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Abstract. We associate the topological entropy of monotone recurrence relations with
the Aubry–Mather theory. If there exists an interval [ρ0, ρ1] such that, for each ω ∈
(ρ0, ρ1), all Birkhoff minimizers with rotation number ω do not form a foliation, then
the diffeomorphism on the high-dimensional cylinder defined via the monotone recurrence
relation has positive topological entropy.

1. Introduction
In this paper, we study a criterion of positive topological entropy for a class of dynamical
systems which generalizes the class of monotone twist maps on the two-dimensional
cylinder. In fact, we discuss diffeomorphisms defined on the high-dimensional cylinder
via monotone recurrence relations; see [1, §10].

Let 1≤ r ∈ N be a natural number indicating the range of interactions between
particles. Let h ∈ C2(Rr+1, R) satisfy some hypotheses specified in §2. For each
configuration x= (xi ) ∈ RZ, define the formal Lagrangian W (x)=

∑
i∈Z hi (x), where

hi (x)= h(xi , . . . , xi+r ), i ∈ Z.
A monotone recurrence relation is defined by finding a stationary point of W :

∂ j W (x)=
j∑

i= j−r

∂ j hi (x)= 0, j ∈ Z. (1.1)

We call h the generating function of the monotone recurrence relation (1.1). Indeed, for
r = 1, h is the generating function of a monotone twist map; see [6] or [1, §2]. From the
point of view of physical applications, the generating function h describes the interaction
of a particle with its neighborhood and the Lagrangian W denotes the energy of a system
of particles.

By the twist condition of h we can define (see §2 for details) a diffeomorphism ϕh :
R2r
→ R2r from monotone recurrence relation (1.1). Furthermore, by the periodicity
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condition of h we define on the 2r -dimensional cylinder S1
× R2r−1 a diffeomorphism

ϕ̄h , which is a generalization of monotone twist maps.
The main aim of this paper is to discuss a criterion of positive topological entropy

for ϕ̄h .
It is well known that if a diffeomorphism possesses a transversal homoclinic point, then

it has a horseshoe and hence positive topological entropy. If homoclinic points are not
transversal, further criteria are provided in [8] along with analogous results for heteroclinic
points; see also [16], where topologically crossing homoclinic points are considered.

Another way of obtaining positive topological entropy (see [24, Theorem 7.2]) is to
construct an invariant set restricted to which the system is semi-conjugate to the full shift
of N -symbols; see also [14].

A practical approach to create positive topological entropy is to use the concept of anti-
integrability [3]. For example, it was shown [11] by applying the implicit function theorem
that a billiard system generically admits a set of non-degenerate anti-integrable orbits
corresponding bijectively to a topological Markov chain of arbitrarily large topological
entropy.

We remark that the anti-integrable limit method is applicable to those which are far
from integrable systems. However, the diffeomorphisms we are considering may be close
to integrable systems. For example, consider the standard map on the cylinder

(x, y) 7→ (x + y + k sin 2πx, y + k sin 2πx).

The case with large k corresponds to an anti-integrable limit [3], while small k corresponds
to a nearly integrable system. What we are concerned with is, roughly speaking, under
what conditions the generalized standard map with k not necessarily large defined on the
high-dimensional cylinder carries positive topological entropy.

To guarantee positive topological entropy for monotone recurrence relations,
Angenent [1] provided a criterion by showing the existence of two solutions of (1.1)
exchanging rotation numbers.

Assume x1
= (x1

n) and x2
= (x2

n) are two solutions of (1.1). It is said they exchange
rotation numbers if

lim
n→+∞

x1
n

n
≥ ω1, lim

n→−∞

x2
n

n
≥ ω1, lim

n→+∞

x2
n

n
≤ ω0 and lim

n→−∞

x1
n

n
≤ ω0 (1.2)

hold for some ω0 < ω1. For a more general definition, see [1, §6].
A criterion presented in [1] shows that if there exist two solutions of (1.1) exchanging

rotation numbers, then the diffeomorphism ϕ̄h defined by (1.1) has positive topological
entropy; see [1, Theorem 7.1].

For exact area-preserving monotone twist maps Angenent [2] has obtained the following
beautiful theorem.

PROPOSITION. Let A be the annulus S1
× [0, 1], and f : A→ A be an area-preserving

twist homeomorphism of A. Let ρ0 < ρ1 be the rotation numbers of f restricted to the
boundaries. If the topological entropy htop( f ) of f vanishes, then f must have an
invariant circle of rotation number ω, for any ω ∈ (ρ0, ρ1).
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In fact, what Angenent proved in [2] is that if one of the invariant circles of f is missing,
which is equivalent to the existence of a Birkhoff region of instability, then the topological
entropy is positive.

As mentioned in [2], although there is an alternative way of proving the above
proposition by using a result of [10] on the existence of non-Birkhoff periodic orbits,
Angenent gave an ‘elementary’ proof by combining the criterion in [1] and a theorem of
Birkhoff providing finite orbit segments which stay close to the boundaries of a Birkhoff
region of instability.

In fact, for monotone twist maps, Mather’s connecting theorem [17] provides a general
way of constructing two orbits exchanging rotation numbers in a Birkhoff region of
instability.

A compact region on the cylinder is called a Birkhoff region of instability of an exact
area-preserving twist map f if it is f -invariant and its boundaries consist of two invariant
circles and no other invariant circles in between. Let ρ0 and ρ1 denote the rotation numbers
of f restricted to the lower and upper boundaries, respectively.

According to the Aubry–Mather theory, for each ω ∈ (ρ0, ρ1), there is an invariant set
6ω, called the Aubry–Mather set, such that every orbit in 6ω has rotation number ω. If
ω is irrational, then 6ω is a Cantor set. Mather’s connecting theorem [17] says that given
any two Aubry–Mather sets 6ω0 and 6ω1 inside a Birkhoff region of instability, there is
a trajectory α-asymptotic to 6ω0 and ω-asymptotic to 6ω1 . This immediately leads to
the existence of two orbits exchanging rotation numbers and hence positive topological
entropy by Angenent’s criterion [1].

In the present paper, we shall investigate an analogous problem of positive topological
entropy for diffeomorphisms defined on the high-dimensional cylinder via monotone
recurrence relation (1.1).

We remark that for diffeomorphisms on the high-dimensional cylinder there is no
analogue of the Birkhoff region of instability. However, we know that for monotone
twist maps the existence of a Birkhoff region of instability implies the non-existence of
invariant circles with rotation number ω ∈ (ρ0, ρ1), which is equivalent to p0(Mω) 6= R
(see the penultimate paragraph of [6, §4]) for each ω ∈ (ρ0, ρ1), where Mω denotes the
set of minimal energy configurations (also called global minimizers or simply minimizers)
with rotation number ω and p0 denotes the projection p0(x)= x0.

Now if the generating function h satisfies conditions (H1)–(H4) in §2, then we have
the corresponding Aubry–Mather theory for monotone recurrence relation (1.1) [9, 12,
13, 15, 19]: for each ω ∈ R, there exists a Birkhoff minimizer with rotation number ω.
Let Mω denote the set of all Birkhoff minimizers with rotation number ω of monotone
recurrence relation (1.1). Then the generalization of Angenent’s theorem in [2] to
monotone recurrence relation (1.1), which is the main conclusion of this paper, can be
stated as follows.

THEOREM A. If there exist ρ0 < ρ1 such that, for each ω ∈ (ρ0, ρ1), p0(Mω) 6= R, then
the diffeomorphism ϕ̄h defined by (1.1) has positive topological entropy.

