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Abstract We finalize the analysis of the trace formula initiated in S. A. Altuğ [Beyond endoscopy

via the trace formula-I: Poisson summation and isolation of special representations, Compos. Math.
151(10) (2015), 1791–1820] and developed in S. A. Altuğ [Beyond endoscopy via the trace formula-II:

asymptotic expansions of Fourier transforms and bounds toward the Ramanujan conjecture. Submitted,

preprint, 2015, Available at: arXiv:1506.08911.pdf], and calculate the asymptotic expansion of the
beyond endoscopic averages for the standard L-functions attached to weight k > 3 cusp forms on GL(2)
(cf. Theorem 1.1). This, in particular, constitutes the first example of beyond endoscopy executed via

the Arthur–Selberg trace formula, as originally proposed in R. P. Langlands [Beyond endoscopy, in
Contributions to Automorphic Forms, Geometry, and Number Theory, pp. 611–698 (The Johns Hopkins

University Press, Baltimore, MD, 2004), chapter 22]. As an application we also give a new proof of the

analytic continuation of the L-function attached to Ramanujan’s 1-function.
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1. Introduction

Let us begin by briefly recalling beyond endoscopy. Since our aim here is to put the

current paper in context rather than to give a comprehensive overview, rather than

trying to make precise statements we simply introduce the main problem. For a more

through overview we refer the reader to the original article [11] and the recent exposition

in [3].

Let G be a reductive algebraic group defined over a global field F and let S be a

finite set of places of F containing all the archimedean places. The main aim of beyond

endoscopy is to isolate those automorphic representations of G (unramified outside of S)

that are functorial transfers from other groups. The strategy proposed in [11] is to use

the partial automorphic L-functions, L S(s, π, ρ), for various irreducible representations

ρ : L G → GL(V ) to detect functorial transfers. It is based on the expectation that if

L S(s, π, ρ) has a pole in <(s) > 1 then π should be a functorial transfer, and conversely

if π is a functorial transfer then, by a theorem of Chevalley (cf. [4]), one can find a ρ

such that L S(s, π, ρ) has a pole in <(s) > 1.

To analyze the poles of

L S(s, π, ρ) =
′∑

n>1

aπ,ρ(n)
ns ,

where the prime indicates that we are summing over n that are not divisible by any of

the finite primes in S, in the region <(s) > 1 one can study the asymptotic behavior, in

the variable X , of the partial averages

′∑
n<X

aπ,ρ(n),

up to terms of size o(X). The strategy proposed in [11] is to use the trace formula to

study the averages above. More precisely, let AS =
∏
v∈S Qv, AS

=
∏
′

v /∈S Qv, and fS ∈

C∞c (G(AS)). Then, for each n > 1 that is relatively prime to every prime in S there exist

a function f n,ρ
∈ C∞c (G(AS)) such that∑

π∈L2
disc(G)

tr(πS( fS))aπ,ρ(n) = tr(Rdisc( fS f n,ρ)),

where L2
disc denotes the discrete part of the automorphic spectrum1 of G. Substituting this

expression into the partial averages of coefficients above, we can now state the problem

1We are ignoring the issues about central characters, stability etc. since a thorough discussion of such
would take us too far afield.
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of beyond endoscopy as to study the asymptotic behavior of the averages,

′∑
n<X

tr(Rdisc( fS f n,ρ)), (1)

using the Arthur–Selberg trace formula. In [1] the study of the averages in (1) was

initiated for G = GL(2), S = {∞}, and ρ = Symr , the rth symmetric power representation

of L G = GL(2,C). The geometric side of the trace formula consists of a sum over rational

conjugacy classes of (weighted) orbital integrals multiplied by certain arithmetic volume

factors.

The critical part of these sums are the ones over elliptic conjugacy classes, those

conjugacy classes whose characteristic polynomials are irreducible over Q. In order to

analyze the elliptic part, an appropriate approximate functional equation was introduced

in [1] (cf. (4’) of loc. cit.) and a Poisson summation was applied on the so-called

Steinberg–Hitchin base (i.e., the space of characteristic polynomials in this case) to

isolate the contribution of certain special representations (which, in general, give non-zero

contribution to the asymptotic expansion of (1), see [11, (31) and (65)]) were isolated.

In the subsequent paper [2] the remaining terms after Poisson summation were analyzed

giving a firm control over the asymptotic behavior of various Fourier transforms that

appear after Poisson summation (cf. [2, Theorems A.14 and A.15]). We remark that both

of the papers cited above are concerned with a single trace formula, in other words they

are not concerned with the averages in (1) but rather prove results for an individual n.

The current paper puts all of the previous work together and executes the asymptotic

analysis of (1) for G = GL(2) over Q, S = {∞}, and ρ = Sym1, the standard representation

of GL(2,C), where we specialize our test function to pick up holomorphic discrete series

representation at the archimedean place. This puts us in the framework of classical

holomorphic modular forms of weight k. Let us also recall the (normalized) Hecke

operators in this setting

Tk(n)( f )(z) = n
k−1

2
∑

ad=n
a,d>0

b mod d

d−k f
(

az+ b
d

)
,

where f is any holomorphic modular form of weight k and full level. Note that with this

normalization the Ramanujan conjecture reads as tr(Tk(n)) = Ok,ε(nε) for every ε > 0.

