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A FUNDAMENTAL DICHOTOMY FOR DEFINABLY COMPLETE
EXPANSIONS OF ORDERED FIELDS

ANTONGIULIO FORNASIERO AND PHILIPP HIERONYMI

Abstract. An expansion of a definably complete field either defines a discrete subring, or the image
of every definable discrete set under every definable map is nowhere dense. As an application we show
a definable version of Lebesgue’s differentiation theorem.

§1. Introduction. Let K be an expansion of an ordered field 〈K,<,+, ·〉. We say
K is definably complete if every bounded subset ofK definable inK has a supremum
in K . Such structures were first studied by Miller in [12]. A definably complete
expansion of ordered field is always real closed. The topology considered here is
the usual order topology on K and the product topology onKn ; all rings are taken
with 1.
The following dichotomy is the main result of the paper.

Theorem A. Let K be definably complete. Then either

(I) f(D) is nowhere dense for every definable discrete set D ⊆ Kn and every
definable function f : Kn → K , or

(II) K defines a discrete subring.

This result is a generalization of [6, Theorem 1.1] from expansions of the real
field to arbitrary definably complete expansions of ordered fields. The two cases in
Theorem A are indeed exclusive. It is easy to check that a definable subring has to
be unbounded and that its set of quotients is dense inK . By definable completeness,
the positive elements of a definable discrete subring of K form a model of first-
order Peano arithmetic; in §5 we will see that they even form a model of second-
order Peano arithmetic (seen as a first-order theory). Hence Theorem A separates
the class of definably complete expansions of ordered fields into two very distinct
categories.
The significance of Theorem A comes from its use as a tool to prove statements
about arbitrary definably complete expansions of ordered fields. In order to show
that a statement holds for all such structures, it is now enough to consider structures
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having either property (I) or (II) from Theorem A. In the case when a discrete sub-
ring is definable, proofs from second-order arithmetic often transfer easily to these
structures. On the other hand, if a structure satisfies property (I), techniques and
ideas from the study of o-minimality and related tameness notions can sometimes
be applied. As an application of this new proof strategy we present the following
definable analog of Lebesgue’s differentiation theorem, answering a question of
Miller from [12].

Theorem B. Let K be definably complete and let f : K → K be definable and
monotone. Then f is differentiable on a dense subset of K .
Notation. For the rest of the paper, let K denote a definable complete expansion
of an ordered field 〈K,<,+, ·〉. We say a set is definable if it is definable in K with
parameters fromK . 〈a, b〉 is the ordered pair with elements a and b. Given a subset X
of Kn × Km and a ∈ Kn, we denote the set {b : 〈a, b〉 ∈ X} by Xa . As said before,
all rings are taken with 1.

§2. Facts about definable complete fields. In this section we recall several facts
about definably complete expansions of ordered fields. For more details and
background, see [12]. The following fact is immediate from definable completeness.

Fact 2.1. Let Y ⊆ K be nonempty closed and definable. Then Y contains a
minimum (a maximum) iff Y is bounded from below ( from above).
Fact 2.2 ([12, Lemma 1.9]). Let Y ⊆ K2 be definable such that Ya is closed and
bounded and Ya ⊇ Yb �= ∅ for every a, b ∈ K with a < b. Then ⋂a∈K Ya �= ∅.
Definition 2.3. Let D ⊆ K be definable, closed and discrete and let d ∈ D.
If d is not the maximum of D, we say the minimum of D>d is the successor of d
in D, written sD(d ).

Note that the minimum in the previous definition exists by Fact 2.1.

Fact 2.4. Let D ⊆ K be definable, closed and discrete. If D has a minimum
(a maximum), so has every definable subset ofD.

Definition 2.5. A subset A ⊆ Kn is called pseudo-finite if it is definable, closed,
bounded, anddiscrete.We callA atmost pseudo-enumerable if there exists a definable
closed discrete set D ⊂ K≥0 and a definable function f : D → Kn such that
f(D) = A.

The notion of a pseudo-finite set was introduced in [4] and the notion of at most
pseudo-enumerable in [3].

Fact 2.6 ([3, Main Theorem]). If A ⊆ Kn is at most pseudo-enumerable, then it
has no interior.
Fact 2.7 ([4, Lemma 2.22]). LetD ⊆ Kn be pseudo-finite and letf : D → Km be
a definable function. Then f(D) is pseudo-finite. In particular,f achieves a minimum
and a maximum on D.
Fact 2.8 ([3, Lemma 4.14]). Every definable discrete subset of Kn is at most
pseudo-enumerable.
Fact 2.8 simplifies our task to prove Theorem A considerably. To establish
Theorem A, it is now enough to show that wheneverK defines a closed and discrete
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set D ⊆ K≥0 and a function f : D → K with f(D) somewhere dense, then K

defines a discrete subring.

Definition 2.9. A definable family (Xt : t ∈ D) is at most pseudo-enumerable if
its index set D is at most pseudo-enumerable.

The following fact was implicitly proved in [3]. For the reader’s convenience, we
have included a proof here.
Fact 2.10.
(1) The union of an at most pseudo-enumerable family of discrete sets is at most
pseudo-enumerable.

(2) Let (Xt : t ∈ K) be a definable increasing family of discrete subsets of Kn.
Then

⋃
t∈K Xt is at most pseudo-enumerable.

Proof. Statement (1) is [3, Corollary 4.16].We now consider (2). By [4, Theorem
3.3], K either defines a discrete, closed and unbounded set or every discrete set
definable in K is pseudo-finite. We now handle the cases separately. If every discrete
definable set in K is pseudo-finite, then each Xt is pseudo-finite. By [4, Theorem
3.3]

⋃
t∈K Xt itself is pseudo-finite. Now suppose that there exists D ⊆ K≥0 defin-

able, discrete, closed, and unbounded. Since (Xt : t ∈ K) is increasing and D
is unbounded,

⋃
t∈K Xt =

⋃
t∈D Xt . By (1) applied to the family (Xt : t ∈ D),⋃

t∈K Xt is at most pseudo-enumerable. �
§3. Natural fragments and asymptotic extraction. In this section we generalize
the idea of asymptotic extraction, first introduced by Miller in [13, p. 1484], to
definably complete fields. Since the original approach is not strong enough to yield
the desired results, we adjust themethod developed in [7, Lemma 1] to extract larger
and larger fragments of the natural numbers.

Definition 3.1. Let D be a definable, closed and discrete subset of K≥0. We say
thatD has step 1 if, for every d ∈ D with d �= max(D), sD(d ) = d +1. We say that
D is a natural fragment if it is either empty, or if D has step 1 and 0 ∈ D.
Lemma 3.2. Let D and E be natural fragments. Then either D ⊆ E or E ⊆ D.
Proof. Suppose not. Let d = min(D \ E ∪ E \ D). Without loss of generality
(w.l.o.g.), assume d ∈ D. Since 0 ∈ D ∩ E, d > 0. Since D is a natural fragment,
d −1 ∈ D. Since d was chosen to be minimal, d −1 ∈ E as well. Since d /∈ E, d −1
has to be the maximum of E. Since D ∩ [0, d − 1] = E ∩ [0, d − 1] by minimality
of d , we have E ⊆ D. �
Corollary 3.3. Let (Xt : t ∈ I ) be a definable family such that Xt is a natural
fragment for each t ∈ I . Then ⋃t∈I Xt is a natural fragment.
It is worth noting that by Lemma 3.2 the union of all natural fragments, although
not necessarily definable, is closed, discrete, contains 0, and has step 1.

Definition 3.4. Let D be a definable, closed, and discrete subset of K≥0 and
ε ∈ K>0. We say thatD is an ε-natural fragment if
(1) |sD(d )− (d + 1)| < ε for every d ∈ D with d �= maxD,
(2) dist(D, 0) < ε.
For a ∈ K≥0, we sayD is an ε-natural fragment close to a if dist(D, a) < ε.
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Lemma 3.5 shows that the property of being an ε-natural fragment for some ε is
preserved under small changes.

Lemma 3.5. Let ε ∈ K>0 with ε < 1
4 , let D be a ε-natural fragment close to a and

let f : D → (−ε, ε) be a definable function. Then
E := {d + f(d ) : d ∈ D}

is a 3ε-natural fragment close to a.