We should emphasize that there are at least two essential differences between monotone
twist maps and monotone recurrence relations with long range of interactions (or the
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corresponding high-dimensional cylinder diffeomorphisms). First, if a monotone twist
map has an invariant circle, then the cylinder is divided into two connected components,
each of which is invariant. There is no such property for high-dimensional cylinder
diffeomorphisms. Second, Aubry’s lemma [4] implies that each minimal energy
configuration for twist maps is Birkhoff, but we do not have such a property for general
monotone recurrence relations. In fact, it was observed in [9] that there are minimizers
that are not Birkhoff.

The idea of constructing two solutions of (1.1) exchanging rotation numbers is borrowed
from [23], in which the gradient flow is investigated in configuration space with bounded
action. We should mention that the method in [23] depends heavily on Aubry’s lemma that
two minimizers cross at most once, which we do not have for general monotone recurrence
relations.

In order to make the approach of [23] work for monotone recurrence relations, we shall
first establish the following result: for monotone recurrence relation (1.1), each minimizer
with bounded action is Birkhoff (Theorem 3.15). We remark that by proving such a
conclusion we in fact give as a byproduct an affirmative answer to a question of Blank
in the case of monotone recurrence relations; see the last paragraph of [9, §1]. Note that a
similar question for elliptic partial differential equations on the torus has also been posed
by Bangert; see [7, §8].

Based on this result, we construct in configuration space with bounded action two
solutions of (1.1) exchanging rotation numbers using the method of Slijepčević in [23]
and hence arrive at the conclusion by Angenent’s criterion in [1].

2. Preliminaries
We say that x= (xn) ∈ RZ is a stationary configuration if x is a solution of (1.1). We denote
by S the set of all stationary configurations, S+ the set of all configurations x such that
∂i W (x)≥ 0 for each i ∈ Z, and S− the set of all configurations x satisfying ∂i W (x)≤ 0
for each i ∈ Z.

A partial order ‘≤’ in RZ is defined as follows. For x= (xn) and y= (yn) ∈ RZ, we
say that x≤ y if xn ≤ yn for all n ∈ Z. We say that x< y if x≤ y and x 6= y. We say that
x� y if xn < yn for all n ∈ Z. Two configurations x 6= y are said to be strictly ordered if
x� y or y� x.

We say that x<α y (x<ω y, x>α y, x>ω y), if there exists n0 such that xn ≤ yn for
each n < n0 (xn ≤ yn for each n > n0, etc.).

Let {σk,l | k, l ∈ Z} denote the translational group on RZ defined by

(σk,lx)i = xi−k + l.

A configuration x= (xn) is said to be (p, q)-periodic if σq,px= x, where q, p ∈ Z.

Definition 2.1. A configuration x ∈ RZ is said to be Birkhoff if for all k, l ∈ Z, either
σk,lx� x or σk,lx= x or σk,lx� x.

Each Birkhoff configuration x= (xn) has a rotation number ω = limn→∞ xn/n.
Furthermore, it follows that

|xn − xk − (n − k)ω| ≤ 1 for all n, k ∈ Z. (2.1)
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We assume that the generating function h satisfies the following hypotheses.

(H1) h(ξ1 + 1, . . . , ξr+1 + 1)= h(ξ1, . . . , ξr+1).
(H2) max1≤i≤ j≤r+1 ‖∂i, j h‖sup ≤ K .
(H3) h is bounded from below and h(ξ1, . . . , ξr+1)→∞ if |ξ2 − ξ1| →∞.
(H4) Twist condition:

∂1,kh(ξ1, . . . , ξr+1)≤−λ < 0 for all 2≤ k ≤ r + 1,

∂i,kh(ξ1, . . . , ξr+1)≤ 0 for k 6= i.

If we denote h j (x)= h(x j , . . . , x j+r ), then the twist condition implies that

∂i,kh j ≤ 0 for k 6= i and ∂i,khi ≤−λ < 0 for k = i + 1, . . . , i + r, (2.2)

which will be frequently used in this paper. Let

3(x j−r , . . . , x j , . . . , x j+r )=−∂ j W (x)=−
j∑

i= j−r

∂ j hi (x), j ∈ Z.

Then (1.1) is equivalent to

3(x j−r , . . . , x j , . . . , x j+r )= 0, j ∈ Z.

The twist condition (2.2) ensures that the function 3 is strictly increasing with respect to
all its variables except possibly x j . So if (x j−r , . . . , x j , . . . , x j+r−1) is given, we can
solve (1.1) for x j+r . In this way we define a continuous map ϕh from R2r to R2r by

ϕh(x j−r , . . . , x j+r−1)= (x j−r+1, . . . , x j+r ). (2.3)

Similarly we can solve (1.1) for x j−r if the other variables are given. Thus ϕh is a
diffeomorphism of R2r onto itself. Taking into account the periodicity condition (H1) of h,
we consider R2r/Z which is homeomorphic to the high-dimensional cylinder S1

× R2r−1.
Furthermore, we have

ϕh(xi−r + 1, . . . , xi+r−1 + 1)= ϕh(xi−r , . . . , xi+r−1)+ 1,

from which we define a map ϕ̄h : S1
× R2r−1

→ S1
× R2r−1, a generalization of

monotone twist maps on the cylinder.
We denote by B = [i0 − r, i1] an arbitrary finite connected component of Z with i1 ≥ i0,

int(B)= [i0, i1] the interior of B, B̄ = [i0 − r, i1 + r ] its closure, ∂B = B̄ \ int(B) the
boundary of B, ∂B− = [i0 − r, i0 − 1], ∂B+ = [i1 + 1, i1 + r ], and |B| the number of
elements in B. Let

WB(x)=
∑
i∈B

hi (x),

which is a function of coordinates of x with indices in B̄. Denote by supp(v) the support
of v= (vn), i.e., supp(v)= {n | vn 6= 0}.

Definition 2.2. A configuration x is called a minimizer if WB(x)≤WB(x+ v) for all finite
connected component B ⊂ Z and all v with supp(v)⊂ int(B).

https://doi.org/10.1017/etds.2014.4 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2014.4


Positive topological entropy for monotone recurrence relations 1885

We remark that if x is a minimizer, so is σk,lx for all (k, l) ∈ Z2. Meanwhile, the set
of all minimizers is closed with respect to the product topology. Each minimizer is a
stationary point of W . We denote by Mp,q the set of (p, q)-periodic Birkhoff minimizers,
and by Mω the set of Birkhoff minimizers with rotation number ω. Then from the Aubry–
Mather theory for monotone recurrence relations [9, 12, 13, 15, 19], we know that under
conditions (H1)–(H4), the following conclusions hold.

LEMMA 2.3. Mp,q 6= ∅ for p, q ∈ Z (q 6= 0) and Mω 6= ∅ for each ω ∈ R.

Definition 2.4. For x, y ∈ RZ, we call a connected component D ⊂ Z the crossing domain
of x and y if D is the minimal connected component such that x< y or x> y always holds
on each component of Z\D.

We say that x= (xn) and y= (yn) cross on B ⊂ Z if there exist i, j ∈ B such that
xi > yi and x j < y j . They do not cross on B if xn − yn ≥ 0 or xn − yn ≤ 0 for all n ∈ B.
So the crossing domain D is the minimal connected component of Z such that x and y do
not cross on each component of Z\D.

We need to study the following gradient dynamics:

ẋi =−∂i W (x)=−
i∑

j=i−r

∂i h j (x), i ∈ Z, (2.4)

with initial conditions in Banach space

X =

{
x ∈ RZ

∣∣∣∣ ‖x‖ =∑
n∈Z

|xn|

2|n|
<∞

}
.

Condition (H2) ensures the existence of a unique solution x(t) of (2.4) with x(0) ∈X for
all t ∈ R so that we can define a flow {φt

}t∈R on X from (2.4). The periodic condition
(H1) makes it possible to consider {φt

} in X /〈1〉, where 1 denotes an element in X with
all its components equal to 1. Moreover, φt commutes with σk,l :

φt (σk,lx)= σk,l(φ
t x) for all t ∈ R, and k, l ∈ Z. (2.5)

The twist condition (H4) guarantees the monotonicity of φt for t > 0, as described in the
following lemmas.