Our main theorem can be stated as follows:

Theorem 1.1. Let k > 3 be an integer and for any n > 1 let Tk(n) denote the nth Hecke

operator (normalized as above) acting on the space Sk of holomorphic cusp forms of weight

k. Then, for every ε > 0 ∑
n<X

tr(Tk(n)) = Ok,ε(X
31
32+ε).

We comment on the generality of the methods, the dependence on various assumptions,

and possible improvements on the exponent 31
32 below in the next section.

https://doi.org/10.1017/S1474748018000427 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000427


1352 S. A. Altuğ

To end the introduction we also present an application of the above theorem and give

a new proof of the analytic continuation of the L-function attached to the Ramanujan

1-function. Recall that 1(z) and τ(n) are defined by

1(z) := e(z)
∞∏

n=1

(1− e(nz))24
=

∞∑
n=1

τ(n)e(nz).

It is well-known (cf. [15, p. 84]) that 1(z) is a weight 12 cusp form of full level. Attached

to 1 is the L-function

L(s,1) :=
∞∑

n=1

τ̃ (n)
ns ,

where

τ(n) = τ̃ (n)n
11
2 .

We remark that the above normalization of the L-function is so that it aligns with our

normalization of the Hecke operators. It follows from the elementary Hecke bound that

L(s,1) is absolutely convergent2 for <(s) > 3
2 (loc. cit. (39) on p. 94). Theorem 1.1 then

has the following immediate corollary.

Corollary 1.2. L(s,1) extends to a holomorphic function in <(s) > 31
32 .

Let us also remark that the novelty of Corollary 1.2 is not the end result, which is

well-known and dates back to the works of Hecke (cf. [8]), but rather the method of

proof, which gives the analytic continuation of an automorphic L-function using solely

the trace formula.

1.1. Several remarks and comments

• First, we would like to emphasize that the novelty of the paper is in the method

rather than the result. The fact that the standard L-functions for GL(2) have analytic

continuation is well-known (it goes back to Hecke in the setting of the current paper

and is known in much greater generality (cf. [7])). It is the method by which we prove

the analytic continuation that is new and constitutes the first example of beyond

endoscopy carried out via the Arthur–Selberg trace formula, following the original

proposal in [11]. We should also remark that following the ideas of Beyond Endoscopy,

in [12], has proved the analytic continuation of the standard L-functions using the

Kuznetsov formula.

• Let us make a couple of remarks on the generality of the method and the various

restrictions we have in Theorem 1.1. As already mentioned, the specific choice of

test functions at the archimedean place puts us in the framework of the classical

Eichler–Selberg trace formula. It also avoids the contribution of the continuous and

the non-tempered spectrum (i.e., the trivial representation) with the price that it picks

up only holomorphic cusp forms (no Maass forms interfere).

2Indeed, Rankin–Selberg theory implies that L(s,1) is absolutely convergent for <(s) > 1. We will,
however, not be needing this fact.
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The reason we chose this approach is that it avoids peripheral issues and go directly to

the heart of the matter which is the analysis of the averages in (1) over the elliptic part

of the trace formula. Our primary aim in this paper is to analyze the beyond endoscopic

averages in (1) rather than to give a proof of the analytic continuation of the standard

L-functions for GL(2). The analytic difficulties related to the elliptic part are already

present in the Eichler–Selberg trace formula, and this is why we chose this approach

rather than working in the generality of [1, 2], where the general the geometric side was

analyzed for an arbitrary smooth test function of compact support at the archimedean

place. We should also note the analysis carried out in these references is sufficient to

carry out the analysis without any restriction in Theorem on the archimedean test

function, and that we will be using the results of [1, 2] (in particular [1, Theorem 6.1]

and Theorem 1.1 and the estimates in the appendices of [2]) throughout the paper.

The assumption about S = {∞} (i.e., we are restricting to representations unramified

at every finite place, or classically, forms of full level), on the other hand, is harmless

analytically and can be removed without any trouble. It brings in congruence conditions

in the sums (depending on the allowed ramification) and does not effect the analysis

in any serious way. It just brings extra work on the algebra and would complicate (the

already complicated) notation.

• One can, without much effort, improve the exponent 31
32 of Theorem 1.1. (Our estimates,

especially in § 4.2, are far from optimal.) Since our aim in this paper is to execute

the beyond endoscopic averages in (1), which is equivalent to getting an o(X) in

Theorem 1.1, we did not, in any way, aim for optimality in the exponent.

•We would also like to briefly mention the connection of the paper with the ρ-trace

formula of [3] (note that ρ is denoted by r in that article). Instead of repeating various

definitions and constructions of Arthur we simply refer the reader to [3, pp. 8–14]. The

result of Theorem 1.1, in particular, proves the ρ-trace formula for G = GL(2) and ρ

= standard representation. In terms of Arthur’s notation (cf. (2.7) of loc. cit.) it can

be stated as

Sρcusp( f ) = 0,

where f denotes our specific choice of test function.