Proof. Set g(d ) := d + f(d ) for d ∈ D. It is immediate that (2) holds for
E and 3ε, since it holds for D and ε. Since (1) holds for D and ε and ε < 1/4,
g(sD(d )) = sE(g(d )) for every d ∈ D with d �= maxD. Moreover, for every d ∈ D
with d �= maxD,

|sE(g(d ))− g(d )− 1| < 2ε + |sD(d )− d − 1| < 3ε.
Hence (1) holds for E and 3ε. Hence E is a 3ε-natural fragment close to a. �
Definition 3.6. Let (Yt : t ∈ I ) be a definable family of subsets of K . The
natural fragment extracted from (Yt : t ∈ I ) is the set of d ∈ K≥0 such that for every
ε ∈ K>0 there exists t ∈ I such that Yt is an ε-natural fragment close to d .
It is not obvious that the object defined in the previous definition is a natural
fragment in sense defined before. The following Lemma establishes that this is
indeed the case.

Lemma 3.7. Let (Yt : t ∈ I ) be a definable family of subsets ofK . Then the natural
fragment extracted from (Yt : t ∈ I ) is a natural fragment.
Proof. Let D be the natural fragment extracted from (Yt : t ∈ I ). Since the
empty set is a natural fragment, we reduce to the case thatD is nonempty. It follows
easily from the definitions that 0 ∈ D whenever D is nonempty.
For d ∈ D consider the definable set Ed consisting of all e ∈ K with e ≤ d such
that for every ε ∈ K>0 there exists t ∈ I such that Yt is an ε-natural fragment close
to d and dist(Yt, e) < ε. Note that d ∈ Ed and Ed ⊆ D. Hence ⋃d∈D Ed = D.
Thus by Corollary 3.3 it is enough to show that each Ed is a natural fragment.
Let d ∈ D. We first show that e + 1 ∈ Ed for every e ∈ Ed with e ≤ d − 1.
Let ε ∈ K such that 0 < ε < 1. Take t ∈ I such that Yt is a ε2 -natural fragment
close to d and dist(Yt, e) < ε

2 . Let y ∈ Yt be such that |e− y| < ε
2 . Since e ≤ d − 1

and dist(Yt, d ) < ε
2 , y is not the maximum of Yt . Then

|sYt (y) − (e + 1)| = |sYt (y) + y − y − (e + 1)|
≤ |sYt (y)− y − 1|+ |y − e| < ε.

Hence dist(Yt, e+1) < ε. Thus e+1 ∈ Ed . Similarly, we can show that e− 1 ∈ Ed
for every e ∈ Ed with e ≥ 1.
Consider

B := { e ∈ Ed : [e, e + 1) ∩ Ed = {e}}.
Note that B is closed and discrete and d ∈ B. We will now show that B is a natural
fragment. It is easy to see that 0 ∈ B. Let e ∈ B and suppose e ≤ d − 1. Then
e + 1 ∈ Ed . Towards a contradiction assume e + 1 /∈ B. Then there is l ∈ Ed
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such that e + 1 < l < e + 2. Since l ≥ 1 and l ∈ Ed , we have l − 1 ∈ Ed with
e < l − 1 < e + 1. Hence e /∈ B, a contradiction.
It is left to show thatEd = B. Towards a contradiction suppose there is e ∈ Ed \B.
By Fact 2.4 there is a maximal l ∈ B smaller than e. Since l < d , l + 1 ∈ B. Since
l ∈ B and e /∈ B, l + 1 < e. A contradiction against the maximality of l . Hence
Ed = B. �
It is worth pointing out that until this point only the additive structure of K has
been used.
Proposition 3.8. Let D be an unbounded natural fragment. Then 〈D,+, ·, <〉 is
a model of first-order Peano arithmetic. Moreover, D ∪ −D is a definable discrete
subring of K.
Proof. Let D be an unbounded natural fragment. We first show thatD is closed
under addition. Suppose not. ByFact 2.4 we can taked ∈ Dminimal such that there
is e ∈ D with d + e /∈ D. Clearly, d �= 0. Since d is minimal, (d − 1)+ (e +1) ∈ D.
A contradiction. Hence D is closed under addition.
Now suppose that D is not closed under multiplication. Again take d ∈ D
minimal such that there is e ∈ D with d ·e /∈ D. Clearly, d �= 0. By minimality of d ,
(d−1)·e ∈ D and hence (d−1)·e+e ∈ D. HenceD is closed under multiplication.
Since every definable subset of D has a minimum by Fact 2.4, 〈D,+, ·, <〉 satisfies
the first-order induction axiom. Hence 〈D,+, ·, <〉 is a model of first-order Peano
arithmetic.
Now set Z := D ∪−D. It follows immediately that 〈Z,+, ·〉 is a discrete subring
of K. �

§4. Best approximations and the proof of Theorem A. Let K be a definably com-
plete expansion of an ordered field that defines a closed and discrete set D ⊆ K≥0
and a function f : D → K with f(D) somewhere dense. In order to establish
Theorem A, it is enough by Fact 2.8 to define a discrete subring. By Proposition
3.8 it suffices to define an unbounded natural fragment. After composing f with
a semialgebraic function we can assume that f(D) is dense in (0, 1). First, several
definitions related to this function f will be introduced. These definitions were first
used for expansions of R by Hieronymi and Tychonievich in [9].

Definition 4.1. Let c ∈ (0, 1). We say d ∈ D is a best approximation of c from
the left if f(d ) < c and

f(D<d ) ∩
(
f(d ), c

)
= ∅.

We write Lc for the set of best approximations of c from the left. Similarly, we say
d ∈ D is a best approximation of c from the right if f(d ) > c and

f(D<d ) ∩
(
c, f(d )

)
= ∅.

and write Rc for the set of best approximations of c from the right.
For d ∈ D, we write

Lc,d := Lc ∩ [0, d ] and Rc,d := Rc ∩ [0, d ],
and

lc,d :=
{
f(maxLc,d ), if Lc,d �= ∅;
0, otherwise,

and rc,d :=
{
f(maxRc,d ), if Rc,d �= ∅;
1, otherwise.
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Since D is closed and discrete, both Lc and Rc are closed and discrete by Fact 2.4.
Since D≤d is pseudo-finite, so is f(D≤d ) by Fact 2.7. Hence, both Lc and Rc are
nonempty. It is easy to check that by density off(D) bothLc andRc are unbounded
and c = supf(Lc) = inf f(Rc) for c ∈ (0, 1). Moreover Lc,d and Rc,d are pseudo-
finite and the maximum used in the above definition actually exists. It also worth
pointing out that this implies lc,d < c < rc,d .

Lemma 4.2. Let a ∈ (0, 1) \f(D) and d ∈ D. Then La,d = Lb,d andRa,d = Rb,d
for every b ∈ (

la,d , ra,d
)
.

Proof. By definition of la,d and ra,d ,

f(D≤d ) ∩ (
(
la,d , a

) ∪ (
a, ra,d

)
) = ∅.

Since a /∈ f(D), f(D≤d ) ∩
(
la,d , ra,d

)
= ∅. Hence for all b ∈ (

la,d , ra,d
)

{e ∈ D≤d : f(e) < b} = {e ∈ D≤d : f(e) < a}
and

{e ∈ D≤d : f(e) > b} = {e ∈ D≤d : f(e) > a}.
Thus La,d = Lb,d and Ra,d = Rb,d . �
The strategy for the rest of proof is as follows.We will introduce a definable family
using the notions introduced above. Then it will be shown that the natural fragment
extracted from this family is unbounded. The idea how to show the last statement
is the following: suppose there is b ∈ K , ε ∈ K>0 and a suitable semialgebraic func-
tion g such that the image of a definable subset of Lb,d ×{b}×Rb,d is an ε-natural
fragment close to some n ∈ K . By Lemma 4.2, the set Lb,d and Rb,d do not change
on an interval around b. Being careful with the definitions we will use this statement
to show that we can find an element c close to b and d ′ ∈ D such that the image of a
definable subset ofLc,d ′ ×{c}×Rc,d ′ under g is a 6ε-natural fragment close to n+1.

Let g : K3 → K be

g(a, b, c) :=
{
c−a
b−a if a < b < c,
0 otherwise.

We will now define a family of definable sets from which we extract an unbounded
natural fragment. Let 〈a, b〉 ∈ (0, 1)2 and d ∈ D. Define

Ya,b,d := {0} ∪ {g(lb,e, b, rb,e) : e ∈ La,d}.
Let J be the set of 〈a, b, d 〉 ∈ ((0, 1)\f(D))2×D such that themap e �→ g(lb,e, b, rb,e)
is strictly increasing on La,d . Note that (Ya,b,d )〈a,b,d〉∈J is indeed a definable family.

