ei values, by our assumption
about the Student’s behavior in moves of type (i).) Then let T be the tree of height 1
in which the root has 2t many children, each labeled with a sequence e1, v1 — one
for each value v1 < 2t. In each later stage of the construction we will extend some
subset of the leaves of T and the height of T will increase by at most 1.
At each stage, the function h and predicate� will be defined on a set S ⊆ [c], so

that � is a total ordering of S, and h is the predecessor function on S without its
�-minimal element. Let R be the complement of S, namely R = [c] \ S. Initially,
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R is all of [c]. After the �-th stage of the construction, the size of R will be at
least c/(8p(|c|))� , where p(|c|) is the running time of the Student’s strategy. The
construction will run for at most (k + 1)2k+1 stages, so since k is a fixed constant,
|R| � 0 always holds (for c chosen sufficiently large).
Each stage proceeds in two steps. In step one, we take the setX of all leaves of type
(WS) and consider the p(|c|)-time algorithm computing the Student’s strategy for
his next move in the corresponding games. Take all elements of R to be �-smaller
than all elements of S, let d be the �-minimal point of S, and apply Lemma 4.3
withR∪{d} in the role ofR and d as the distinguished element. The lemma allows
us to extend S in such a way that, for a set Y of at least half the leaves in X by
weight, the Student can compute his strategy without witnessing HOP and without
touching any point outside S. For each leaf in Y , we then actually run the Student’s
strategy and add the output 〈ji , ui , wi〉 to the label as the Student’s move, so that
the leaf is now (WT).
In step two, we consider each leaf m that is in state (WT) (either as a result of
step one, or left over from some earlier stage). Let 〈ji , ui , wi〉 be the Student’s last
move in the current round. The Teacher considers whether there is any NP query
in the computation wi which receives the answer “No” in wi , but for which there
exists a witness y that shows the answer is “Yes”, using only the currently defined
values of � and h (on the set S as extended in step one). If there is no such y,
then the Teacher does nothing and m remains in state (WT). If there is such a y,
then the following happens. The Teacher picks the least such y, and plays it in the
game as yi . We run the Student algorithm to compute a value ei+1 for the Student’s
next move. Then for each possible value vi+1 < 2t for the Teacher’s next move, we
add a new leaf to T as a child of m and label it with the label of m followed by
yi , ei+1, vi+1, so that it is in state (WS).
For the next two claims, consider the tree at the beginning of an arbitrary stage
� in the construction.

Claim 1. Letm be any internal node. Let i be the depth ofm in the tree. Consider
any pair n, n′ of children of m, where the nodes n and n′ are at depth i+1, and
were given labels ending with ei+1, vi+1 and ei+1, v′i+1, respectively, when they were
created. Suppose that n is, or has as a descendant, a (WT) leaf node q with a label
ending with 〈i + 1, u, w〉 and that n′ is, or has as a descendant, a (WT) leaf node q′
with a label ending with 〈i + 1, u, w ′〉. Then n = n′.
To prove Claim 1, observe that the label of q asserts that w is a computation of
fei+1(u) = vi+1, whereas the label of q

′ asserts thatw ′ is a computation offei+1(u) =
v′i+1. As in the simple case, since both labels are (WT), this must mean that vi+1 =
v′i+1, as otherwise the Teacher would have been able to give a counterexample to
one of these computations. Hence n = n′.

Claim 2.Let d be the height of the treeT . Then atmost weighted fraction 1−1/2d
of the leaves of T have the form (WT) .

To prove Claim 2, define a node n at depth i +1 in T to be “internally (WT) with
respect to u” if n is, or has as a descendant, a (WT) leaf node q with a label ending
with 〈i + 1, u, w〉, for some w. Let m be the parent of n. By Claim 1, for each u < t
the node m has at most one child that is internally (WT) with respect to u. Hence
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at most half of the children of m can be internally (WT) (with respect to any u).
An easy induction on j now shows that at most weighted fraction 1 − 1/2j of the
tree is covered by internally (WT) nodes lying at depth ≤ j. Since T has height d ,
and since every (WT) leaf must be covered by some internally (WT) node, Claim 2
holds.