• The last remark is on a peculiar phenomenon about the averages in (1). To describe

the issue let us first start with the expected result and work our way back. As in
Theorem 1.1 let us fix an integer k > 3. If π is an cuspidal automorphic representation

of GL(2) attached to a cusp form of weight k of full level, then the standard L-function,

L(s, π), is holomorphic in <(s) > 1. Therefore, denoting the nth Hecke operator acting

on the space of weight k cusp forms of full level, normalized as in Theorem 1.1, by

Tk(n), we expect to have∑
π

Ress=1L(s, π) = lim
X→∞

1
X

∑
n<X

tr(Tk(n)) = 0. (2)

This indeed is implied by the main result of the paper; however, one sees a surprising

feature in the calculation of this limit by the trace formula. Using the trace formula
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one gets3 (cf. § 3)

lim
X→∞

1
X

∑
n<X

tr(Tk(n)) = lim
X→∞

1
X

∑
n<X

{(in)+ (iin)+ (iiin)},

where (in) is the contribution of the elliptic conjugacy classes, (iin) is the contribution

of the hyperbolic and unipotent conjugacy classes (hyperbolic contribution is the sum

over all d | n that satisfies d 6=
√

n, and the unipotent contribution comes from d =
√

n,

which exists only if n is a perfect square), and (iiin) is the contribution of the identity

element.

The remarkable point is that the limits of the averages of the individual contributions

are non-zero. More precisely, the proof of Theorem 1.1 shows that

lim
X→∞

1
X

∑
n<X

(in) =
1

k− 1
, lim

X→∞

1
X

∑
n<X

(iin) =
1

1− k
, lim

X→∞

1
X

∑
n<X

(iiin) = 0. (3)

So when we sum up the contributions of the terms the result is 0; However, individually

the elliptic and hyperbolic contributions4 are both non-zero and cancel each other!

There is one more peculiarity we would like to highlight. If instead of the residue one

is interested just in the pole of the L-function, taking logarithmic derivatives of the

L-functions, one replaces (2) with a sum over prime powers and expects∑
π

ords=1L(s, π) = lim
X→∞

1
X

∑
pr<X

p: prime

log(p) tr(Tk(pr )) = 0, (4)

where we used ‘ord’ to denote the order of the pole. It is not hard to see that in the

corresponding sums in (3), the individual averages of (i pr ), (iipr ), and (iiipr ) are all 0.

i.e.,

lim
X→∞

1
X

∑
pr<X

p: prime

log(p)(i pr ) = lim
X→∞

1
X

∑
pr<X

p: prime

log(p)(iipr )

= lim
X→∞

1
X

∑
pr<X

p: prime

log(p)(iiipr ) = 0. (5)

We emphasize that this is an interesting phenomenon that was not previously observed.

In the initial stages of the ideas of Beyond Endoscopy Langlands had suggested the use

of the logarithmic derivative to capture the order of the pole (cf. [11]). This approach

was later revisited in the letter of Sarnak [12], where he suggested the use of the

3In what follows one should keep in mind that the contribution of the non-tempered spectrum (the
trivial representation in this case), which was shown to contribute to (in) (cf. [1, Theorem 1]), is 0 in
this setting, so we can ignore it. In general one needs to subtract it from (in) to make sense of the claims
below.
4The proof of Proposition 3.1 shows that the non-zero contribution is indeed coming from the weighted
orbital integrals over hyperbolic conjugacy classes rather than the unipotent ones.
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L-function rather than the logarithmic derivative with the idea that sums over primes

are harder to handle from an analytic perspective.

The above observation, on the other hand, suggests that the sums over integers,

although may be friendlier from a purely analytic number theory perspective, may

complicate matters from the viewpoint of the trace formula (as more terms in the

trace formula contribute to the limit, and internal cancellations arise).

An interesting question, also raised by Arthur (cf. [3, Problem VI]), is to understand if

there is a conceptual explanation for the averages over integers and primes to behave in

the way described above. One can also make a further comment on these matters. It was

shown in [1] that the trivial representation and the special term, denoted by tr(ξ0( f∞)),
which comes from the continuous spectrum contribute to the term ξ = 0 after Poisson

summation on the Steinberg–Hitchin basis. It turns out that the non-zero limit of

the sums (over integers) of the weighted orbital integrals of the hyperbolic conjugacy

classes (cf. the second limit in (3)) also gets cancelled with a part of this dominant term

(cf. Corollary 4.7). Is there any connection? (This is, in a sense, combining [3, Problems

V and VI].) Although the questions are intriguing so far we have no explanation for

this besides the calculations below.

1.2. Outline of the paper

The paper is organized as follows: in § 2, we prove Theorem 1.1 and Corollary 1.2 assuming

various estimates on the averages of the geometric side of the trace formula. We hope

that this motivates the various estimates to follow in the subsequent sections.

In § 3, we introduce the Selberg trace formula and prove the estimates on the identity,

hyperbolic, and unipotent contributions (§ 3.1).

Section 4 is the heart of the paper and constitutes the analysis of the elliptic part.

Following [1], we first rewrite the elliptic part and then introduce an approximate

functional equation. Then in § 4.1, we apply Poisson summation on the Steinberg–Hitchin

basis (Concretely, the conjugacy classes in GL(2) are parametrized by their characteristic

polynomials, and for fixed determinant the only variable is the trace. We apply Poisson

summation on this variable, denoted by the variable m in § 4) and analyze the term

corresponding to ξ = 0. In Corollary 4.7, we show that the contribution of this term in

the elliptic part exactly cancels (as it should!) the contribution of the hyperbolic part.

Section 4.2 forms the main part of the analysis of the elliptic part. In this section, we

analyze the rest of the terms after Poisson summation. Our strategy5 is to bring in

the sum over n and to use Poisson summation. We do this in two steps. In § 4.2.1, we

first strip off, for each fixed n, certain parts of the elliptic term that does not give any

contribution to the asymptotic expansion. Then in § 4.2.2, we finally bring the n-sum in

and use Poisson summation.