Lemma 4.3. Let 〈a, b, d 〉 ∈ J , c ∈ (0, 1), u ∈ K and ε ∈ K>0 with ε < 1
4 . Then

(i) if La,d = Lc,d , then Ya,b,d = Yc,b,d .
(ii) if Ya,b,d is an ε-natural fragment close to u, then there is an interval I around b
such that for all c ∈ I \ f(D), we have 〈a, c, d 〉 ∈ J and Ya,c,d is a 3ε-natural
fragment close to u.
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Proof. Statement (i) is immediate from the definitions. For (ii) let I0 be the
interval (lb,d , rb,d ). By Lemma 4.2 and b /∈ f(D), Lc,d = Lb,d and Rc,d = Rb,d
for every c ∈ I0. For each e ∈ La,d let Ie be the maximal open subinterval of I0
containing b such that for each c ∈ Ie

|g(lc,e , c, rc,e)− g(lb,e, b, rb,e)| < ε. (4.1)

This choice is possible, since g is continuous in the second coordinate and lc,e = lb,e
and rc,e = rb,e for every c ∈ I0. Note that the maps e ∈ La,d �→ sup Ie and
e ∈ La,d �→ inf Ie are definable. Hence, by Fact 2.7 both functions have a maximum
and a minimum on La,d . Hence, there is e1, e2 ∈ La,d such that⋂

e∈La,d
Ie =

(
inf Ie1 , sup Ie2

)
.

Let I be this open interval. Since b ∈ I , I is nonempty. Since ε < 1
4 and Ya,b,d

is an ε-natural fragment, the map e �→ g(lc,e , c, rc,e) is strictly increasing on La,d for
every c ∈ I \ f(D). Hence 〈a, c, d 〉 ∈ J for all such c.
Let c ∈ I . Let k : Ya,b,d → (−ε, ε) map 0 to 0 and g(lb,e , b, rb,e) to

g(lc,e , c, rc,e)− g(lb,e , b, rb,e).
This function is well defined, since 〈a, b, d 〉 ∈ J and hence e �→ g(lb,e, b, rb,e) is
strictly increasing on La,d . By definition

Ya,c,d = {y + k(y) : y ∈ Ya,b,d}.
By definability of k, (4.1) and Lemma 3.5, this set is a 3ε-natural fragment. �
Theorem 4.4. The natural fragment extracted from (Ya,b,d : 〈a, b, d 〉 ∈ J ) is
unbounded.

Proof. Let F be the natural fragment extracted from (Ya,b,d : 〈a, b, d 〉 ∈ J ).
We first show that F is nonempty. It is enough to find for every ε ∈ K>0 a triple
〈a, b, d 〉 ∈ J such that Ya,b,d is an ε-natural fragment up to 1. Let d ∈ D be the
smallest element of D. Take a, b ∈ [0, 1] \ f(D) such that

0 <
f(d )
1 + ε

< b < f(d ) < a < 1.

Then La,d = {d}, Lb,d = ∅ and Rb,d = {d}. Hence lb,d = 0 and rb,d = f(d ). Thus

|g(lb,d , b, rb,d )− 1| = |f(d )
b

− 1| < ε.

Hence Ya,b,d = {0, f(d)b } is an ε-natural fragment up to 1.
Now towards a contradiction suppose that F is bounded. Let n be the maximum
of F . We will establish a contradiction against the maximality of n. For this, it is
enough to construct for every ε ∈ K>0 a triple 〈a, b, d 〉 ∈ J such that Ya,b,d is an
ε-natural fragment close to n + 1.
Let ε ∈K>0. Sincen is inthenaturalfragmentextractedfrom(Ya,b,d : 〈a, b, d 〉 ∈ J ),
there is 〈u, v, e〉 ∈ J such thatYu,v,e is an ε6 -natural fragment close to n. Let I be the
interval around v given by Lemma 4.3(ii) such that for every w ∈ I \ f(D), Yu,w,e
is an ε2 -natural fragment close to n and 〈u,w, e〉 ∈ J .
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Let d0 be an element of D≥e such that there are e1, e2 ∈ D with e1, e2 ≤ d0,
f(e1) < f(e2), and (

f(e1), f(e2)
) ⊆ I.

Such an element exists because of the density of f(D). Choose a ∈ K \f(D) such
that lu,e < a and (

lu,e , a
) ∩ f(D≤d0 ) = ∅.

We can find such an element because f(D≤d0 ) is pseudo-finite and f(D) does not
have interior by Fact 2.6. Now let d ∈ D be the smallest element in D≥d0 with

f(d ) ∈ (
lu,e, a

)
.

Then La,d = Lu,e ∪ {d}.
It is left pick to b. First, take e1, e2 ∈ D≤d such that f(e1) < f(e2),(

f(e1), f(e2)
) ⊆ I and

(
f(e1), f(e2)

) ∩ f(D≤d ) = ∅.
This choice is possible, because f(D≤d ) is pseudo-finite. Now pick b ∈(
f(e1), f(e2)

)
such that b /∈ f(D) and

|g(f(e1), b, f(e2))− (n + 1)| < ε2 . (4.2)

By our choice of b, f(e1) = lb,d and f(e2) = rb,d . Since b ∈ I \ f(D), Yu,b,e
is a ε2 -natural fragment close to n and 〈u, b, e〉 ∈ J . Since Lu,e = La,e by choice of
a, we have that 〈a, b, e〉 ∈ J and Yu,b,e = Ya,b,e by Lemma 4.3(i). Hence, Ya,b,e is a
ε
2 -natural fragment close to n. If Ya,b,e is a

ε
2 -natural fragment close to n + 1, then

Ya,b,e is also an ε-natural fragment close to n+1 and hence we are done. Thus from
now on we can assume that Ya,b,e is not a ε2 -natural fragment close to n + 1. Then

|maxYa,b,e − n| < ε2 . (4.3)

Now set z := g(lb,d , b, rb,d ). Since La,d = Lu,e ∪ {d}, we have
Ya,b,d = Ya,b,e ∪ {z}.

Then by (4.2) and (4.3)

|z −maxYa,b,e − 1| ≤ |z − (n + 1)|+ |maxYa,b,e − n| < ε2 +
ε

2
= ε.

Hence, Ya,b,d is an ε-natural fragment close to n + 1. �
The proof of the above theorem can be easily adapted to show that, for every
pseudo-finite set F ⊆ K≥1, {0} ∪ F can be approximated arbitrarily close by some
Ya,b,d : i.e., for every ε > 0 there exists 〈a, b, d 〉 ∈ J such that dist({0}∪F,Ya,b,d) < ε.
As shown in Proposition 3.8, if D is the unbounded natural fragment extracted
in Theorem 4.4, then D ∪ −D is a definable discrete subring of K, and Theorem A
follows.

§5. Unrestrained DC structures.
Definition 5.1. We say that K is unrestrained if it defines a discrete subring,
otherwise, we say that K is restrained.
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We claim that unrestrained structures are the same as model of second-order
arithmetic, in a sense that we will make precise. The results of this section will be
used in §7.
First, we make precise what we mean by model of second-order arithmetic; as a
background reference we use [19], especially its §1. Let L2 := 〈N,D; 0, 1,+, ·, <〉 be
the (first-order!) 2-sorted language of second-order arithmetic, with a sort N for
(“natural”) numbers (which will be denoted by lowercase letters) and one sortD for
sets (which will be denoted by uppercase letters), with number constants 0 and 1,
binary operations+ and · and a binary relation< on numbers, and a binary relation
∈ between numbers and sets. Let L be an arbitrary expansion of L2 (here we differ
from [19], where only structures in the language L2 are considered); notice that we
allow extra function symbols and predicates that involve the sort D and not only
new function and relation symbols on N . A model of second-order arithmetic is a
(again, first-order)L-structureN := 〈N,D; 0, 1,+, ·, <, . . .〉 satisfying the following
axioms:
Basic axioms: 〈N,+, 0, 1,+, ·, <〉 is the positive cone of a discrete linearly ordered
ring Z;
Extension axiom:

∀X∀Y (∀n(n ∈ X ↔ n ∈ Y )→ X = Y );
Induction axiom:

∀X ((0 ∈ X & ∀n(n ∈ X → n + 1 ∈ X ))→ X = N);
Comprehension scheme:

∃X∀n (n ∈ X ↔ φ(n)),
where φ(n) is any L-formula in which X does not occur freely.
Remember that we view second-order arithmetic as a theory in first-order logic;
thus, the theory will have models besides the standard one, given by N and all its
subsets.