LEMMA 2.5. Assume that x(t) and y(t) are two solutions of (2.4) with x(0)≤ y(0). Then
x(t)≤ y(t) for all t > 0. Furthermore, if x(0) < y(0), then x(t)� y(t) for all t > 0.

LEMMA 2.6. Assume that x(t) and y(t) are two solutions of (2.4) with x(0)= x= (xi )

and y(0)= y= (yi ) satisfying xi ≤ yi for i ≥ i0 (or i ≤ i0) and that xi0−k(t)≤ yi0−k(t)
(or xi0+k(t)≤ yi0+k(t)) for all k ∈ {1, 2, . . . , r} and t ∈ [0, T ]. Then xi (t)≤ yi (t) for
i ≥ i0 (or i ≤ i0) and t ∈ [0, T ].

LEMMA 2.7. The solution x(t) of (2.4) with x(0) ∈ S− (or x(0) ∈ S+) is increasing (or
decreasing) for t ≥ 0.
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We remark that the conclusions of Lemma 2.5 are standard results for gradient systems
like (2.4) with twist condition (H4); see [15, Lemma 4.3], [19, Theorem 6.2], or [12,
Lemmas 1 and 2]. The conclusions of Lemma 2.6 describe the monotonicity of rays, the
proof of which is exactly the same as that of Lemma 2.5; see [22] for the proof of nearest
neighbor coupling case. The proof of Lemma 2.7 is also the same as Lemma 2.5 and hence
omitted here.

Definition 2.8. We say that a configuration x= (xi ) ∈ RZ has bounded action if there
exists C > 0, such that |xi − xi−1| ≤ C for all i ∈ Z.

Let

BC = {x= (xi ) ∈ RZ
| |xi − xi−1| ≤ C, i ∈ Z} and B =

⋃
C≥0

BC .

LEMMA 2.9. The product topology is equivalent to the topology induced by the norm ‖ · ‖
on BC for each C > 0.

Proof. It suffices to show that if xn, x∗ ∈BC and xn
→ x∗ pointwise, then ‖xn

− x∗‖→ 0
as n→∞. Suppose that limn→∞ xn

i = x∗i for all i ∈ Z. We may assume that |xn
0 − x∗0 | ≤

1. Since xn, x∗ ∈BC , we have

|xn
i − x∗i | ≤ 2C |i | + 1 for all i ∈ Z.

The convergence of the series
∑

i∈Z(2C |i | + 1)/2|i | implies that for every ε > 0 there is
i0 > 0 such that ∑

|i |>i0

2C |i | + 1
2|i |

< ε/2.

Meanwhile, there exists N ∈ N such that for n > N ,

|xn
i − x∗i |< ε/6 for all |i | ≤ i0.

It follows that for all n > N ,

‖xn
− x∗‖ =

∑
|i |>i0

|xn
i − x∗i |
2 |i |

+

∑
|i |≤i0

|xn
i − x∗i |
2 |i |

< ε/2+ ε/2= ε. �

LEMMA 2.10. For l ∈ N, Bl ∩ S− (or Bl ∩ S+) is forward-invariant for φt (t > 0).

Proof. Assume that x(t) is a solution of (2.4) with x(0)= x ∈Bl . It suffices to show
that x(t) ∈Bl for all t > 0 since S− and S+ are forward-invariant for φt with t ≥ 0 by
Lemma 2.7. Indeed, x ∈Bl implies that −l ≤ xi+1 − xi ≤ l for all i ∈ Z, i.e., σ−1,−lx≤
x≤ σ−1,lx. From (2.5) and Lemma 2.5 we have

φt (σ−1,−lx)≤ φt (x)≤ φt (σ−1,lx) ⇒ −l ≤ xi+1(t)− xi (t)≤ l for t > 0,

implying that x(t) ∈Bl for all t > 0. �

Therefore, we consider in §4 the dynamics of (2.4) in BC with product topology. We
know from Tychonov’s theorem that each E ⊂BC is compact provided p0(E) is bounded
and E is closed.

A criterion for positive topological entropy has been presented by Angenent; see
[1, Theorem 7.1].
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PROPOSITION 2.11. Let the monotone recurrence relation (1.1) have two solutions
satisfying (1.2). Then the map ϕ̄h defined by (1.1) has positive topological entropy.

3. Minimizers with bounded action
In this section, we investigate some properties of minimizers, especially those for
minimizers with bounded action.

We remark that the twist condition (H4) is weaker than that in [20] in that we require
∂i,kh ≤ 0 while in [20] it is assumed that ∂i,kh ≡ 0, for i 6= 1, k 6= 1, and i 6= k. So we
cannot simply apply directly the conclusions of [20], especially the dichotomy theorem
for minimizers. Nevertheless, inspired by the ideas of Mramor and Rink in [20, 21] and
Bangert in [5, 6] (we even borrow most of the notation from [20]) we obtain the conclusion
we need that a minimizer with bounded action is Birkhoff.

LEMMA 3.1. Assume that x= (xn) and y= (yn) ∈ RZ have bounded action. Then there
exists a constant d > 0 such that for each finite connected component B ⊂ Z, it follows
that

|WB(x)−WB(y)| ≤ d
∑
k∈B̄

|xk − yk |.

Moreover, if x= y on int(B), then

|WB(x)−WB(y)| ≤ d
∑

k∈∂B

|xk − yk |. (3.1)

Proof. Assume that x, y ∈BC for some C > 0. Then

|WB(x)−WB(y)| ≤
∑
i∈B

|hi (x)− hi (y)| =
∑
i∈B

∣∣∣∣∫ 1

0

d
ds

hi (sx+ (1− s)y) ds
∣∣∣∣

≤

∑
i∈B

i+r∑
k=i

∫ 1

0
|∂khi (sx+ (1− s)y)| ds · |xk − yk |.

Taking into account the fact that sx+ (1− s)y ∈BC and hypothesis (H1), we obtain a
constant d̃ > 0 depending on C and r such that |∂khi (sx+ (1− s)y)| ≤ d̃, and hence

|WB(x)−WB(y)| ≤ d
∑
k∈B̄

|xk − yk |,

where d = (r + 1)d̃ . �

Definition 3.2. For x, y ∈ RZ, define M , m ∈ RZ by Mi =max{xi , yi } and mi =

min{xi , yi }. We call

W c
B(x, y)=WB(x)+WB(y)−WB(M)−WB(m)

the crossing energy of x and y on B.

Let α = M − x, β = m − x. Then αi ≥ 0, βi ≤ 0 and αiβi = 0 for all i ∈ Z.

LEMMA 3.3. For x, y ∈ RZ and an arbitrary finite connected component B ⊂ Z, we have
W c

B(x, y)≥ 0. Moreover, if x and y cross on a connected component B1 ⊂ Z such that
|B1| ≤ r + 1, then W c

B(x, y) > 0 for each B̄ ⊃ B1.

https://doi.org/10.1017/etds.2014.4 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2014.4


1888 L. Guo et al

Proof. Note that y= x+ α + β. Then it follows from (2.2) that

W c
B(x, y) = WB(x+ α + β)−WB(x+ α)−WB(x+ β)+WB(x)

=

∑
i∈B

∫ 1

0

[
d
dt

hi (x+ α + tβ)−
d
dt

hi (x+ tβ)
]

dt

=

∑
i∈B

∫ 1

0

∫ 1

0

d
dt

d
ds

hi (x+ sα + tβ) ds dt

=

∑
i∈B

i+r∑
j,k=i

∫ 1

0

∫ 1

0
∂ j,khi (x+ sα + tβ) ds dt · (α jβk)

≥

∑
i∈B

i+r∑
j=i

∫ 1

0

∫ 1

0
∂i, j hi (x+ sα + tβ) ds dt · (αiβ j + α jβi )

≥ −λ
∑
i∈B

i+r∑
j=i

(αiβ j + α jβi ),

implying that W c
B(x, y)≥ 0.