In § 5, we prove certain estimates on Fourier transforms and character sums that are

used in the analysis of § 4.2.2.

5We remark that applying Poisson summation on the n-sum works well for the standard representation
and the symmetric square, however stops being productive for higher symmetric powers. This point was
observed by Sarnak and we refer to [12] for further discussion of this issue.
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1.3. Notation and conventions

Notation

• Z,R and C as usual will denote the sets of integers, real, and complex numbers

respectively. N = {0, 1, 2, . . .} will denote the set of natural numbers.

• The Mellin transform of a function 8 is defined as usual, 8̃(u) =
∫
∞

0 8(x)xu−1 dx .

•
∑

a mod ×N will mean a ∈ (Z/NZ)×. For an integer l, we denote its radical (i.e., the

square-free part of it) by rad(l) :=
∏

p|l p.

• S(R) will denote the Schwartz space, S(R) =
{
8 ∈ C∞(R) | sup |xα8(β)(x)| <∞∀α,

β ∈ N
}
. We also remark that for functions 8 which are only defined on R+, by abuse

of notation, we use 8 ∈ S(R) to mean that 8(x) and all of its derivatives decay faster

than any polynomial for x > 0.

• For a domain D ⊂ C, f = Oh(g) means that there exists a constant K , depending only

on h, such that | f (x)| 6 K |g(x)| for every x ∈ D. Most of the times D will be clear

from the context and will not be specified. f �h g means f = Oh(g).

•
√
· denotes the branch of the square-root function that is positive on R+,

( D
·

)
denotes

the Kronecker symbol, and e(x) := e2π i x .

•We also note a slight change of notation from [2] to the current paper. The function

that we denote by θ∞ in this paper was denoted by θ
pos
∞,1 in [2]. We hope that this

simplifies the notation and does not cause any confusion.

Conventions

• Throughout the paper, unless otherwise explicitly stated (cf. Corollary 1.2), we always

normalize the Hecke operators so that the Ramanujan conjecture is aπ (n) = O(nε) for

every ε > 0.

• There is an auxiliary function F that is introduced in the approximate functional

equation (cf. (13)). All of the estimates in § 4 depend on the choice of this function.

Since this function is fixed once and for all, and does not depend on anything else we

suppress this dependence and do not mention it in any of the estimates.

• Since the function θ∞ depends only on the weight k (cf. (12)), instead of Oθ∞(·) we

simply write Ok(·).

2. Proofs of Theorem 1.1 and Corollary 1.2

In this section, we give proofs of Theorem 1.1 and Corollary 1.2 using the results of the

rest of the paper so that the reader can follow how each estimate is used.

Proof of Theorem 1.1. First note that if k is odd then the space of cusp forms of full

level and weight k is empty so the theorem is trivially true. For the rest of the proof

assume k is even. Then, by the Eichler–Selberg trace formula

tr(Tk(n)) = (in)+ (iin)+ (iiin).

(For an explanation of the terms involved, and what they actually are, see § 3.)
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Substituting this in the average gives∑
n<X

tr(Tk(n)) =
∑
n<X

{(in)+ (iin)+ (iiin)}.

By (11), ∑
n<X

(iiin) = Ok(log(X)). (6)

By Proposition 3.1, ∑
n<X

(iin) =
X

1− k
+ Ok(

√
X). (7)

To asymptotically evaluate the average of (in) we use Corollaries 4.7, 4.9, 4.11, 4.13,

and 4.15. For any κ, α > 0 such that 2κ +α < 1
12 , and every N > 0 these give∑

n<X

(in) =
X

k− 1
+ O(X2−Nκ

+ X
3+2κ

4 log2(X)+ X1− 3α
2 log(X)+ X1−κ log2(X)

+ X
11
12+κ+α+

11ε
6 ),

where the implied constant above depends only on k, N , κ, α, and ε. Choosing κ = 1
32 −

ε
2 , α =

1
48 −

ε
3 , and N = 2

κ
then gives,∑

n<X

(in) =
X

k− 1
+ O(X

31
32+ε). (8)

The theorem follows from (6), (7), and (8).

Proof of Corollary 1.2. The proof is a straightforward application of partial summation.

For any N1 > N0 we get

N1∑
n=N0

τ̃ (n)
ns =

B(N1)

N s
1
−

B(N0− 1)
N s

0
+

N1−1∑
n=N0

(
1
ns −

1
(n+ 1)s

)
B(n), (9)

where B(n) :=
∑n

m=1 τ̃ (m). It is well-known that 1(z) is a cuspidal Hecke eigenform of

weight 12 (cf. [15, p. 84]), and that the space of cusp forms of weight 12 for the full

modular group has dimension 1 (cf. p. 96 of loc. cit.). Keeping in mind the normalization

we have in Theorem 1.1 we therefore have τ̃ (n) = tr(T12(n)) for every n > 1. Hence, by

Theorem 1.1 for every ε > 0 we have

B(n) = O(n
31
32+ε).

Substituting these bounds in (9), and keeping in mind that <(s) > 31
32 , then gives

N1∑
n=N0

τ̃ (n)
ns �

1

N
s− 31

32−ε

0

.