5.1. From unrestrained structures to models of arithmetic. First, we show how to
transform an unrestrained structure into a model of second-order arithmetic.
For the rest of this subsection, letK be unrestrained. LetZ be a definable discrete
subring of K. Note that Z is the unique subring with that property: if Z′ were
another discrete definable subring ofK , one considers theminimumpositive element
of ZΔZ′ and easily reaches a contradiction against Z �= Z′. We will denote the
nonnegative elements of Z by N and the fraction field of Z by Q. We start by
transferring some of the coding techniques, in particular recursion, to our setting.
As most of the proofs are direct transfers of the classical ones, we leave most of the
details to the reader.
It is already clear thatN is a model of first-order arithmetic.
Lemma 5.2. There is a definable map � : N × N → N such that for each l ∈ N
and each definable map f : N≤l → N there is k ∈ N such that �(k, i) = f(i) for
i ≤ l .
Proof. Since the function f may be definable using parameters outside N , we
will remind the proof (we refer to [19, §II.2] for the details). Since N is a model
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of first-order arithmetic, there is a definable bijection � : N × N → N . Define
� ′(r, a, i) := rem(r, (i + 1) · a + 1), where rem(x, y) denotes the remainder after
integer division of x by y. Let �(k, i) := � ′(�−1(k), i).
Let l ∈ N and f : N≤l → N be definable. It is left to show that there exist
r, a ∈ N such that � ′(r, a, i) = f(i) for i ≤ l . Since N is a model of first-order
arithmetic, we can find a ∈ N such that f(i) < a for each i ≤ l and all elements of

{(i + 1)a + 1 : i ∈ N≤l}
are pairwise coprime. We denote (i + 1)a + 1 by ki . To finish the construction we
just need to establish the following claim.

Claim 5.3. For each m ∈ N≤l , there exists r ∈ N such that for each i ∈ N≤m

rem(r, ki ) = f(i).

Suppose not. Let m ∈ N≤l be minimal such that r as in the claim does not exist.
By minimality of m, there is r′ ∈ N be such that for every i ∈ N≤m−1

rem(r′, ki) = f(i).

Note that the set {ki : i ∈ N<m} is definable inside N . Let r ∈ N such that
rem(r, ki ) = rem(r′, ki ) for each i < m, and rem(r, km) = f(m). Such an r exists by
the Chinese Remainder Theorem inN . The Chinese Remainder holds inN because
N is a model of first-order arithmetic. Contradiction. �
From the proof of the above Lemma, it is clear that � is already definable in

〈N,+, ·, <〉, and hence for every l ∈ N , every definable subset of N<l is definable
in 〈N,+, ·, <〉.
Lemma 5.4. Let c : Kn → N and g : Kn ×N → N be definable. Then there is a
unique definable function f : Kn ×N → N such that for all a ∈ Kn

f(a, 0) = c(a),

f(a, i + 1) = g(a,f(a, i)).

Proof. As in the real case, given a ∈ Kn and j, l ∈ N , we define f(a, j) = l if
there exists k ∈ N such that

�(k, 0) = a;

�(k, j) = l ;

∀i ∈ N such that i < j, �(k, i + 1) = g(a, �(k, i)). �
Corollary 5.5. Let X ⊆ N be unbounded and definable. Then there is definable
bijection from N to X .
Proof. Let f : N → X be the function that takes 0 to the minimum of X and
i + 1 to the successor of f(i) in X . By Lemma 5.4 f is definable. �
Definition 5.6. Let A and B be definable sets. Let Δ be a family of functions
from B toKm. We say that Δ is in definable bijection with A if there exists a definable
map α : A× B → Km such that:
(1) for every f ∈ Δ there exists a unique a ∈ A such that for every b ∈ Kn
f(b) = α(a, b);

(2) for every a ∈ A the map x �→ α(a, x) is in Δ.
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With the above notation, we denote by α̂ : Δ → A the map sending f ∈ Δ to the
unique a ∈ A satisfying (1).
If Γ is a family of subsets of B, we say that Γ is in definable bijection with A if the
family of characteristic functions of the sets in Γ is in definable bijection with A.
By abuse of notation, if α : A × B → {0, 1} is the corresponding map, we denote
by α̂ : Γ → A the map sending X ∈ Γ to the unique a ∈ A satisfying the analog
of (1).

Example 5.7. The family of open balls inKn is in definable bijection withKn×K>0.
Lemma 5.8. The family of definable bounded subsets of N is in definable bijection
with N .
Proof. LetC ⊆ N be the set of all k ∈ N such that �(k, i) ∈ {0, 1} for all i ∈ N .
Define � : C ×N ×N → {0, 1} by

(k, l, i) �→
{
�(k, i), if i ≤ l ;
0, otherwise.

Since N is a model of first-order arithmetic, there is a definable bijection
� : N ×N→N . Let D be �(C × N). Now consider the subset E of D containing
all k ∈ N such that there is no k′ ∈ N with k′ < k and

{i ∈ N : �(�−1(k′), i) = 1} = {i ∈ N : �(�−1(k), i) = 1}.
By Lemma 5.2, for every bounded definable subset X ofN there is k ∈ D such that
{i ∈ N : �(�−1(k), i) = 1} = X . Hence by Fact 2.1, there is a unique k ∈ E with
this property. Hence the family of definable bounded subsets of N is in definable
bijection with E. By Corollary 5.5 E is in definable bijection with N . Thus the
family of definable bounded subsets of N is in definable bijection with E. �
Corollary 5.9. The family of definable subsets of N is in definable bijection
with K .
We denote by ε̂ the corresponding bijection.
Proof. The idea of the proof is to use the expansion in base 2 to encode definable
subsets ofN as elements ofK . Let E be the family of all definable subsets ofN and
C be the family of unbounded definable subsets of N . We want to prove that E is
in definable bijection with K .
Claim 5.10. C is in definable bijection with (0, 1].
The Corollary then follows: in fact, by Lemma 5.8,E \C is in definable bijection
with N . Moreover, the disjoint union of K and N is in definable bijection with
K : we define 	 : K �N → K as follows:

	(x) :=

⎧⎪⎨
⎪⎩
x if x ∈ K \N ;
2x if x is in the copy of N inside K ;
2x + 1 if x is in the copy of N outside K .

Hence, E is in definable bijection with K .
Let us prove now Claim 5.10. By Lemma 5.4 there is a unique definable function
from N to N , which we denote by 2n, such that 20 = 1 and 2n+1 = 2 · 2n. For
i ∈ {0, 1} let
Yn,i := {a ∈ (0, 1] : there is m ∈ 2 ·N + i such thatm < 2na ≤ m + 1} .
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Given X ⊂ N definable and unbounded and n ∈ N , let f : N → {0, 1} be the
characteristic function of X , and

Zn,X :=
⋂

∈N≤n

Y
,f(
).

By induction on n, it is easy to see that

Zn,X =
(an
2n
,
an + 1
2n

]
for some unique an ∈ N with 0 ≤ an < 2n. Let a := lim supn→∞

an
2n . Then, since we

assumed thatX is unbounded, it is easy to see that
⋂
n∈N Zn,X = {a} and a ∈ (0, 1].

Define �̂(X ) := a.
We now show that �̂ is a definable bijection betweenC and (0, 1]. Given a ∈ (0, 1]
let X := {n ∈ N : a ∈ Yn,1}: then, �̂(X ) = a, and hence �̂ is surjective. Let X,X ′

be distinct definable unbounded subsets ofN , and assume, for a contradiction, that
b := �̂(X ) = �̂(X ′). Let n := min(XΔX ′); w.l.o.g., we can assume n ∈ X \X ′. Then,
Zn,X ′ =

(
an−1
2n ,

an
2n

]
and Zn,X =

(
an
2n ,
an+1
2n

]
for a unique an ∈ N with 1 ≤ an < 2n.

Moreover, since b = �̂(X ) = �̂(X ′), we have an = b · 2n, and, for every m > n,
m ∈ X ′ and m /∈ X ; however, the latter contradicts the fact that X is unbounded.
The corresponding function � : K ×N → {0, 1} is given �(a, n) = 1↔ a ∈ Yn,1.

�
Lemma 5.11. The family of definable functions fromN toK is in definable bijection
with K .

Proof. The idea of the proof is that KN ≈ (2N )N ≈ 2N×N ≈ 2N ≈ K , where
AB denotes the family of definable functions from B to A, and A ≈ B means that
there is a definable bijection between A and B.
More in details, fix a definable bijection � : N × N → N . Given f : K → N
definable, let Xf be the definable subset of N such that, for every i, j ∈ N ,

j ∈ ε̂−1(f(i))↔ �(i, j) ∈ Xf.

The definable bijection �̂ is given by �̂(f) := ε̂(Xf). Equivalently, define �̂(f) to be
the unique b ∈ K such that, for every i, j ∈ N , ε(f(i), j) = ε(b, �(i, j)).
The corresponding function � is defined in the following way: for every b ∈ K
and i ∈ N , �(b, i) is the unique c ∈ K such that, for every j ∈ N , ε(c, j) =
ε(b, �(i, j)). �
Corollary 5.12. Let c : Kn → K and g : Kn ×N → K be definable. Then there
is a unique definable function f : Kn ×N → K such that for all a ∈ Kn

f(a, 0) = c(a),

f(a, i + 1) = g(a,f(a, i)).