By Claim 2 at least weighted fraction 1/2d leaves of T are (WS) at the beginning
of stage � . Therefore in step one of stage � at least weighted fraction 1/2d+1 of leaves
advance from state to (WS) to state (WT).
Now let C� be the weighted sum over the leaves of the number of advancements

from state (WS) to state (WT) recorded in the label of each leaf. As long as T has
height d ≤ k, we have shown that C� increases by at least 1/2k+1 in each stage.
Therefore after (k+1)2k+1 stages,C� is at least k+1. Thus, at least one leaf records
a game which advanced from (WS) to (WT) at least k+1 times. Hence this branch
of T has height at least k +1, and we have found a play where the Teacher survives
for k rounds. �
We remark that this argument could be simplified in some respects if we were

working with the weaker principle sPHPa
2

a rather than sPHP
2a
a . On the other hand,

we have been unable to make it work for the stronger principle sPHPa(1+1/|a|)a .
Roughly speaking, the difficulty is that the construction in this case would need too
many stages and eventually the set R where � is undefined would become empty.
Given the prominent role played by sPHPa(1+1/|a|)a in [14, 16], it is an interesting

open problem whether PV1 + sPHP
a(1+1/|a|)
a (PV2) proves HOP.

§5. T 12 + sWPHP(PV1). This section describes three closely related sufficient
conditions for proving a separation from T 12 + sWPHP(PV1); firstly in terms of
what we call “random PLS problems”, and then in terms of “random refutations”
in narrow resolution and in treelike Res(log).
Throughout, let c be a first order parameter and let S be a tuple of function

and relation symbols, which we will interpret as living on the domain [c]. Fix a Σ̂b1
formula ∃x<q �(c, x), where � is a PV1 predicate with oracles for S.
Lemma 5.1. SupposeT 12 +sWPHP(PV1) � ∃x<q �(c, x). Let r be any term (in c).

Then for some term t > 1 and function g ∈ PV1 with oracles for S,
T 12 � ∀v<rt [∃u<t g(u)=v ∨ ∃x<q �(c, x)].

Proof. We are given that T 12 + ∀a, e sPHPa2a (fe) � ∃x<q �(c, x). Moving the
instance of sWPHP to the right hand side and applying Parikh’s theorem, this
gives T 12 � ∃a, e<p [¬sPHPa2a (fe) ∨ ∃x<q �(c, x)] for some term p > 1. We can
assume w.l.o.g. that p(c) > c. By amplification for sWPHP there is a PV1 function
f̃(a, e, c, w) such that if fa is a surjection from a onto a2 then f̃a,e,c is a surjection
from a onto rp3. Hence if a, e < p the function g mapping the triple 〈u, v,w〉 to
f̃u,v(w) is a surjection from p4 onto rp4. The lemma follows by putting t = p4

(cf. Lemma 2.3 of [34]). �
5.1. Random PLS problems. Recall that a PLS problem (C,N) witnesses

∃x<q �(c, x) if there is some oracle-free polynomial time function F (which can,
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however, take c as a parameter) such that, if s is any solution of the PLS problem
(C,N), then F (s) < q and �(c, F (s)) holds. The next lemma follows directly from
Lemma 5.1 and the PLS witnessing theorem for T 12 [8].

Lemma 5.2. SupposeT 12 +sWPHP(PV1) � ∃x<q �(c, x). Let r be any term. Then
there is a term t and a parametrized family of PLS problems (Cv,Nv) (which also take
c as a hidden parameter) such that, for all but t of the possible choices of parameter
v from the interval [rt], the PLS problem (Cv,Nv) witnesses ∃x<q �(c, x). �
The following is obtained by an averaging argument.

Corollary 5.3. Suppose that T 12 + sWPHP(PV1) � ∃x<q �(c, x). Suppose also
that, for each c, Rc is a probability distribution of oracles in the language S on the
domain [c]. Let r be any term. Then there is a (nonuniform in c) PLS problem which
witnesses ∃x<q �(c, x) for a random oracle α inRc with probability 1− 1/r. �
Recall that it is straightforward to show that certain sentences cannot bewitnessed
by a PLS problem that works for every oracle. We give an example of the method
in the case where S contains a single function α (represented by a relation coding
its bit-graph), and ∃x<q �(c, x) is the injective WPHP, asserting that α is not an
injection from [c2] to [c]. Another example, for HOP, is implicit in our proof of
Theorem 3.1.
Given our PLS problem (C,N), look at the set of pairs (	, s) where 	 is a small
partial injection from [c2] to [c] such that the computation of C	(s) is defined,
and choose a pair for which C	(s) is minimal. Then we may extend 	 to a small
partial injection 	 ′ such that C	

′
(N	

′
(s)) is defined, and then arbitrarily to a total

function α, and it must be the case that s is a solution to our PLS problem for α.
But on the other hand, s does not contain any information about a witness to the
injective WPHP.
This contradicts the claim that the PLS problem works for every oracle. Note,
however, that it does not contradict the claim that it works for most oracles, if
“most” means “for all but a fraction 2−k of oracles” for k polynomial in |c|, as it
does in Corollary 5.3 above. This is because (depending on the distribution chosen)
typically only a fraction 2−� of oracles extend the partial injection 	 ′, for some �
polynomial in |c|, and it may be that � > k and so we have no guarantee that the
claim says anything about any oracle α extending 	 ′.