Therefore we conclude that the partial sums converge uniformly to L(s,1) and the

corollary follows.
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3. The trace formula

Let k > 2 be an even integer. Recall (cf. [14] or [10] p. 370) that the Eichler–Selberg trace

formula expresses the trace of the nth Hecke operator acting on cusp forms of weight k
and full level as the sum

tr(Tk(n)) = −
1

2n
k−1

2

∑
m<
√

n

ρk−1
− ρ̄k−1

ρ− ρ̄

∑
f 2
|(4n−m2)

m2
−4n
f 2 ≡0,1 mod 4

hw

(
m2
− 4n
f 2

)
(in)

−
1
2

∑
d|n

min
(

d
√

n
,

√
n

d

)k−1

(iin)

+
k− 1
12
√

n
δ�(n) (iiin)

where

ρ =
m+
√

m2− 4n
2

, ρ̄ =
m−
√

m2− 4n
2

, (10)

and

δ�(n) =

 1 if n is a square,

0 otherwise.

The function hw(α) is defined as the class number of the order of discriminant α weighted

by 1/2 or 1/3 if α = −4 or α = −3 respectively.

Note that the classical Eichler–Selberg trace formula, as stated in [14], is n
k−1

2 times

the one given above. This is due to the normalization of the eigenvalues of the Hecke

operators. We normalize them so that the Ramanujan conjecture reads as |aπ (p)| 6 2.

We also remark that in the above expression, (iiin) corresponds to the contribution of

the identity element, (in) corresponds to the contribution of conjugacy classes of elliptic

elements, and (iin) combines the contribution of the hyperbolic conjugacy classes (terms

for which n 6= d2) and unipotent conjugacy classes (appears only if δ�(n) = 1, and is the

term corresponding to d2
= n).

3.1. Identity, hyperbolic, and unipotent contributions

The contribution of the identity element is easily seen to be

k− 1
12

∑
n<X

δ�(n)
√

n
= Ok (log(X)) . (11)

As explained in § 1.1, quite interestingly, the hyperbolic conjugacy classes give a non-zero

contribution to the limit (we remark that this contribution will be cancelled by the

contribution of the elliptic term to the limit, cf. Corollary 4.7).

Proposition 3.1.

−
1
2

∑
n<X

∑
d|n

min
(

d
√

n
,

√
n

d

)k−1

=
X

1− k
+ Ok(

√
X).
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Proof. First note that for any d dividing n such that d 6=
√

n, d and n
d give the same

contribution to the inner sum. Therefore,

∑
d|n

min
(

d
√

n
,

√
n

d

)k−1

= 2
∑
d|n

d<
√

n

(
d
√

n

)k−1

+ δ�(n).

Next, we trivially have ∑
n<X

δ�(n) = O(
√

X). (∗)

For the rest of the sum, first note that∑
n<X

∑
d|n

d<
√

n

(
d
√

n

)k−1

=

∑
ab<X
a<b

(a
b

) k−1
2
=

∑
b6
√

X
a<b

(a
b

) k−1
2
+

∑
√

X<b<X
a< X

b

(a
b

) k−1
2
. (∗∗)

Then, by Euler–Maclaurin formula

∑
a<b

a
k−1

2 =
2

k+ 1
b

k+1
2 + Ok

(
b

k−1
2
)

and
∑
a< X

b

a
k−1

2 =
2

k+ 1

(
X
b

) k+1
2
+ Ok

((
X
b

) k−1
2
)
.

Therefore,∑
b6
√

X
a<b

(a
b

) k−1
2
=

X
k+ 1

+ Ok(
√

X) and
∑

√
X<b<X
a< X

b

(a
b

) k−1
2
=

2X
(k+ 1)(k− 1)

+ Ok(
√

X).

Substituting the above estimates in (∗∗) and combining the result with (∗) finishes the

proof.

4. Contribution of the elliptic conjugacy classes

Following [1] we begin the analysis by rewriting the elliptic part so that it takes a more

suitable form. Let,6

θ∞(x) :=


i

2π

{(
x +

√
x2− 1

)k−1
−

(
x −

√
x2− 1

)k−1
}
|x | < 1,

0 otherwise.

For m ∈ Z, n ∈ N let ρ, ρ̄ be the two roots of X2
−m X + n = 0 as defined in (10). Then,

−
1

2n
k−1

2

ρk−1
− ρ̄k−1

ρ− ρ̄
=

π i
√

m2− 4n
θ∞

(
m

2
√

n

)
. (12)

6Let us remark that the function θ∞(x) is, up to a constant, the orbital integral of a matrix coefficient of
a weight k discrete series representation of GL2(R), which explains the notation, cf. [10, Proposition 14.1].
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Lemma 4.1. Let m, n ∈ N be such that m2
− 4n < 0 and hw be defined as in § 2. Then,

∑
f 2
|(4n−m2)

m2
−4n
f 2 ≡0,1 mod 4

hw

(
m2
− 4n
f 2

)
=

√
4n−m2

π
L(1,m2

− 4n),

where L(s,m2
− 4n) is the following weighted sum of quadratic Dirichlet L-functions

L(s,m2
− 4n) :=

∑
f 2
|m2
−4n

m2
−4n
f 2 ≡0,1 mod 4

1
f 2s−1 L

(
s,

(
(m2
− 4n)/ f 2

·

))
.

Proof. Recall that for a fundamental discriminant D < 0 the class number formula states

L
(

1,
(

D
·

))
=

2πh(D)
wD
√
|D|

,

where wD is the number of roots of unity in Q(
√

D) and h(D) is the class number of the

same field.