Notice that from the proofs of Corollary 5.9 and Lemma 5.11 it follows that
every definable subset of N and every definable function from N to K are already
definable in 〈K,N,+, ·, <〉.
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Moreover, we can encode definable subsets of N as elements of K. Thus, the set
sort of the proposed model of arithmetic is K itself, and the inclusion relation ∈ is
defined as follows:

n ∈ a ↔ ε(a, n) = 1.
Finally, we add a function, predicate or constant for (the translation via ε̂ of) every
function, predicate, or constant in the language ofK. It is now clear that the resulting
structure is a model of second-order arithmetic.

5.2. From models of arithmetic to unrestrained structures. Conversely, start with
N := 〈N,D; 0, 1,+, ·, <, . . .〉 a model of second-order arithmetic, in the sense
explained at the beginning of §5, in the language L. Let Z be the ring generated by
N andQ be the field of fractions ofZ. As in [19, Def. I.4.2], a set of “real numbers”
can be interpreted inside N : more precisely, a “sequence of rational numbers” is a
definable function from N to Q; such a sequence is Cauchy if it satisfies the usual
Cauchy condition. We set K to be the set of Cauchy sequences modulo the null
sequences, with the operations +, · and order < induced by the ones onQ. Clearly,
Q embeds definably and canonically in K . It is also clear that 〈K, ·,+, <〉 is an
ordered field; moreover, since the family of Cauchy sequences of rational numbers
is a definable family, K is interpretable in N .
Lemma 5.13. K0 := 〈K,Z, ·,+, <〉 is a definably complete structure.
Proof. Standard proof of analysis (cf. [19, Theorem III.2.2]). Let A ⊂ K be
definable, bounded, and nonempty; we have to show that A has a least upper
bound. W.l.o.g., we can assume that A is an initial segment, that is, if a ∈ A and
b < a, then b ∈ A; moreover, we can also assume 0 ∈ A.
For every n ∈ N , let

f(n) := max
{m
2n
: m ∈ N, m

2n
∈ A

}
.

By definition, f takes values in Q ∩ A; it is clear that f is a Cauchy sequence, and
that its equivalence class is the l.u.b. of A. �
Thus, we have the function ε̂ for the structure K0; using the coding given by ε̂ we
can translate all the extra functions, predicates, and constants in L as functions,
predicates, and constants onK ; we denote by K the resulting expansion of K0. It is
still true (with the same proof as in Lemma 5.13) that K is definably complete,
and thus we showed how to transform a model of second-order arithmetic into an
unrestrained definably complete structure.
The two transformations are inverse to each other; thus we can say that models
of second-order arithmetic and unrestrained definably complete structures are the
same objects.

§6. Definable functions and meager sets. In this section we will establish some
preliminary facts about definable functions and show how to transfer part of the
theory about Baire category to the definable context. We will later use these facts to
prove Theorem B.

6.1. Definably meager and DΣ sets. In order to shows how to use Theorem A,
and because we will use it in the remainder of this section, we give a quick new proof
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of a conjecture by Fornasiero and Servi [5]. It was first proved by different methods
in [8].

Definition 6.1. A definable set A ⊆ Kn is called definably meager if A =⋃
t∈K Xt , for some definable increasing family (Xt : t ∈ K) of nowhere dense
subsets of Kn.

Lemma 6.2. Let A ⊆ Kn be at most pseudo-enumerable. Then A is definably
meager.

Proof. Since A is at most pseudo-enumerable, there exists a definable closed and
discrete set D ⊂ K≥0 and a definable surjective function f : D → A. For each
t ∈ K , let Xt := f(D≤t). By Fact 2.7, each Xt is pseudo-finite. Then A =

⋃
t∈K Xt ,

and (Xt : t ∈ K) is definable increasing family of nowhere dense subsets of Kn. �
Theorem 6.3 ([8]). K is not definably meager.

Proof. If K is restrained, then Theorem A and [3, Proposition 6.4] show that
every definably meager set has empty interior and in particular K is not definably
meager.
If not, then, as shown in [3, Lemma 6.2], we can mimic one of the classical proofs
of Baire’s category theorem to conclude thatK is not definably meager. �
Definition 6.4. Let X ⊆ Kn be a definable set. We say that X is a DΣ set if it is
the union of a definable increasing family, indexed by K , of closed subsets of Kn .

By [5, Remark 3.3], a definable set is aDΣ set iff it is the projection of a definable
closed set.

Lemma 6.5. Let A ⊆ Kn+m be a DΣ set. Let
T (A) := {x ∈ Kn : Ax is definably meager} .

Then A is definably meager iff Kn \ T (A) is definably meager.
Proof. It follows immediately from [5, Lemma 5.2 and Proposition 5.4]. �
6.2. Definable functions and continuity. Now that we have a reasonable analog of
the notion of meager sets, we can use it to transfer several well-known results from
real analysis to K. For the remainder of this subsection we will not use Theorem A
anymore. Afterwards, wewill use these results to prove TheoremB by distinguishing
the case when K is either restrained or unrestrained.
First, we show that a monotone function f is continuous outside a “small” set.

Lemma 6.6. Let f : K → K be a definable monotone function. Then, the set Df
of discontinuity points of f is at most pseudo-enumerable.

Proof. For every ε > 0 let

Df(ε) :=
{
x ∈ K : lim sup

y→x
|f(y)− f(x)| > ε

}

=
{
x ∈ K : lim

y→x+
f(y)− lim

y→x−
f(y) > ε

}
.

It is easy to see that f(Df(ε)) is discrete for every ε > 0. Thus, by Fact 2.10, since
Df = ⋃

ε>0Df(ε), Df is at most pseudo-enumerable. �
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Definition 6.7. Letf : K → K be a definable function. The fourDini derivatives
of f are:

�
f(x) := lim inf
y→x−

f(y) − f(x)
y − x ,

�rf(x) := lim inf
y→x+

f(y) − f(x)
y − x ,

Λ
f(x) := lim sup
y→x−

f(y)− f(x)
y − x ,

Λrf(x) := lim sup
y→x+

f(y)− f(x)
y − x .

Lemma 6.8. Let f : K → K be definable and continuous. If, for every x ∈ K ,
Λrf(x) ∈ K and Λrf is continuous, then f is C1 (and f′ = Λrf).

Proof. As in [1, Theorem 1.3]. �
Wewill now adapt the classical definition of Baire class to the “definable” context.

Definition 6.9. Let X ⊆ Kn be a definable set, f : X → K be a definable
function, and n ∈ N. We say that f is of definable Baire class n if:

(1) either n = 0 and f is continuous;
(2) or n > 0 and there exists a definable family of functions (ft : X → K)t∈K
such that each ft is of class (n − 1) and
(a) either, for every x ∈ X , f(x) = limt→+∞ ft(x);
(b) or, for every x ∈ X , f(x) = supt ft(x);
(c) or, for every x ∈ X , f(x) = inf t ft(x).

In the above definition we had to add Clauses (2-b) and (2-c) to the classical
definition, because we could not prove that a function satisfying e.g. Clause (2-b)
would satisfy Clause (2-a).
The interest for us of the above definition stems from the following fact.

Lemma 6.10. Let f : K → K be definable and continuous. Then, Λrf is of
definable Baire class 2.

Proof. For every t �= 0 let gt(x) := f(x+t)−f(x)
t . Then,

Λrf(x) = inf
t>0
sup
0<s<t

gs (x). �
Definition 6.11. Letf : X → K be a definable function.We say thatf is almost
continuous if the set of its discontinuity points Df is nowhere dense.
Definition 6.12. K has locally o-minimal open core if there does not exist a
definable, closed, discrete, and unbounded subset of K≥0 (see [4, Thm. 3.3]).

We could prove the following Lemma only under the assumption thatK does not
have locally o-minimal open core.