From the above proof, it follows that W c
B(x, y) > 0 whenever there exist i ∈ B and

j ∈ {i + 1, i + 2, . . . , i + r} such that αiβ j < 0 or α jβi < 0, i.e., x and y cross on some
B1 ⊂ B̄ with |B1| ≤ r + 1. �

LEMMA 3.4. Let B ⊂ Z be a finite connected component and x and y be two solutions
of (1.1). Then x� y on int(B) if x< y on B̄.

Proof. Assume that the conclusion is not true, i.e., αi = 0 for some i ∈ int(B). Then,
by (2.2),

0 =
i∑

j=i−r

∂i h j (y)− ∂i h j (x)=
i∑

j=i−r

∫ 1

0

d
dt
∂i h j (ty+ (1− t)x) dt

=

i∑
j=i−r

j+r∑
k= j

∫ 1

0
∂i,kh j (ty+ (1− t)x) dt · (yk − xk)

≤

i+r∑
k=i

∫ 1

0
∂i,khi (ty+ (1− t)x) dt · αk

+

i−1∑
j=i−r

∫ 1

0
∂ j,i h j (ty+ (1− t)x) dt · α j .

From the assumption αi = 0 and again the twist condition (2.2) and αk ≥ 0 for k 6= i , it
follows that αk = 0 for all k = i − r, i − r + 1, . . . , i + r . By induction, we derive that
x= y on B̄, in contradiction to the assumption x< y on B̄. �

Lemma 3.4 immediately leads to the following conclusion.

LEMMA 3.5. Assume that x, y ∈ S and x< y. Then x� y.
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Definition 3.6. Let x, y ∈ RZ and B ⊂ Z. Define

M B(x)= M on int (B) and M B(x)= x on Z \ int (B),

m B(x)= m on int (B) and m B(x)= x on Z \ int (B),

M B(y)= M on int (B) and M B(y)= y on Z \ int (B),

m B(y)= m on int (B) and m B(y)= y on Z \ int (B).

Note that M =max{x, y} and m =min{x, y}. Then it is obvious that

M =max{M B(x), m B(y)} and m =min{M B(x), m B(y)}. (3.2)

LEMMA 3.7. Assume that x and y are minimizers. Then for each finite connected
component B ⊂ Z, it follows that

W c
B(x, y)≤W c

B(M
B(x), m B(y)) and W c

B(x, y)≤W c
B(M

B(y), m B(x)). (3.3)

Proof. Because both x and y are minimizers, it follows that for each finite connected
component B ⊂ Z,

WB(x)+WB(y)≤WB(M B(x))+WB(m B(y))

and
WB(x)+WB(y)≤WB(M B(y))+WB(m B(x)).

Subtracting WB(M)+WB(m) on both sides of the above two inequalities, we obtain (3.3)
by (3.2). �

LEMMA 3.8. Assume that x and y are minimizers. Let k0 ≤ k1 be integers such that xi ≤ yi

for all i ∈ [k0 − r, k0 − 1] ∪ [k1 + 1, k1 + r ]. Then either x� y or x= y on [k0, k1].

Proof. Let B = [k0 − r, k1]. Then int(B)= [k0, k1] and B̄ = [k0 − r, k1 + r ]. The
assumption implies that M B(y)= M and m B(x)= m on B̄. From Lemma 3.3 it follows
that

WB(x)+WB(y)≥WB(m)+WB(M)=WB(m B(x))+WB(M B(y)).

On the other hand, we have WB(x)≤WB(m B(x)) and WB(y)≤WB(M B(y)) since both x
and y are minimizers. Thus

WB(x)=WB(m B(x)) and WB(y)=WB(M B(y)),

implying that both m B(x) and M B(y) are minimizers because

WB′(x)=WB′(m B(x)) and WB′(y)=WB′(M B(y)),

for each finite connected set B ′ ⊃ B. Consequently, it follows from Lemma 3.5 that x=
m B(x) and M B(y)= y and hence x≤ y on B̄, implying by Lemma 3.4 that x� y or x= y
on int(B)= [k0, k1]. �

Lemma 3.8 immediately leads to the following conclusions which we state without
proof.

LEMMA 3.9. If the crossing domain of two minimizers x and y is bounded and non-empty,
then x<α y implies x>ω y, or x>α y implies x<ω y.
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LEMMA 3.10. If the crossing domain of two minimizers x and y is unbounded, then there
exist at most two disjoint connected components B1 and B2 with |B1| ≥ r and |B2| ≥ r
such that x and y do not cross on B1 and on B2.

We say that x= (xn) and y= (yn) are ω-asymptotic (α-asymptotic) if |xn − yn| → 0 as
n→+∞ (−∞). For n ∈ Z, define B(n, r)= {i + n | i ∈ Z and − r ≤ i ≤ r}.

Definition 3.11. Two configurations x= (xn) and y= (yn) are called almost ω-asymptotic
(α-asymptotic) if there exists a subsequence {nk} ⊂ Z+ (Z−), such that

lim
k→∞

|xnk+l − ynk+l | = 0, l ∈ B(0, r).

x and y are said to be almost asymptotic if they are both almost α-asymptotic and almost
ω-asymptotic.

LEMMA 3.12. Assume that x= (xn) and y= (yn) are minimizers with bounded action,
and that one of the following three conditions is satisfied:
(1) x and y are almost asymptotic;
(2) x<α (or>α) y and x and y are almost ω-asymptotic;
(3) x<ω (or>ω) y and x and y are almost α-asymptotic.
Then x and y are strictly ordered.

Proof. Assume that x and y are almost asymptotic. Then there exist {nk} ⊂ Z+ and {n̄k} ⊂

Z− such that

lim
k→+∞

|xnk+l − ynk+l | = 0 and lim
k→+∞

|xn̄k+l − yn̄k+l | = 0, l ∈ B(0, r). (3.4)

We claim that both M =max{x, y} and m =min{x, y} are minimizers.
Indeed, if M is not a minimizer (the proof for the case that m is not a minimizer is

similar), then there exist a finite connected set A ⊂ Z and v ∈ RZ with supp(v)⊂ int(A)
such that for all B ⊃ A,

WB(M + v)=WB(M)− δ, (3.5)

for some δ > 0. Let Bk = [n̄k − r, nk] ∩ Z. Then A ⊂ Bk for k large enough. From
Lemma 3.3 and (3.5) it follows that

WBk (M + v)+WBk (m)+ δ ≤WBk (x)+WBk (y).

Meanwhile, it is easy to check by (3.1) and (3.4) that

lim
k→+∞

WBk (M)−WBk (M
Bk (x))= lim

k→+∞
WBk (m)−WBk (m

Bk (y))= 0, (3.6)

implying the existence of N ∈ N such that for all k > N ,

|WBk (M + v)−WBk (M
Bk (x)+ v)|< δ/3 and |WBk (m)−WBk (m

Bk (y))|< δ/3.

Consequently, taking large k, we have

WBk (M
Bk (x)+ v)+WBk (m

Bk (y)) < WBk (x)+WBk (y),

in contradiction to the assumption that both x and y are minimizers.
Therefore, both M and m are minimizers and hence either x= M or y= M , implying

that x and y are strictly ordered.
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Assume that condition (2) is satisfied. Assume also that x<α y and x and y are almost
ω-asymptotic. Then there exists {nk} ⊂ Z+ such that

lim
k→+∞

|xnk+l − ynk+l | = 0, l ∈ B(0, r).