Let m2
− 4n = D(m, n)s(m, n)2, where D(m, n) is a fundamental discriminant (i.e., the

discriminant of the field Q(
√

m2− 4n)). Then for any f | s(m, n), by [5, Theorem 7.24]

we have

hw

(
m2
− 4n
f 2

)
=

s(m, n)
f

2h(D(m, n))
wD(m,n)

∏
q| s(m,n)f

(
1−

(
D(m, n)

q

)
1
q

)
.

Moreover the condition that f 2
| m2
− 4n such that m2

−4n
f 2 ≡ 0, 1 mod 4 is equivalent to

f | s(m, n). Therefore,

∑
f 2
|m2
−4n

m2
−4n
f 2 ≡0,1 mod 4

hw

(
m2
− 4n
f 2

)
=

2s(m, n)h(D(m, n))
wD(m,n)

∑
f |s(m,n)

1
f

∏
q| s(m,n)f

(
1−

(
D(m, n)

q

)
1
q

)

=

√
4n−m2

π
L(1,m2

− 4n).

Corollary 4.2. The elliptic part of the trace formula can be expressed as∑
m∈Z

θ∞

(
m

2
√

n

)
L(1,m2

− 4n),

where θ∞(x) is defined in (12) and L(1,m2
− 4n) is as in Lemma 4.1.

Proof. Follows from Lemma 4.1.
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4.1. Approximate functional equation, Poisson summation, and the

contribution of the dominant term

Next, let us recall the approximate functional equation introduced in [1]. Let7 F(x) be

F(x) =
1

2K0(2)

∫
∞

x
e−y− 1

y
dy
y
, (13)

where K0(2) just normalizes the integral to be 1 and is given by
∑
∞

k=1 0
′(k)0−3(k). The

only property of the above function that we use (cf. [9, pp. 257–258]) is the following:

The Mellin transform, F̃(u), is holomorphic except for a simple pole at u = 0 with

residue 1.

Let m < 2
√

n. Then, by [1, Corollary 3.5], where we have taken A = 4n−m2 and ιδ = 1,

we have

L(1,m2
− 4n) =

∑
f 2
|m2
−4n

m2
−4n
f 2 ≡0,1 mod 4

1
f

∞∑
l=1

1
l

(
(m2
− 4n)/ f 2

l

)

×

[
F

(
l f 2

4n−m2

)
+

l f 2
√

4n−m2
H

(
l f 2

4n−m2

)]
,

where

H(y) :=
√
π

2π i

∫
(1)

0
(

1+u
2

)
0
(

2−u
2

) (πy)−u F̃(u) du. (14)

4.1.1. Poisson summation. We begin with introducing a shorthand notation for the

Fourier transform that will frequently appear throughout the text.

Il, f (ξ, n) :=
∫ 1

−1
θ∞(x)

{
F

(
l f 2(4n)−1/2
√

1− x2

)
+

l f 2(4n)−1/2
√

1− x2
H

(
l f 2(4n)−1/2
√

1− x2

)}

× e
(
−xξ
√

n
2l f 2

)
dx .

Lemma 4.3.∑
m∈Z

θ∞

(
m

2
√

n

)
L(1,m2

− 4n) =
√

n
2

∞∑
f,l=1

1

(l f 2)
3
2

∑
ξ∈Z

Kll, f (ξ, n)
√

l
Il, f (ξ, n), (15)

where

Kll, f (ξ,∓pk) : =
∑

a mod 4l f 2

a2
±4pk

≡0 mod f 2

a2
±4pk

f 2 ≡0,1 mod 4

(
(a2
± 4pk)/ f 2

l

)
e
(

aξ
4l f 2

)
.

7We remark that the specific choice of this function is irrelevant to the rest of the argument. Only the
pole of its Mellin transform is important.
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We also remark that Kll, f (ξ, n) is periodic in ξ and n mod 4l f 2, which will be used

throughout the paper without reference.

Proof. This is just a restatement of [1, Theorem 4.2], where we take α = 1
2 .

4.1.2. Analysis of the term ξ = 0.

Lemma 4.4. Let β, z ∈ C be such that z > 1 and β − z
2 > 1. Then,

∞∑
n=1

1

nβ−
z
2

∞∑
f,l=1

1

(l f 2)z+
1
2

Kll, f (0, n)
√

l
= 4

ζ(2z)ζ
(
β + z

2

)
ζ
(
β − z

2

)
ζ(z+ 1)

.

Proof. By [2, Corollary B.8] Kll, f (0, n) = O(log(l f 2)l gcd(n, f 2)), hence the left hand

side is absolutely convergent. By [1, Corollary 5.4] we have

∞∑
f,l=1

1

(l f 2)z+
1
2

Kll, f (0, n)
√

l
= 4

ζ(2z)
ζ(z+ 1)

∏
p|n

1− p−z(vp(n)+1)

1− p−z .

Summing this over n gives

4
ζ(2z)
ζ(z+ 1)

∞∑
n=1

1

nβ−
z
2

∏
p|n

1− p−z(vp(n)+1)

1− p−z = 4
ζ(2z)ζ(z)
ζ(z+ 1)

∏
p

(
∞∑

m=0

1− p−z(m+1)

pm(β− z
2 )

)

= 4
ζ(2z)ζ

(
β + z

2

)
ζ
(
β − z

2

)
ζ(z+ 1)

.