Lemma 6.13. Assume that K does not have locally o-minimal open core. Let
(ft : Kn → [0, 1])t∈K be a definable family of almost continuous functions. Let
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f : Kn → [0, 1] be either of the following functions:
(1) f(x) = supt ft(x);
(2) or f(x) = limt→∞ ft(x).
Then, the restriction of f to the complement of a definably meager set is continuous.
If moreover each ft is continuous (i.e., f is of definable Baire class 1), then D(f) is
definably meager.
Proof. Minor variation of [15, Theorem. 7.3]. LetM ⊂ K≥0 be definable, closed,
discrete, and unbounded.
LetDi be the closure ofDfi , andD :=

⋃
i∈M Di since eachDi is nowhere dense,

D is definably meager. Let X := Kn \ D: notice that X is dense in Kn. We claim
that f �X is continuous outside a definably meager set. (If each fi is continuous,
then D is empty, and we also obtain the“moreover” clause)
For every ε > 0, set

Fε := {a ∈ X : ∀� > 0 ∃x ∈ X (|x − a| < � & |f(x)− f(a)| > 5ε)} .
It suffices to show that Fε is nowhere dense. Fix an open box V ⊆ Kn and ε > 0.
We prove first Case (2). Notice that f(x) = limt→∞,t∈M ft(x). For every i ∈ K ,
let

Ei := {x ∈ V : |fi(x)− f(x)| ≤ ε} .
Notice that (Ei : i ∈ M ) is a definable family of subsets of V , and

⋃
i∈M Ei = V .

Hence, by Theorem 6.3, there exists i0 ∈ M such that the closure of Ei0 has
nonempty interior. Let U ⊆ cl(Ei0 ) be a nonempty open box. Since fi0 is continu-
ous onU ∩X , after shrinking U we can also assume that, for every x, x′ ∈ U ∩X ,
|fi0 (x)− fi0 (x′)| ≤ ε. Thus, for every x, x′ ∈ U ∩ X , |f(x)− f(x′)| ≤ 3ε, and
therefore U ∩ X ∩ Fε = ∅.
Thus, every nonempty open definable set V contains a nonempty open set U
disjoint from Fε ∩ X , and therefore Fε ∩X is nowhere dense.
The proof of Case (1) is similar, using instead

Ei := {x ∈ V : f(x) ≤ fi(x) + ε} . �
Example 6.14.

(1) Notice that in the aboveLemmawe cannot conclude thatDf is definablymeager
without also assuming that either each fi is continuous or K is restrained (see
Corollary 6.18). In fact, it is easy to see that the characteristic function of
an at most pseudo-enumerable set is the pointwise limit of a definable family
of functions fi such that each D(fi) is pseudo-finite. For instance, let R :=
〈R,+, ·, <,N〉. Let f : R → R be the characteristic function of Q: then, f can
be written as the limit of a definable family of functions fi , with D(fi) finite
for every i .

(2) Let f : Kn → K be a definable continuous function such that Λrf is discon-
tinuous on a nonmeager set: then Λrf is a function of definable Baire class
exactly 2 (i.e., not 1). It is an easy exercise to find such a function f when K is
unrestrained (cf. [1, p. 42]): however, we will see later that when K is restrained
such f does not exist.

(3) If X ⊆ Kn is a nonempty definable closed subset, then the characteristic
function of X is of definable Baire class 1.
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(4) If R is an unrestrained expansion of the real field, then, for each n ∈ N, the
“definable Baire class n” and the “Baire class n” are the same class (because all
sets in the projective hierarchy are definable in R); therefore, by a theorem by
Lebesgue [11], for each n there is a definable function of definable Baire class
exactly n.

(5) Let C ⊂ R be a “Cantor set”, i.e., a nonempty, definable, closed, perfect,
nowhere dense subset. Define f : R → R as f(x) = 0 outside C , f(x) = 1/2
on each point ofC such that there exists ε > 0with either (x, x+ε)∩C = ∅, or
(x−ε, x)∩C = ∅, andf(x) = 1 otherwise. Then,f is of definable Baire class
exactly 2 (cf. [15, Ch.7]). There are some restrained expansions of R defining a
Cantor set as above. We leave open the question if in the restrained case there
can be definable functions of definable Baire class greater than 2.

(6) If K is restrained and defines set X ⊂ K which is dense and codense, then the
characteristic function of X is not in any definable Baire class; for instance, if
R is the expansion of the real field by the set Ralg of real algebraic numbers,
then the characteristic function of Ralg is of Baire class 2, but it is not in any
definable Baire class.

6.3. Restrained structures. In this subsection we will prove a few results about
definable functions and sets in restrained structures. We will use them to prove
the restrained case of Theorem B; however, we think that some of them are of
independent interest.

Lemma 6.15. Let X ⊆ K be definable and nowhere dense. Then, there exists two
sets Y,Z ⊂ K discrete, definable, and such that Y ⊆ X and cl(X ) ⊆ cl(Y ) ∪ cl(Z).
Moreover, the choice of Y can be made in a uniform way: that is, if X ⊂ Kn+1 is
definable, and for every t ∈ Kn , Xt is nowhere dense, then there exists Y,Z ⊂ Kn+1
definable, such that Y ⊆ X and, for every t ∈ Kn , Yt and Zt are discrete, and
Xt ⊆ cl(Yt) ∪ cl(Zt).
Proof. Let Y be the set of isolated points of X . W.l.o.g., we can assume that X
is closed andX ⊂ (0, 1). Thus, (0, 1) \X can be written in a unique way as a union
of disjoint open intervals; let Z be the set of centers of such intervals. �
Lemma 6.16. K is restrained iff, for every m ∈ N, every definably meager subset of
Km is nowhere dense.

Proof. For the “if” direction, let X ⊂ K be at most pseudo-enumerable. Then,
by Lemma 6.2, X is definably meager; thus, by assumption, X is nowhere dense,
proving thatK is restrained.
For the “only if” direction, first we assume m = 1. If K has locally o-minimal
open core, then the conclusion holds (see [4, Theorem 3.3]). Otherwise, there exists
an unbounded definable closed discrete set D ⊂ K≥0. Let X ⊂ K be definably
meager; thus, X =

⋃
i∈K Yi , for some (Yi : i ∈ K) definable increasing family of

nowhere dense sets. Since D is unbounded, X =
⋃
i∈D Yi . By Lemma 6.15, there

exists two definable families of discrete sets (Zi : i ∈ D) and (Wi : i ∈ D), such
that, for every i ∈ D, Yi ⊆ cl(Zi ∪Wi). Let T :=

⋃
i∈D Zi ∪Wi . By Fact 2.10, T is

at most pseudo-enumerable, and hence nowhere dense, since K is restrained. Since
X ⊆ cl(T ), we have that X is nowhere dense.
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Assume now that m ≥ 1 (and K is restrained). By induction on n, we show the
following:

(1)n Every DΣ subset of Kn has interior or is nowhere dense;
(2)n For every p ∈ N and A DΣ subset of Kn+p, the set {x ∈ Kn : cl(Ax) �=

cl(A)x} is definably meager in Kn.
(3)n If A is a DΣ subset of Kn , then fr(A) := cl(A) \ Å is nowhere dense.
(4)n Every definably meager subset of Kn is nowhere dense.

Assertion (4)m is the conclusion of the Lemma. Assertion (1)1 is the Casem = 1.
The proofs of (2)1 and the inductive step are as in [14, 1.6].
More precisely, assume that we have already proved (1)n; we claim that (2)n, (3)n,
and (4)n also hold. For (3)n: we have

fr(A) = fr(Å) ∪ fr(A \ Å) = fr(Å) ∪ cl(A \ Å)
and each of the two pieces is aDΣ set with empty interior, and thus, by (1)n, nowhere
dense.
For (4)n , letX ⊆Kn bedefinablymeager: that is,X = ⋃

t∈K Yt , where (Yt : t ∈K)
is a definable increasing family of nowhere dense subsets of Kn. For each t ∈ K ,
let Zt be the closure of Yt (inside Kn); defineW :=

⋃
t Zt . Then, W is definably

meager and hence, by Theorem 6.3, with empty interior; moreover,W is a DΣ set.
Thus, by (1)n,W is nowhere dense, and, since X ⊆W , X is also nowhere dense.
The proof of (2)n is a bit more involved. Let A be a DΣ subset of Kn+p and
B := {x ∈ Kn : ∃y ∈ cl(A)x \ cl(Ax)}.Wewant to show thatB is definablymeager.
For each open boxU ⊆ Kp, letCU := {〈x, y〉 ∈ cl(A) : y ∈U & cl(Ax) ∩U = ∅}
and BU := 
(CU ), where 
 : Kn+p → Kn is the projection onto the first n
coordinates. Notice that B is the union of all the BU ’s.

Claim 6.17. For each open boxU , BU is nowhere dense.