Let Bk = [−nk, nk] ∩ Z. Then we have by (3.1) that

lim
k→+∞

WBk (M)−WBk (M
Bk (y))= lim

k→+∞
WBk (m)−WBk (m

Bk (x))= 0.

The rest of the proof is similar to that of case (1). The proof for condition (3) is similar to
condition (2) and is omitted. �

LEMMA 3.13. If the crossing domain D of two minimizers x and y with bounded action is
unbounded, then there exists ε0 > 0 such that W c

B(n,4r)(x, y)≥ ε0 for each n ∈ D.

Proof. If this is not true, then there exists a sequence {nk} ⊂ D such that

lim
k→+∞

W c
B(nk ,4r)(x, y)= 0.

Without loss of generality we may assume that nk→+∞ as k→+∞. Choosing
lk ∈ Z such that (σ−nk ,lk x)0 = xnk + lk ∈ [0, 1], we deduce from Tychonov’s theorem that
there are convergent (in the sense of product topology) subsequences of {σ−nk ,lk x} and
{σ−nk ,lk y}, not relabeled, such that

lim
k→+∞

σ−nk ,lk x= x̄ and lim
k→+∞

σ−nk ,lk y= ȳ.

Note that x̄= (x̄n) and ȳ= (ȳn) are minimizers and that

W c
B(nk ,4r)(x, y)=W c

B(0,4r)(σ−nk ,lk x, σ−nk ,lk y).

It then follows that W c
B(0,4r)(x̄, ȳ)= 0.

If x̄ 6= ȳ, then x̄n − ȳn changes sign at most once for n ∈ B(0, 4r). Indeed, from
Lemma 3.3 we know that for each connected component B ⊂ B(0, 4r) with |B| = r ,
x̄n − ȳn does not change sign for all n ∈ B. As a consequence of Lemma 3.8, we conclude
that x̄n − ȳn changes sign at most once for n ∈ B(0, 4r). This implies the existence of a
connected component B1 ⊂ B(0, 4r) such that |B̄1| ≥ 3r and x̄ and ȳ do not cross on B̄1,
i.e., x̄≤ ȳ or ȳ≤ x̄ on B̄1. From Lemma 3.4 we derive that x̄� ȳ or x̄� ȳ on int(B1)

since x̄ 6= ȳ on B̄1. Consequently, for k sufficiently large, we have σ−nk ,lk x� σ−nk ,lk y or
σ−nk ,lk x� σ−nk ,lk y on int(B1) and hence x� y or x� y on infinitely many intervals with
length no less than r , in contradiction to Lemma 3.10.

If x̄= ȳ, then xnk+l − ynk+l → 0 as k→+∞ for each l ∈ Z, implying that x and y are
almost ω-asymptotic. If x<α y or x>α y, then Lemma 3.12 leads to the conclusion that
x and y are strictly ordered. Otherwise we may take a sequence {n′k} ⊂ D with n′k→−∞
as k→+∞ and l ′k ∈ Z such that

lim
k→+∞

W c
B(n′k ,4r)(x, y)= 0, lim

k→+∞
σ−n′k ,l

′
k
x= x′, and lim

k→+∞
σ−n′k ,l

′
k
y= y′.

If x′ 6= y′, then we obtain a contradiction as above. If x′ = y′, we derive that x and y
are almost α-asymptotic, and hence, by the fact that x and y are almost ω-asymptotic
shown above and by Lemma 3.12, that x and y are strictly ordered, which contradicts the
assumption. �
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LEMMA 3.14. The crossing domain of two minimizers x and y with bounded action is
bounded.

Proof. Assume that the crossing domain D of x and y is unbounded. For each bounded
connected component B ⊂ Z, we have by Lemma 3.7 that

W c
B(x, y)≤W c

B(M
B(x), m B(y)). (3.7)

Note that both x and y have bounded action, i.e., there is a constant C > 0 such that |xn −

xn−1| ≤ C and |yn − yn−1| ≤ C for n ∈ Z. Then |xn − yn| ≤ 2rC for n ∈ ∂B since x and
y cross on ∂B− and on ∂B+ by Lemma 3.10. From (3.1) we have

W c
B(M

B(x), m B(y)) = WB(M B(x))−WB(M)+WB(m B(y))−WB(m)

≤ 2d
∑

n∈∂B

|xn − yn| ≤ 2d · 2r · 2rC,

and hence the right-hand side of (3.7) is bounded independently of the choice of B. On
the other hand, we may choose B large enough so that the left-hand side of (3.7) is large
enough because of Lemma 3.13. This is a contradiction. �

THEOREM 3.15. If x is a minimizer with bounded action, then x is Birkhoff.

Proof. Assuming that k, l ∈ Z, we compare x with σk,lx. According to Lemmas 3.14
and 3.9, we may assume that σk,lx<α x and σk,lx>ω x (the cases σk,lx>α x and σk,lx<ω
x can be treated similarly). Without loss of generality we may assume that k > 0 (k = 0 is
trivial and k < 0 is analogous).

There exist i0, i1 ∈ Z such that

(σk,lx)i ≤ xi for i ≤ i0 and (σk,lx)i ≥ xi for i ≥ i1,

i.e.,
xi−k + l ≤ xi for i ≤ i0 and xi ≥ xi+k − l for i ≥ i1 − k,

implying
n ∈ N 7→ (σ n

k,lx)i = xi−nk + nl is non-increasing for i ≤ i0

and
n ∈ N 7→ (σ n

−k,−lx)i = xi+nk − nl is also non-increasing for i ≥ i1 − k.

From Lemma 2.3 we obtain a periodic Birkhoff minimizer x̄ ∈Ml,k such that x̄i−k + l =
x̄i for i ∈ Z.

According to Lemma 3.9 we have two cases, either x̄<α x or x̄<ω x (x̄= x is trivial).
We assume that x̄<α x (the other case can be treated similarly), i.e., x̄i ≤ xi for i ≤ i−1 ≤

i0. Consequently, the sequence {xi−nk + nl} is non-increasing and bounded below by
x̄i−nk + nl = x̄i . Thus

x̃i = lim
n→+∞

xi−nk + nl

exists and x̃i−k + l = x̃i for i ≤ i−1. From the periodicity of (x̃i )i≤i−1 we conclude that
both x and σk,lx are α-asymptotic to (x̃i )i≤i−1 and hence x and σk,lx are α-asymptotic. It
then follows from Lemma 3.12 that x is Birkhoff. �
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4. Foliation of Birkhoff minimizers
Following Moser [18], we say that Mω forms a foliation if p0(Mω)= R, otherwise we say
that it constitutes a lamination. In this section, we shall show that if there is an unbounded
solution of (2.4) in B ∩ S− (or B ∩ S+), then we can construct a foliation Mω for some
ω ∈ R. We should remark that the idea is borrowed from Slijepčević [23]. The proof
of Theorem 4.3 in [23] can be adapted, almost word for word, to the case of monotone
recurrence relations. So the proof of Theorem 4.5 is given only for completeness.

We should mention that the definition of strictly ordered curves in this paper is different
from that of rotational invariant circles of [23] in that we do not require translation
invariance. The second difference is that in the setting of twist maps [23], each stationary
solution intersects a circle configuration at most once (see [23, Lemma 2.1]), a property
like Aubry’s lemma which we do not have for monotone recurrence relations. The third
difference is that for high-dimensional cylinder maps induced from monotone recurrence
relations there is no concept analogous to Birkhoff’s region of instability for twist maps.
The difficulties resulting from these differences are overcome by using Theorem 3.15, the
main result of §3.

We always assume the product topology on B by Lemma 2.9.