5.2. Random resolution refutations. In this subsection, we make the (inessential)
assumption that S contains no function symbols. We also assume some familiarity
with resolution and related propositional proof (or rather refutation) systems. All
size descriptions such as “quasipolynomial” and “polylogarithmic” are with respect
to the size parameter c.
By the width of a resolution refutation we will mean the number of literals in the
largest clause. We will say that a refutation is narrow if it has polylogarithmic width,
and that a CNF is narrow if every clause in it has polylogarithmic width. Note
that by collapsing together identical clauses, we may make any narrow resolution
refutation into one of quasipolynomial size.

Definition 5.4. Given a value for the parameter c, the propositional translation
〈∀x<q ¬�(c, x)〉 of the negation of ∃x<q �(c, x) is constructed as follows: �(c, x)
can be computed by a polylogarithmic depth decision tree Tx which queries a
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relation in S at each internal node, and is labeled with “accept” or “reject” at each
leaf. For each branch b of Tx , let Cb be the conjunction of the oracle replies along
that branch. Let Ax be the set of accepting branches of Tx . Then 〈∀x<q ¬�(c, x)〉
is defined to be

∧
x<q

∧
b∈Ax ¬Cb .

Notice that 〈∀x<q ¬�(c, x)〉 is a narrow CNF.
Proposition 5.5. Suppose that T 12 � ∃x<q �(c, x). Then 〈∀x<q ¬�(c, x)〉 has

a quasipolynomial size, treelike Res(log) refutation, and also a narrow resolution
refutation.

Proof. The translation into treelike Res(log) is due to Kraj́ıček [21].
The translation into narrow resolution can be derived straightforwardly from

the PLS witnessing theorem for T 12 as follows: consider a game played between a
Prover and an Adversary, where the Adversary claims to know an oracle falsifying
∃x<q �(c, x) and the Prover tries to force the Adversary into a contradiction by
making oracle queries. A PLS problem witnessing ∃x<q �(c, x) can be made into
a winning strategy for the Prover in which the Prover only needs to remember
polylogarithmically many (i.e. polynomially many in |c|) bits of the oracle at any
given time; and such a strategy is exactly the dual of a narrow resolution refutation
of 〈∀x<q ¬�(c, x)〉.
Alternatively, standard arguments in propositional proof complexity about

manipulating treelike proofs (see, for example, [3] or [19]) can be carefully applied
to show that a narrow CNF has a quasipolynomial size, treelike Res(log) refutation
if and only if it has a narrow resolution refutation [23]. �
The next two definitions are essentially due to Stefan Dantchev [personal

communication]. We state them for resolution, but they also work for treelike
Res(log).

Definition 5.6. An ε-random resolution refutation distribution for a narrow
CNF A is a probability distribution of pairs (B,Π), where

1. B is a narrow CNF in the same propositional variables as A,
2. for every truth assignment, a randomly chosen B is true with probability at
least 1− ε;

3. Π is a resolution refutation of A ∧ B.
We will call the formulas B auxiliary formulas. The size of a random resolution
refutation distribution is defined to be the maximum of the sizes of the refutations
Π in the distribution; similarly for the width.

One way to understand this definition intuitively is as follows. Given a formula
A and a truth assignment α, a resolution refutation Π of A can be used as a tool to
find a false clause in A, by starting at the final, empty clause in Π and following a
path upwards through false clauses, since if the conclusion of a resolution rule was
false then one of the premises must be false. With a random refutation distribution,
this procedure will work (that is, find a false clause in A) with high probability over
the choice of (B,Π), since with high probability all the clauses in B are true in α,
which means that our path upwards through false clauses will necessarily end with
some clause from A.
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LetR be a probability distribution of truth assignments to the variables of a CNF
A. If A has an ε-random refutation distribution, then by an averaging argument it
will also have an “ε-random refutation” overR, with the same bounds on size and
width, in the sense of the following definition:

Definition 5.7. An ε-random resolution refutation of a narrow CNF A over a
distribution R is a pair (B,Π) where B is a narrow CNF in the same propositional
variables as A such that, under a random truth assignment from R, B is true with
probability at least 1− ε, and where Π is a resolution refutation of A ∧ B.
Note that such a refutation (B,Π) is not necessarily sound, in that, for example,
there exist CNFs with a small number of satisfying assignments that nevertheless
have random resolution refutations over the uniform distribution. Notice also that,
given any unsatisfiable CNF A, finding such a refutation is easy as long as we are
allowed to choose the distributionR. Namely, letR consist of any fixed assignment
α and let B express the negation of some clause ofA falsified by α. ThenB is always
true in R and A ∧ B has a small resolution refutation.
Theorem 5.8. Suppose T 12 + sWPHP(PV1) � ∃x<q �(c, x). Let r be any term.