In fact, let G := 
(A ∩ (Kn × U )). Then, G is a DΣ set, and fr(G) has empty
interior (by (3)n). However, BU ⊆ fr(G), and the claim is proved.
For each r > 0, let

D(r) := {〈x, y〉 ∈ cl(A) : |y| ≤ r & d (y,Ax) ≥ r} ,
E(r) := cl(D(r)), andF (r) := 
(E(r)). SinceB =

⋃
r>0 
(D(r)) ⊆

⋃
r>0 F (r), and

each F (r) is closed, it suffices to show that each F (r) has empty interior. Assume,
for a contradiction, that F (r) contains a nonempty open box V , for some r > 0.
Definef : V → Kp,f(x) := lexmin(E(r)x). By [2, 2.8(1)], the set of discontinuity
points of f is definably meager; thus, by (1)n, after shrinking V if necessary, we
can assume that f is continuous on V . Thus, Γ(f), the graph of f, is contained in
E(r). After shrinking V if necessary, by continuity of f, we can find an open box
U ⊂ Kp of diameter less than r and such that f(V ) ⊆ U .
Then, D(r)U := D(r) ∩ (Kn ×U ) ⊆ CU , and therefore

V ⊆ 
(cl(D(r)U )) ⊆ cl(
(D(r)U )) ⊆ cl(BU ),
contradicting Claim 6.17.
Finally, assume that we have already proved all the statements for every n′ < n;
we want to prove (1)n. LetA ⊂ Kn be aDΣ set with empty interior; wewant to prove
that A is nowhere dense. Notice that A is definably meager; thus, by Lemma 6.5,
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the set of points x ∈ Kn−1 such that Ax has nonempty interior is definably meager;
hence, by (1)1 and (4)n−1, the set of points x ∈ Kn−1 such that Ax is somewhere
dense is nowhere dense. By (2)n−1, the set of points x ∈ Kn−1 such that cl(A)x has
interior is nowhere dense. Hence, cl(A) has empty interior. �
Corollary 6.18. Let K be restrained and without locally o-minimal open
core, n,m ∈ N, and f : Km → K be of definable Baire class n. Then, f is almost
continuous.

Proof. By induction on n, Lemma 6.13, and Lemma 6.16. �
Lemma 6.19. Let K be restrained, U ⊆ Kn be open and definable, f : U → K
be a definable continuous function, and p ∈ N. Then, f is Cp on a dense open subset
of U .

Proof. Let B ⊆ U be an open box; it suffices to prove the result for f �B ; since
B is diffeomorphic to Kn itself, it suffices to treat the case when U = Kn.
If K has locally o-minimal open core, then, since f is definable in the open core
of K, the conclusion follows from [4, Theorem 5.11].
Otherwise, by induction, it suffices to treat the case p = 1. First, we do the
case n = 1. By Lemma 6.10, Λrf is of definably Baire class 2. By Corollary 6.18,
Λrf : K → K ∪ {±∞} is continuous on a dense open set U , but may take value
infinity somewhere.

Claim 6.20. Let V := {x ∈ U : Λrf(x) ∈ K}. Then, V is open and dense.
If not, since Λrf is continuous on U , there would exist an interval [a, b] ⊆ U
such that

(1) either for every x ∈ [a, b], Λrf(x) = +∞,
(2) or, for every x ∈ [a, b], Λrf(x) = −∞.
By replacingf(x) withf(x)− f(b)−f(a)b−a (x−a), w.l.o.g. we can assume thatf(b) =
f(a). Thus, since f is continuous and definable, there exists x0 ∈ (a, b) that is a
maximum for f in [a, b]; but then Λrf(x0) ≤ 0, contradicting Case (1). Similarly,
there exists x1 ∈ (a, b) that is a minimum for f in (a, b), contradicting Case (2).
Finally, by Lemma 6.8, f is C1 on V .
Assume now that n > 1. We will prove that, outside some nowhere dense set,
each partial derivative of f exists and is continuous; it suffices to show that ∂f/∂xn
exists and is continuous on a dense open set. Let ēn := 〈0, . . . , 0, 1〉 ∈ Kn. Define
the Dini derivatives of f in the direction ēn as Λrf := lim supt→0+

f(x+tēn )−f(x)
t ,

and similarly for the other three Dini derivatives. Reasoning as in the case n = 1, we
see that Λrf is finite and continuous on a dense open set U , and similarly for the
other threeDini derivatives. It then suffices to show that, aftermaybe shrinkingU to
a smaller dense open definable set, the four Dini derivatives coincide; by symmetry,
it suffices to prove that �
f = Λrf on a dense open set. Assume not: then, by
continuity, there would exist an open set V such that �
f(x) �= Λrf(x) for every
x ∈ V ; but this contradicts the case n = 1. �

§7. Lebesgue’s Theorem. We give now an application of Theorem A, by proving
the following analog of Lebesgue’s theorem. Remember that we callK unrestrained
if it defines a discrete subring (with 1), and restrained otherwise.
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Theorem B. Letf : K → K be a definablemonotone function. Then,f′(x) exists
and is in K (i.e., not ±∞) on a dense subset ofK .
The reasons we chose this example are that it is interesting in its own right (it was
conjectured in [12]), and it gives a good illustration of how Theorem A can be used
to transfer various classical results fromR toK. Theorem A allows us to reduce the
proof of the above Theorem to structures satisfying either condition (I) or (II) of
Theorem A.

7.1. The restrained case. Wewill now give a proof of Theorem B in the case when
K is restrained.
The theorem in the restrained case follows immediately from the results in §6.3
plus the following lemma.

Lemma 7.1. LetK be restrained ; letf : K → K be a definable monotone function.
Then, there exists a definable closed nowhere dense set C such that f is continuous
outside C .

Proof. Let D be the set of discontinuity points of f, and C be its closure.
By Lemma 6.6, D is at most pseudo-enumerable; by Theorem A, C is nowhere
dense. �
The following corollary concludes the proof of Theorem B in the case when K is
restrained.

Corollary 7.2. Let K be restrained ; let f : K → K be a definable monotone
function. Then, f is C1 outside a nowhere dense set.
Proof. By Lemmas 7.1 and 6.19. �
7.2. Measure theory. Let us examine now the case when K defines a discrete
subring Z. Using the results in §5, we can transfer the tools of measure theory. We
will sketch the relevant ideas in the following (cf. [19, §X.1] for a different approach).
Many of the definitions make sense also in the case when K is restrained: therefore
in this subsection, unless said otherwise, we are not assuming thatK is unrestrained.

Definition 7.3. Let D ⊂ K≥0 be a nonempty closed discrete definable set, and
let sD be defined as in Definition 2.3. Let h : D → K be a definable function. We
defineH : D → K to be function given recursively byH (min(D)) = 0 and for every
d ∈ D with d �= max(D), H (sD(d )) = H (d ) + h(d ). If h takes only nonnegative
values andH exists, we denote∑

d∈D
h(d ) := sup

d∈D
H (d ) ∈ K≥0 ∪ {+∞} .

It is easy to see that if H is definable, then it is unique. Moreover, if K is
unrestrained, thenH exists by Corollary 5.12.

Definition 7.4 (Lebesgue measure). Let a < b ∈ K ∪ {±∞}; we set |(a, b)| :=
b − a. Let U := (

Id : d ∈ D) be a definable family of open intervals, indexed by a
closed discrete set D ⊆ K≥0. We defineM (U) :=

∑
d∈D |Id | (if it exists).

Let A ⊆ K be a definable set. We denote by 	(A) the infimum of M (U), as U
varies among all the definable coverings of A by open intervals, indexed by some
definable discrete subset of K≥0, such thatM (U) exists. Notice that 	(A) may not
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lie in K (since it is the infimum of a set that may not be definable), but in the
Dedekind-MacNeille completion of 〈K,<〉. Notice also that 0 ≤ 	((0, 1)) ≤ 1.
Notice thatwhenK expands 〈R,+, ·,N〉, then	(X ) is the outer Lebesguemeasure
of X .
Conjecture 7.5. 	((0, 1)) = 1.
However, things are much simpler if K unrestrained. In that case,M (U) always
exists, and we can always assume that the index set of U is either N or an initial
segment of N (more precisely, for every definable closed discrete subset D ⊂ K≥0
there is a unique definable increasing bijection between a unique initial segment of
N and D).
Moreover, the family of definable covers of a given definable set A by open
intervals indexed by N is itself definable (by Lemma 5.11), and therefore 	(A) ∈
K≥0 ∪ {+∞}. Moreover, again by using Lemma 5.11, if (Ai : i ∈ I ) is a definable
family, then f : i �→ 	(Ai) is a definable function.
Proposition 7.6. Let K be unrestrained. Then, 	((0, 1)) = 1.
The proof of the above proposition is a minor modification the classical one
that (0, 1) has Lebesgue measure 1, and is left to the reader; he can base it on the
following result, whose proof is also left to the reader.
Lemma 7.7 (Commutativity of addition). Let K be unrestrained. Let h : N →
K≥0 be a definable function, and � : N → N be a definable bijection. Then,∑
d∈N h(d ) =

∑
d∈N h(�(d )).