Definition 4.1. The image ` of a continuous function γ : R→BC ∩ S (C > 0) is said to
be a strictly ordered curve if γ is strictly increasing, i.e., γ (s1)� γ (s2) for s1 < s2, and
{γ0(s) | s ∈ R} = R.

LEMMA 4.2. Each element in a strictly ordered curve is a minimizer.

Proof. Assume that `⊂BC ∩ S is a strictly ordered curve, γ its parametrization with γ j

the j th projection, x= (xi ) ∈ `, and B ⊂ Z a finite connected component.
Assume that x∗ = (x∗i )i∈B̄ is a minimal segment such that x∗i = xi for i ∈ ∂B and

WB(x∗ + v)≥WB(x∗) for all v ∈ RZ with supp(v)⊂ int(B). The existence of x∗ is
guaranteed by hypothesis (H3).

Let x̄= γ (s̄) ∈ `, where s̄ =max{s ∈ R | γ j (s)≤ x∗j , j ∈ B̄}. The existence of s̄ is
ensured by the facts that γ0 is surjective, γ (s) ∈BC for s ∈ R, and γ is continuous. Note
that B̄ is finite and x̄ ∈ `. Then there exists i ∈ B̄ such that x̄i = x∗i . We distinguish two
cases.
(i) If i ∈ ∂B, then x̄i = x∗i = xi . Since γ is strictly increasing, then x= x̄, and hence

xn = x̄n ≤ x∗n for n ∈ B̄.
(ii) If i ∈ int(B), then ∂i W (x∗)= 0 because x∗ = (x∗i )i∈B̄ is a minimal segment.

Consequently, for each i ∈ int(B),

0 = ∂i W (x∗)− ∂i W (x̄)=
i∑

j=i−r

∂i h j (x∗)− ∂i h j (x̄)

=

i∑
j=i−r

∫ 1

0

d
dτ
∂i h j (τx∗ + (1− τ)x̄) dτ

=

i∑
j=i−r

j+r∑
k= j

∫ 1

0
∂i,kh j (τx∗ + (1− τ)x̄) dτ · (x∗k − x̄k).
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Noting that x∗i = x̄i , ∂i,kh j ≤ 0 for k 6= i , and ∂i,khi < 0 for k = i + 1, we claim that
x∗i+1 = x̄i+1. Then by induction we derive that there exists j ∈ ∂B such that x∗j = x̄ j

and hence, by case (i), xn ≤ x∗n for n ∈ B̄.
Analogously we have xn ≥ x∗n for n ∈ B̄ and hence xn = x∗n for n ∈ B̄, implying that x

is a minimizer since B is arbitrary. �

Remark. If there exists a strictly ordered curve `, then each x ∈ ` is a minimizer with
bounded action, and hence it is Birkhoff by Theorem 3.15 and has a rotation number.
Since all elements in ` have the same rotation number ω (otherwise they will intersect), it
follows that `⊂Mω, and p0(Mω)= R since p0(`)= R.

In fact, in order to define a strictly ordered curve, it is enough to assume that p0(`)= R
and that γ is strictly increasing.

LEMMA 4.3. Assume that γ : R→BC ∩ S is strictly increasing and {γ0(s) | s ∈ R} = R.
Then `= {γ (s) | s ∈ R} is a strictly ordered curve.

Proof. It suffices to verify the continuity of γ . Choose an increasing sequence {si } ⊂ R
such that si → s as i→∞. Then γ (si ) is an increasing sequence bounded above by
γ (s) and hence γ (si )→ x ∈ S. Since x= (xn)≤ γ (s), we have x0 = γ0(s) due to the
assumption that γ0 is surjective. It follows from Lemma 3.5 that x= γ (s). �

Assume that u(t) (t > 0) is a solution of (2.4) with u(0) ∈BC ∩ S− for some C ∈ N.
Then from Lemma 2.7 we know that u(t) is increasing for t ≥ 0. Moreover, from
Lemma 2.10 we deduce that u(t) has bounded action for all t ≥ 0. If {u(t)}t≥0 is bounded,
then y= limt→∞ u(t) is an equilibrium state of (2.4), i.e., a solution of (1.1). If it is
unbounded, we can nevertheless obtain an equilibrium state of (2.4). In fact, we can
furthermore construct a strictly ordered curve from the unbounded solution u(t). To this
end, we need a lemma which has been proved in [23, §4].

Let D =BC ∩ S− or D =BC ∩ S+ for some C ∈ N. We denote by F (I,D), where
I is an interval in R, the topological space of all increasing functions f : I →D with the
induced product topology. Let 4 denote a family of subsets Ds ⊂D , s ∈ I . Define

F (4)= { f | f : I →D, f (s) ∈Ds, s ∈ I, and f is increasing} ⊂F (I,D).

LEMMA 4.4. If 4 is a family of compact sets, then F (4) is sequentially compact.

THEOREM 4.5. Assume that u(0) ∈BC ∩ S− for some C ∈ N and that u(t) (t ≥ 0) is a
unbounded solution of (2.4). Then there exist a sequence of times tk , and nk, lk ∈ Z, such
that limk→∞ σnk ,lk u(tk)= z. Moreover, there exists a strictly ordered curve `⊂BC ∩ S
such that z ∈ `.

Proof. It follows from Lemma 2.10 that u(t) ∈BC , i.e., |ui+1(t)− ui (t)| ≤ C for all i ∈
Z and t ≥ 0. Taking into account the periodicity of h, we deduce the existence of b > 0
such that

|∂i h j (u(t))| ≤ b, |u̇i (t)| ≤ b, and |üi (t)| ≤ b for all i, j ∈ Z and t ≥ 0. (4.1)

https://doi.org/10.1017/etds.2014.4 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2014.4


Positive topological entropy for monotone recurrence relations 1895

Choose a sequence of times {tk} and {lk} ⊂ Z such that

u(tk)+ lk · 1
4
= û(tk)→ y= (yi ) as k→∞. (4.2)

Furthermore, we take a subsequence of {tk} if necessary, not relabeled, such that |tk+1 −

tk | ≥ 2 for k ∈ N, and

|ûi (tk+1)− ûi (tk)| ≤ δk ≤ 1/k for i ∈ [−k2
− r, k2

+ r ], (4.3)

where δk > 0 is chosen such that for j ∈ [−k2
− r, k2

],

|h j (u(tk+1))− h j (u(tk))| = |h j (û(tk+1))− h j (û(tk))| ≤
b

2k2 + r + 1
. (4.4)

By simple calculations we obtain

k2∑
j=−k2−r

h j (u(tk+1))− h j (u(tk))=
k2∑

j=−k2−r

j+r∑
i= j

∫ tk+1

tk
∂i h j (u(τ )) u̇i (τ ) dτ

=

−k2
−1∑

j=−k2−r

−k2
−1∑

i= j

∫ tk+1

tk
∂i h j (u(τ )) u̇i (τ ) dτ −

k2∑
j=−k2

∫ tk+1

tk
|u̇ j (τ )|

2 dτ

+

k2∑
j=k2−r+1

j+r∑
i=k2+1

∫ tk+1

tk
∂i h j (u(τ )) u̇i (τ ) dτ.

From (4.1), (4.4), and the above calculations we deduce that

k2∑
j=−k2

∫ tk+1

tk
|∂ j W (u(τ ))|2 dτ =

k2∑
j=−k2

∫ tk+1

tk
|u̇ j (τ )|

2 dτ

≤
(2k2
+ r + 1) · b

2k2 + r + 1
+ br

−k2
−1∑

i=−k2−r

[ui (tk+1)− ui (tk)] + br
k2
+r∑

i=k2+1

[ui (tk+1)− ui (tk)].

(4.5)
Now we have two cases.