Then 〈∀x<q ¬�(c, x)〉 has a (1/r)-random narrow resolution refutation distribution,
and hence has a (1/r)-random narrow resolution refutation over anyR. Equivalently,
it has a quasipolynomial size (1/r)-random treelike Res(log) refutation distribution,
and hence has a quasipolynomial size (1/r)-random treelike Res(log) refutation over
anyR.
Proof. By Lemma 5.1, there is a term t and a function g such that

T 12 � ∀v<rt [∃u<t g(u)=v ∨ ∃x<q �(c, x)].
By Proposition 5.5, for each v < rt the negation of the bracketed formula has
a narrow resolution refutation Πv . Furthermore, if we fix any oracle and choose
v < rt uniformly at random, then with probability at least 1 − 1/r the formula
∃u<t g(u)=v is false. Let Bv be 〈∀u<t g(u)�=v〉. Then {(Πv , Bv) : v < rt} is the
required (1/r)-random narrow resolution refutation distribution. �
We remark that, using essentially the same proof, we can get a little more infor-
mation by letting r be a free variable rather than a fixed term. Then from the same
assumption, we get that for all c and r the formula 〈∀x<q ¬�(c, x)〉 has a (1/r)-
random resolution refutation of width polynomial in |c| and |r|, or a (1/r)-random
treelike Res(log) refutation of size quasipolynomial in c and r.
Theorem 5.8 motivates the following open problem.

Open Problem 5.9. Find a family of narrow CNFs which have quasipolynomial
size constant depth Frege refutations but which, for some quasipolynomial term r and
some family of distributions on truth assignments, do not have (1/r)-random narrow
resolution refutations.
Naturally, the problem could be stated in terms of quasipolynomial size treelike
Res(log) refutations instead of narrow resolution. We are able to prove a lower
bound for a weak version of this question, for treelike resolution rather than treelike
Res(log), by the following easy argument. Let A be the bit-graph version of the
injective WPHP from 2c pigeons to c holes, where c = 2k . That is, for each pigeon i
there are k variables pi1, . . . , p

i
k expressing, in binary, the number of the hole that
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pigeon i goes to; and F consists simply of
(2c
2

)
c clauses Cji1i2 , each of size 2k,

asserting that pigeons i1 and i2 do not both go to hole j. Suppose thatB is a narrow
auxiliary CNF in these variables that is true with probability greater than 3/4 under
the uniform random assignment and suppose that we have a treelike resolution
refutation Π of A ∧ B.
Choose a small 
 > 0. Starting from the final, empty clause of Π, choose a path

up through Π by, at each resolution step, setting the resolved variable at random
and moving to the premise that is falsified by the assignment that is being built.
Continue until you have either set kc
 variables or reached (and falsified) one of the
clauses in A ∧ B.
Falsifying a clause from A requires setting all of the bits of two pigeons in a way

that makes them collide. But the procedure above can set the bits of no more than
c
 pigeons, so the probability of a collision is very small, certainly less than 1/4 for
suitable 
. We also know that the probability of falsifying a clause from B is less
than 1/4.
Hence with probability at least 1/2 the procedure runs for the full kc
 steps.

Therefore there are at least 2kc



/2 distinct paths up through Π from the empty
clause. Hence |Π| > 2kc
−1.
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[18] J. Krajı́ček, No counter-example interpretation and interactive computation, In Logic from

Computer Science (Y. Moschovakis, editor), vol. 21 (1992), Mathematical Sciences Research Institute
Publications, Springer, Berlin pp. 287–293.
[19] , Lower bounds to the size of constant-depth propositional proofs, this Journal, vol. 59

(1994), pp. 73–86.
[20] , Bounded Arithmetic, Propositional Logic and Computational Complexity, Cambridge

University Press, 1995.
[21] , On the weak pigeonhole principle, Fundamenta Mathematicae, vol. 170 (2001),

pp. 123–140.
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