Notice that we are not able to prove the above Lemma without the assumption
thatK defines a discrete subring.
Conjecture 7.8. Let D ⊆ K≥0 be a definable closed discrete subset; let h :
D → K≥0 be a definable function, and � : D → D be a definable bijection. Then,∑
d∈D h(d ) =

∑
d∈D h(�(d )) (i.e., if the sum on the left exists, then also the one on

the right exists and is equal to it).
Lemma 7.9 (Sigma-subadditivity of measure). Let K be unrestrained. Let(
Ai : i ∈ N

)
be a definable family of subsets of K . Then,

	(
⋃
i

Ai) ≤
∑
i

	(Ai).

In particular, if 	(Ai ) = 0 for every i ∈ N , then 	(
⋃
i Ai) = 0. Therefore, if A ⊂ K

is at most pseudo-enumerable, then 	(A) = 0.
Proof. Left to the reader. �
Corollary 7.10. Let K be unrestrained. Let X ⊆ K be a definable set, and
0 ≤ � < 1 ∈ K . Assume that for every interval I we have 	(X ∩ I ) ≤ � |I |. Then,
	(X ) = 0.
Proof. Assume not: let 	(X ) = c > 0. Fix 0 < ε ∈ K small enough (how small
will be clear later). Let U := (Id : d ∈ N) be a definable family of intervals, such
thatM (U) < (1 + ε)c and X ⊆ ⋃

d Id . Thus, by our assumption on X ,

	(X ) ≤
∑
d

	(Id ∩ X ) ≤
∑
d

� |Id | ≤ �(1 + ε)c.

If we take ε small enough, we have �(1 + ε) < 1, absurd. �
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7.3. The unrestrained case. With those tools at our disposal, we can now mimic
some of the proofs of Lebesgue’s theorem: we will follow the trace of [17] for the
case when f is continuous, and of [18] for the general cases.
First, a technical Lemma, which is easy to prove for every K, without using
Theorem A: the proof is left to the reader (cf. [17] for the details).

Lemma 7.11 (Riesz’s Rising Sun Lemma). Let a < b ∈ K and g : [a, b]→ K be
a definable bounded function. For every x ∈ [a, b], denote

G(x) := max
(
g(x), lim sup

y→x
g(y)

)
.

Let
E := {x ∈ (a, b) : (∃y ∈ (x, b]) g(y) > G(x)} .

Then, E is an open definable subset of (a, b). Moreover, let (a′, b′) be a maximal open
subinterval of E. Then, lim supy→a′+ g(y) ≤ G(b′).
Lemma 7.12. Let K be unrestrained. Let a < b ∈ K , and f : (a, b) → K be a
definable increasing function. Define

A∞ := {x ∈ (a, b) : Λrf(x) = +∞} .
Then, 	(A∞) = 0.
Proof. The same as in [17, Assertion 1].
More in details, given c ∈ K , define

g(x) := f(x)− cx;
Ac := {x ∈ (a, b) : Λrf(x) > c} ;
Ec :=

{
x ∈ (a, b) : (∃y > x) g(y) > g(x+)} ;

Df := {x ∈ (a, b) : f is discontinuous at x} .
Notice that

⋂
c Ac = A∞ and 	(Df) = 0 (because Df is at most pseudo-

enumerable), and therefore it suffices to show that 	(Ac \ Df) is arbitrarily small
for c large enough. Moreover, Ac \ Df ⊆ Ec ; therefore, it suffices to show that
	(Ec) is small.
Let G be as in Lemma 7.11; notice that G(x) = g(x+), unless x = b, when
G(b) = g(b). Thus, by Lemma 7.11, Ec is an open subset of (a, b), and it is the
disjoint union of a definable family of open intervals {(ak, bk) : k ∈ N}, such that
c(bk−ak) ≤ f(b+k )−f(a+k ). Hence, c

∑
k∈N (bk−ak) ≤ f(b)−f(a), and therefore

	(Ec) ≤ f(b)−f(a)
c . �

Lemma 7.13. Let K be unrestrained. Let f : K → K be a definable monotone
continuous function.
(1) Let A := {x ∈ K : �
f(x) < Λrf(x)}. Then, 	(A) = 0.
(2) The set of points x ∈ (a, b) such that f′(x) does not exist or is infinite has
measure 0.

Proof. We proceed as in [17, Assertion 2]. (2) follows easily from (1), thus we
only need to prove (1).
It suffices to show that, for every 0 < c < C ∈ K , the set

B := {x ∈ K : �
f(x) < c & Λrf(x) > C}
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has measure 0. Let � := c/C : by Corollary 7.10, it suffices to show that, for every
a < b ∈ K ,	(B∩(a, b)) < �(b−a).As in[17,Assertion 2], by applying Lemma 7.11
to the function g(x) := f(−x) + cx, we get that {x ∈ (a, b) : �
f(x) < c} is con-
tained in an open definable setD, such that for everymaximal interval (ak, bk) ⊆ D,
we havef(bk)−f(ak) ≤ c(bk−ak) (notice that we can take the indexes k inN in a
definable way).We then apply again Lemma 7.11 to the function g(x) := f(x)−Cx
restricted to each interval (bk, ak), and we get that D ∩ (bk, ak) is contained in an
open definable set Dk , such that 	(Dk) ≤ f(bk)−f(ak)

C . Thus,

	(B ∩ (a, b)) ≤
∑
k

	(Dk) ≤
∑
k f(bk)− f(ak)

C
≤ �

∑
k

(bk − ak) ≤ �(b − a). �

Let us treat now the case when f is not continuous: we will follow the ideas
in [18].

Lemma 7.14. Let f : [a, b] → K be a strictly increasing definable function.
Then, f(x) has a continuous definable inverse; that is, there exists a continuous,
nondecreasing, definable function F defined on [f(a), f(b)], such that F (f(x)) = x
for every x ∈ [a, b].
Proof. Define F (y) := sup {t : f(t) ≤ y}. �
Lemma 7.15. Let K be unrestrained and a < b ∈ K . Let f : [a, b] → K be a
nondecreasing definable function. Let E be the set of x ∈ [a, b] such that either f′

does not exist or it is infinite. Then, 	(E) = 0.

Proof. By replacingf(x) withf(x)+x, w.l.o.g. we can assume thatf is strictly
increasing. Thus, we can apply Lemma 7.14: let F be defined there. By lemma 7.13
and 7.12, F ′ exists and is finite outside a definable set of measure 0. Given x �= y ∈
[a, b], we write

f(y)− f(x)
y − x =

(
F (f(y))− F (f(x))
f(y)− f(x)

)−1
.

Thus, if f is continuous at x and F ′(x) exists, we have thatf′(x) = 1/F (f′(x)) ∈
K ∪ {+∞}. However, by Lemma 6.6, the set of discontinuity points of f is at most
pseudo-enumerable, and a fortiori of measure 0, and by Lemma 7.12, f′(x) < +∞
outside a set of measure 0. �
Corollary 7.16. Let K be unrestrained. Let f : K → K be a definable monotone
function. Let E be the set of x ∈ K such thatf′(x) does not exist or is infinite. Then,
	(E) = 0, and therefore E has empty interior.

7.4. Other problems. Lest the reader thinks the transfer from the real case to the
definably complete one is always automatic, we will conclude with an open problem
and recall some counterexamples.

Conjecture 7.17 (Brouwer’s Fixed Point). Letf : [0, 1]2 → [0, 1]2 be a definable
continuous function. Then, f has a fixed point, i.e., there exists c ∈ [0, 1]2 such that
f(c) = c.

Fact 7.18 (Hrushovski, Peterzil [10]). There exists an o-minimal structureK and
a definable C∞ nonzero function f : I → K , where I is an open interval around 0,
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such that f(0) = 0 and f satisfies the differential equation

f(x) = x2f′(x) + x, f(0) = 0, f′(0) = 1.1 (7.1)

For every 0 < ε ∈ R there is no C1 functionf : (−ε, ε)→ R satisfyingEquation (7.1).

Another counterexample to some kind of “transfer principle” for restrained
(indeed, locally o-minimal) structures can be found in work by Rennet in [16].
For unrestrained structures, let R be an expansion of 〈R,+, ·, <,N〉, L be its
language, T0 be the L-theory whose models are definably complete structures with
a discrete subring, andT be any recursive set of sentences true inR and extendingT0.
By Gödel’s incompleteness theorem, there is a model of T which is not elementarily
equivalent toR.
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