(i) Assume that {u0(tk+1)− u0(tk) | k ∈ N} is bounded, i.e., {lk − lk+1} is bounded.
Then there exist infinitely many k such that lk − lk+1 = l > 0, and thanks to (4.3), for
each i ∈ [−k2

− r, k2
+ r ],

|ui (tk+1)− ui (tk)− l| ≤ δk ≤ 1/k. (4.6)

Now (4.5) and (4.6) imply that

k2∑
j=−k2

∫ tk+1

tk
|∂ j W (u(τ ))|2 dτ ≤ b + br2(2l + 2)

4
= b1.

As a consequence, we can choose nk ∈ [−k2
− r + k, k2

+ r − k] such that

−nk+k−1∑
j=−nk−k

∫ tk+1

tk
|∂ j W (u(τ ))|2 dτ ≤ b1/k. (4.7)
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It is easy to check by simple calculations that there is a constant b2 > 0 such that for each
j ∈ [−nk − k,−nk + k − 1] and for each t ∈ [tk, tk+1],

|∂ j W (u(t))| ≤ b2 k−1/4, (4.8)

which will be verified in the appendix.
Taking l ′k ∈ Z to replace lk , not relabeled for simplicity, such that

û−nk (tk)= u−nk (tk)+ lk ∈ [0, 1], (4.9)

and zk
= σnk ,lk u(tk) has a convergent subsequence, not relabeled, such that zk

→ z as k→
∞, it is easy to check by (4.8) that z is an equilibrium of (2.4).

To construct a strictly ordered curve, we need to verify the conditions of Lemma 4.4.
Note that u−nk is a strictly increasing function from [0,+∞) to R. Let νk denote its
inverse function, i.e., u−nk (νk(s))= s for s ∈ [u−nk (0),+∞). Define γ k by

γ k(s)= σnk ,lk u(νk(u−nk (tk)+ s)) ∈D,

where
s ∈ [0, u−nk (tk+1)− u−nk (tk)] ⊃ [0, l − 1/k]

by (4.3). Note that by (4.9),

γ k
0 (s)= u−nk (tk)+ s + lk ∈ [û−nk (tk), û−nk (tk+1)− û−nk (tk)+ l] ⊂ [0, l + 1]. (4.10)

Then γ k(s) belongs to a compact set of D by Tychononov’s theorem for each k and s ∈
[0, l). Applying Lemma 4.4, we obtain a convergent subsequence, not relabeled, such
that γ k

→ ξ and ξ : [0, l)→D is increasing. We derive by (4.8) that ξ(s) ∈BC ∩ S for
each s ∈ [0, l). Since ξ0(s)= y0 + s is strictly increasing by (4.2) and (4.10), Lemma 3.5
implies that ξ is strictly increasing.

Defining ξ(l)= lims→l ξ(s), we derive ξ(l)= ξ(0)+ l · 1. So we can extend ξ to R→
BC ∩ S such that ξ is strictly increasing and ξ0 is surjective by (4.10). As a consequence
of Lemma 4.3, `= {ξ(s) | s ∈ R} is a strictly ordered curve and z= ξ(0) ∈ `.

(ii) Assume that {u0(tk+1)− u0(tk) | k ∈ N} is unbounded. Choose a subsequence of
{tk} if necessary, not relabeled, such that lk − lk+1 ≥ k2

+ 2, where lk is the same as (4.2).
Take δk < 1/k such that (4.4), with k2 replaced by k3, holds true for j ∈ [−k3

− r, k3
].

Then we have an inequality similar to (4.5) with k2 replaced by k3, and hence

k3∑
j=−k3

∫ tk+1

tk
|∂ j W (u(τ ))|2 dτ ≤ b + br · 2rdk ≤ b3dk,

where b3 > 0 is a constant and

dk
4
= max

i∈[−k3−r,k3+r ]
|ui (tk+1)− ui (tk)| ≤ lk − lk+1 + 1.

Note that

min
i∈[−k3−r,k3+r ]

|ui (tk+1)− ui (tk)| ≥ lk − lk+1 − 1≥ k2
+ 1≥ 2k.
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Then for each n ∈ [−k3, k3
], we can choose [t ′k, t ′k+1] ⊂ [tk, tk+1] such that un(t ′k+1)−

un(t ′k)= 2k and
k3∑

j=−k3

∫ t ′k+1

t ′k

|∂ j W (u(τ ))|2 dτ ≤ 4b3 k, (4.11)

which will be verified in the appendix.
Therefore, we find nk ∈ [−k3

− r + k, k3
+ r − k] and the corresponding t ′k and t ′k+1,

such that u−nk (t
′

k+1)− u−nk (t
′

k)= 2k and

−nk+k−1∑
j=−nk−k

∫ t ′k+1

t ′k

|∂ j W (u(τ ))|2 dτ ≤
4b3

k
,

which is similar to (4.7) and implies that

|∂ j W (u(t))| ≤ b4 k−1/4, (4.12)

for j ∈ [−nk − k,−nk + k − 1] and t ∈ [t ′k, t ′k+1], where b4 > 0 is a constant. Choose
t̃ ∈ [t ′k, t ′k+1] such that u−nk (t̃)− u−nk (t

′

k)= k and define γ k : [−k, k] →D by

γ k(s)= σnk ,lk u(νk(u−nk (t̃)+ s)),

where lk ∈ Z such that γ k
0 (0) ∈ [0, 1] and νk is the inverse function of u−nk . By

Lemma 4.4 and the fact γ k
0 (s) ∈ [s, s + 1], the sequence γ k has a convergent subsequence,

not relabeled, such that γ k
→ ξ , where ξ : R→D , and ξ(s) ∈ S for s ∈ R by (4.12).

Consequently, `= {ξ(s) | s ∈ R} is a strictly ordered curve, which can be verified
analogously to case (i). �

5. Proof of Theorem A
In this section we construct under the assumption of Theorem A two solutions of (1.1)
exchanging their rotation numbers.

LEMMA 5.1. If x, y ∈ S, then z=max{x, y} ∈ S−.

Proof. Choose i ∈ Z and assume that zi = xi . Thanks to ∂i W (x)= 0 and the twist
condition ∂i,kh j ≤ 0 for i 6= k, we obtain

∂i W (z)=
i∑

j=i−r

∂i h j (z)− ∂i h j (x)=
i∑

j=i−r

∫ 1

0

d
dt
∂i h j (tz+ (1− t)x) dt

=

i∑
j=i−r

j+r∑
k= j

∫ 1

0
∂i,kh j (tz+ (1− t)x) dt · (zk − xk)≤ 0,

implying z ∈ S−. �

LEMMA 5.2. Let ω0 < ω1. Assume that u and v are Birkhoff minimizers with rotation
numbers ω0 and ω1, respectively, and that p0(Mω) 6= R for each ω ∈ [ω0, ω1]. Then the
solution z(t) of (2.4) with z(0)= z=max{u, v} is bounded.
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Proof. We assume that z(t) (t ≥ 0) is unbounded. Applying Theorem 4.5, we choose
sequences tk , nk , and lk , such that

xk
= σnk ,lk z(tk)→ y as k→∞,

where y ∈ `, a strictly ordered curve. Since u ∈Mω0 and v ∈Mω1 , we obtain by (2.1) that
there exist i−1, i0 ∈ Z, such that i−1 < i0 and zi = ui for i ≤ i−1 and zi = vi > ui for all
i ≥ i0. Choose l ′k ∈ Z such that vk

= σnk ,l ′k
v satisfies

vk
i0− j ≥ xk

i0− j , j ∈ {1, . . . , r} and vk
i0
∈ [xk

i0
+ N , xk

i0
+ N + 1] for some N ≥ 2.