Proposition 4.5. For k > 3 we have,

1
2

∑
n<X

√
n
∞∑

f,l=1

1

(l f 2)
3
2

Kll, f (0, n)
√

l

∫ 1

−1
θ∞ (x) F

(
l f 2(4n)−1/2
√

1− x2

)
dx

= 2X
3
2 ζ(2)

∫
θ∞(x) dx + 2

−1
2 X

5
4 F̃

(
−1
2

)∫
θ∞(x)

(1− x2)
1
4

dx + Ok(1).

The first term on the right hand side is the contribution of the trivial representation,

cf. [1, Lemma 6.2] (which, in fact, is 0 in our case. cf. Corollary 4.7).

Proof. The proof is a simple application of Mellin inversion and contour shifting. By

Perron’s formula the left hand side is equal to

1
4π i

∫
(4)

Xu

u

 ∞∑
n=1

1

nu− 1
2

∞∑
f,l=1

1

(l f 2)
3
2

Kll, f (0, n)
√

l

∫ 1

−1
θ∞ (x) F

(
l f 2(4n)−1/2
√

1− x2

)
dx

 du. (∗)

We note that the absolute convergence of the triple sum for <(u) > 2 is guaranteed by

the estimate
∑

l, f · · · = Oθ∞,F (
√

n), which follows from [1, Theorem 6.1]. Next, we use

https://doi.org/10.1017/S1474748018000427 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000427


Beyond Endoscopy via the trace formula – III The standard representation 1363

Mellin inversion on F which gives

(∗) =
1

2(2π i)2

∫
(4)

∫
(2)

Xu F̃(w)2w

u

×

 ∞∑
n=1

1

nu− 1+w
2

∞∑
f,l=1

1

(l f 2)w+
3
2

Kll, f (0, n)
√

l

∫ 1

−1
(1− x2)

w
2 θ∞ (x) dx

 dw du.

We note that the same bound as above guarantees the absolute convergence of the triple

sum since <(u− 1+w
2 ) = 5

2 >
3
2 . Using Lemma 4.4, with β = u and z = w+ 1, in the inner

sums gives

(∗) =
2

(2π i)2

∫
(4)

∫
(2)

Xu F̃(w)2w

u

×

ζ(2(w+ 1))ζ
(

u+ w+1
2

)
ζ
(

u− w+1
2

)
ζ(w+ 2)

∫ 1

−1
(1− x2)

w
2 θ∞ (x) dx

 dw du.

The rest of the proof is contour shifting. We shift the w-contour to right and the u-contour

to left. To shift the contours first note that the only pole of

ζ(2(w+ 1))ζ
(

u+ w+1
2

)
ζ
(

u− w+1
2

)
ζ(w+ 2)

in the region <(w) > 2 is simple and is at w = 2u− 3 with residue −2ζ(4u− 4) and all

the other terms depending on w are holomorphic in <(w) > 2. Therefore, moving the

w-contour to <(w) = 6 gives8

(∗) =
4

2π i

∫
(4)

Xu F̃(2u− 3)22u−3

u
ζ(4u− 4)

[∫ 1

−1
(1− x2)u−

3
2 θ∞ (x) dx

]
du

+
2

(2π i)2

∫
(4)

∫
(6)

Xu F̃(w)2w

u

×

ζ(2(w+ 1))ζ
(

u+ w+1
2

)
ζ
(

u− w+1
2

)
ζ(w+ 2)

∫ 1

−1
(1− x2)

w
2 θ∞ (x) dx

 dw du.

We first handle the second integral above. Since F ∈ C∞c (R+), F̃(w) is rapidly decreasing

on the line <(w) = 6. Moreover the ratio of ζ -functions is rapidly decreasing in vertical

strips and hence we can interchange the u and w integrals. Moreover the u-integrand

is holomorphic in 4 > <(u) > −1, except with a simple pole at u = 0. Hence by

interchanging the u and w integrals and moving the u-contour to <(u) = − 1
2 (which

picks up the residue at u = 0) we get that the second integral is Ok(1).

8We remark that since we are moving the contour from left to right the residue formula has an extra ‘−’
sign.
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For the first integral, we again move the u-contour to <(u) = − 1
2 (Note that the

x-integral still converges since we are assuming that the weight, k, of the forms we are

working with satisfies k > 3 which implies θ∞(x) vanishes to order at least 2 at x = ±1,
hence (1− x2)−3/2θ∞(x) is integrable around x = ±1.) This picks up the pole of ζ(4u− 4)
at u = 5

4 with residue 1
4 , the pole of F̃(2u− 3) at u = 2

3 with residue 1
2 , and the pole of

1
u at u = 0 with residue 1. Therefore,

(∗) = 2X
3
2 ζ(2)

∫
θ∞(x) dx + 2

−1
2 X

5
4 F̃

(
−1
2

)∫
θ∞(x)

(1− x2)
1
4

dx + Ok(1).

Combining the estimates above for the two integrals finishes the proof.

Proposition 4.6. For k > 3 we have,

1
4

∑
n<X

∞∑
f,l=1

1√
l f 2

Kll, f (0, n)
√

l

∫ 1

−1

θ∞ (x)
√

1− x2
H

(
l f 2(4n)−1/2
√

1− x2

)
dx

= 2
−1
2 X

5
4 F̃

(
1
2

)∫
θ∞(x)

(1− x2)
1
4

dx +πXζ(0)
∫

θ∞(x)
√

1− x2
dx + Ok(1).

Proof. The proof follows exactly the same argument as in the proof of Proposition 4.5.