(5.1)
We shall prove that vk

i ≥ xk
i for i > i0 and k ∈ N by applying Lemma 2.6. To this end,

we need to verify the following two statements:
(i) vk

i0− j ≥ (σnk ,lk z(t))i0− j , for j ∈ {1, 2, . . . , r} and for all t ∈ [0, tk]. Indeed, by
Lemmas 2.7 and 5.1, we know that z(t) is increasing, i.e., z(t1)≤ z(t2) for 0≤ t1 < t2.
Thus we deduce from (5.1) that

vk
i0− j ≥ xk

i0− j ≥ (σnk ,lk z(t))i0− j for all t ∈ [0, tk].

(ii) vk
i ≥ (σnk ,lk z)i for i ≥ i0. Indeed, since z(t)� v for t > 0 by Lemma 2.5, it follows

from (5.1) that

vk
i0
= (σnk ,l ′k

v)i0 ≥ xk
i0
= (σnk ,lk z(tk))i0 > (σnk ,lk v)i0 .

Since v is Birkhoff,
vk

i ≥ (σnk ,lk v)i for all i ∈ Z. (5.2)

If nk ≤ 0, then from (5.2) we have for i ≥ i0,

vk
i ≥ (σnk ,lk v)i = vi−nk + lk ≥ ui−nk + lk ≥ (σnk ,lk u)i .

If nk > 0 (without loss of generality we may assume that nk > i0 − i−1), then

vk
i0
≥ xk

i0
+ N ≥ (σnk ,lk z)i0 + N = zi0−nk + lk + N = ui0−nk + lk + N .

Combining

−1≤ vk
i − v

k
i0
− (i − i0)ω1 ≤ 1 and − 1≤ ui−nk − ui0−nk − (i − i0)ω0 ≤ 1,

which follow from (2.1) since vk and u are Birkhoff, we derive

vk
i ≥ v

k
i0
+ (i − i0)ω1 − 1≥ ui0−nk + lk + N + (i − i0)ω1 − 1

≥ ui−nk − 1− (i − i0)ω0 + lk + N + (i − i0)ω1 − 1

= (σnk ,lk u)i + (i − i0)(ω1 − ω0)+ N − 2

≥ (σnk ,lk u)i for all i ≥ i0.

So in either case we have
vk

i ≥ (σnk ,lk u)i for i ≥ i0,

and hence, by (5.2),
vk

i ≥ (σnk ,lk z)i for i ≥ i0.
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Now we can apply Lemma 2.6 to obtain

vk
i ≥ (σnk ,lk z(tk))i = xk

i for i ≥ i0,

implying vk >ω xk .
Due to (5.1), we can choose a convergent subsequence of {vk

}, not relabeled, such that
vk
→ v′ as k→∞, and hence v′ >ω y.
Analogously, we can find translates uk of u, such that uk >α xk and uk

→ u′ with
u′ >α y.

Note that u′ and v′ are Birkhoff minimizers with rotation number ω0 and ω1,
respectively. We have that y is Birkhoff by Theorem 3.15 and hence has rotation number
ω with ω0 ≤ ω ≤ ω1. This implies from Theorem 3.15 that the strictly ordered curve `
consists of Birkhoff minimizers with rotation number ω, which contradicts the assumption
that p0(Mω) 6= R. �

Proof of Theorem A. Assume that u and v are Birkhoff minimizers with rotation number
ω0 and ω1, respectively, with ρ0 < ω0 < ω1 < ρ1. Due to Lemma 5.2, the solution z(t)
of (2.4) with the initial condition z=max{u, v} is bounded. Let y= limt→+∞ z(t) and
assume that zi = vi for i ≥ i0. Choose N ∈ N and let v̄= σ0,N v such that v̄i0−k ≥ yi0−k

and hence v̄i0−k ≥ zi0−k(t), for all k ∈ {1, 2, . . . , r} and for all t ≥ 0. Since v̄i ≥ zi = vi

for i ≥ i0, then from Lemma 2.6 we have v̄i ≥ zi (t) for i ≥ i0 and t ≥ 0, and hence v̄i ≥ yi

for i ≥ i0. Consequently, since yi ≥ vi for i ≥ i0, we derive

ω1 = lim
i→+∞

vi

i
≤ lim

i→+∞

yi

i
≤ lim

i→+∞

v̄i

i
= ω1.

Analogously we have limi→−∞ yi/ i = ω0.
If we assume that z′ =min{u, v} ∈ S+ and z′(t) is a solution of (2.4) with z′(0)= z′,

then z′(t) is decreasing and bounded and we obtain a solution y′ = limt→∞ z′(t) of (1.1)
with limi→+∞ y′i/ i = ω0 and limi→−∞ y′i/ i = ω1.

Therefore, we have constructed two solutions of (1.1). y and y′. exchanging rotation
numbers, i.e., satisfying (1.2), and hence we arrive at the conclusion by Proposition 2.11. �
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A. Appendix
In this appendix we verify (4.8) and (4.11). The notation is the same as in the proof of
Theorem 4.5.

Proof of (4.8). If we denote f (t)= |∂ j W (u(t))|2 = |u̇ j (t)|2 ≥ 0 for j ∈ [−nk − k,
−nk + k − 1], then ∫ tk+1

tk
f (τ ) dτ ≤ b1/k. (A.1)

Assume that f attains its maximum on [tk, tk+1] at a. Then a + 1/
√

k ∈ [tk, tk+1] (a −
1/
√

k ∈ [tk, tk+1] is treated similarly) since tk+1 − tk ≥ 2. We deduce by (4.1) that

| f ′(t)| = |2u̇ j (t)ü j (t)| ≤ b′ for some b′ > 0 and t ≥ 0,
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and hence
min

t∈[a,a+1/
√

k]
f (t)≥ f (a)− b′/

√
k ≥ 0

(assume k large). Consequently, we have∫ tk+1

tk
f (τ ) dτ ≥

∫ a+1/
√

k

a
f (τ ) dτ ≥ ( f (a)− b′/

√
k)/
√

k = f (a)/
√

k − b′/k,

which implies (4.8) by (A.1). �

Proof of (4.11). Let k0 be the integer part of dk/2k. We find k0 + 1 points tk = τ0 < τ1 <

· · ·< τk0 ≤ tk+1 such that un(τi+1)− un(τi )= 2k for i = 0, 1, . . . , k0 − 1. Let

g(t)=
k3∑

j=−k3

|∂ j W (u(t))|2, A =
∫ tk+1

tk
g(τ ) dτ, G(t)=

∫ t ′

t
g(τ ) dτ,

where t ∈ [τ0, τk0−1] and t ′ satisfies un(t ′)− un(t)= 2k. The function G is continuous on
[τ0, τk0−1]. If we assume that G(t) > A/k0 for each t ∈ [τ0, τk0−1], then

A ≥
∫ τk0

τ0

g(τ ) dτ = G(τ0)+ G(τ1)+ · · · + G(τk0−1) > A,

a contradiction. Consequently, there exist t ′k ∈ [τ0, τk0−1] ⊂ [tk, tk+1] and hence t ′k+1 such
that

G(t ′k)≤ A/k0 and un(t ′k+1)− un(t ′k)= 2k,

that is, ∫ t ′k+1

t ′k

g(τ ) dτ ≤
A
k0
≤

2A
k0 + 1

≤
2k
dk

2A ≤ 4b3 k,

which verifies (4.11). �
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3 (1986), 229–272.

[19] B. Mramor and B. Rink. Ghost circles in lattice Aubry–Mather theory. J. Differential Equations 252
(2012), 3163–3208.

[20] B. Mramor and B. Rink. A dichotomy theorem for minimizers of monotone recurrence relations. Ergod.
Th. & Dynam. Sys. doi: http://dx.doi.org/10.1017/etds.2013.47, published online 27 September 2013.

[21] B. Mramor. Monotone variational recurrence relations. PhD Thesis, VU University, Amsterdam, 2012.
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