We give the details for completeness. By Perron’s formula the left hand side is equal to

1
8π i

∫
(4)

Xu

u

 ∞∑
n=1

1
nu

∞∑
f,l=1

1√
l f 2

Kll, f (0, n)
√

l

∫ 1

−1

θ∞ (x)
√

1− x2
H

(
l f 2(4n)−1/2
√

1− x2

)
dx

 du. (∗)

Once again we note that the absolute convergence of the triple sum and the interchange of

the integrals is guaranteed by the estimate
∑

l, f · · · = Oθ∞,F (
√

n), which follows from [1,

Theorem 6.1]. Next, substituting (14) for the function H we get that (∗) is

√
π

4(2π i)2

∫
(4)

∫
(1)

Xu F̃(w)
u

2w0
(

1+w
2

)
πw0

(
2−w

2

)
×

 ∞∑
n=1

1

nu−w2

∞∑
f,l=1

1

(l f 2)w+
1
2

Kll, f (0, n)
√

l

∫ 1

−1
(1− x2)

w−1
2 θ∞(x) dx

 dw du,

where the interchange of the integrals with the triple sum is justified by the same bound

above using <(u− w
2 ) = 3 > 3

2 . By Lemma 4.4 with β = u and z = w we have

(∗) =

√
π

(2π i)2

∫
(4)

∫
(1)

Xu F̃(w)
u

2w0
(

1+w
2

)
πw0

(
2−w

2

)
×

[
ζ(2w)ζ

(
u+ w

2

)
ζ
(
u− w

2

)
ζ(w+ 1)

∫ 1

−1
(1− x2)

w−1
2 θ∞(x) dx

]
dw du.
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We now finish the proof by shifting contours. We shift the w-contour to right and the

u-contour to left. To shift the contours first note that the only pole of

0
(

1+w
2

)
0
(

2−w
2

) ζ(2w)ζ (u+ w
2

)
ζ
(
u− w

2

)
ζ(w+ 1)

in the region <(w) > 1 is at w = 2u− 2 with residue
−20

(
u− 1

2

)
ζ(4u−4)

0(2−u) and all the other

terms depending on w are holomorphic in <(w) > 1. Therefore, moving the w-contour

to <(w) = 6 gives9

(∗) =
2
√
π

2π i

∫
(4)

Xu F̃(2u− 2)
u

22u−20
(

u− 1
2

)
π2u−20(2− u)

ζ(4u− 4)

[∫ 1

−1
(1− x2)u−

3
2 θ∞ (x) dx

]
du

+
2

(2π i)2

∫
(4)

∫
(6)

Xu F̃(w)
u

2w0
(

1+w
2

)
πw0

(
2−w

2

)
×

ζ(2(w+ 1))ζ
(

u+ w+1
2

)
ζ
(

u− w+1
2

)
ζ(w+ 2)

∫ 1

−1
(1− x2)

w
2 θ∞ (x) dx

 dw du.

As in Proposition 4.5 we can move the u-contour in the second integral to <(u) = − 1
2

picking only the residue of 1
u , which implies that the second integral is Ok(1).

For the first line, we again move the u-contour to <(u) = − 1
2 (Note, once again, that

the x-integral still converges since we are assuming k > 3 which implies θ∞(x) vanishes to

order at least 2 at x = ±1, hence (1− x2)−3/2θ∞(x) is integrable around x = ±1.). This

picks up the pole of ζ(4u− 4) at u = 5
4 with residue 1

4 , the pole of F̃(2u− 2) at u = 1
with residue 1

2 , and the pole of 1
u at s = 0 with residue 1. Therefore,

(∗) = 2
−1
2 X

5
4 F̃

(
1
2

)∫
θ∞(x)

(1− x2)
1
4

dx +πXζ(0)
∫

θ∞(x)
√

1− x2
dx + Ok(1).

The lemma follows from substituting ζ(0) = −1/2.

Corollary 4.7. For k > 3 we have∑
n<X

√
n
∞∑

f,l=1

1

(l f 2)
3
2

Kll, f (0, n)
√

l
Il, f (ξ, n) =

X
k− 1

+ Ok(1).

Proof. By Propositions 4.5 and 4.6 the LHS is

2X
3
2 ζ(2)

∫
θ∞(x) dx + 2

−1
2 X

5
4 F̃

(
−1
2

)∫
θ∞(x)

(1− x2)
1
4

dx

+ 2
−1
2 X

5
4 F̃

(
1
2

)∫
θ∞(x)

(1− x2)
1
4

dx +πζ(0)X
∫

θ∞(x)
√

1− x2
dx + Ok(1).

9As in Proposition 4.5 since we are moving the contour from left to right the residue formula has an
extra ‘−’ sign.
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By [1, Lemma 3.3] F̃ is an odd function hence the second and third terms cancel each

other (We remark that this is not a consequence of our particular choice of the function

F . If, instead of the current choice, we had chosen an F so that F̃ is not odd, the function

H that appear in the approximate functional equation would change and the third term

above would have −F̃
(
−1
2

)
instead of F̃

( 1
2

)
.).

As we already remarked in Proposition 4.5 the first term is the contribution of the

trivial representation. In general we would have to remove this term since we are only

interested in the cuspidal part of the spectrum. In the current case, the operator used in

the Eichler–Selberg trace formula is a projection on a subset of the cuspidal spectrum and

since the trivial representation is orthogonal to the cuspidal spectrum this contribution

is 0. We show this fact directly by showing that the integral vanishes.

By the definition of the function θ∞(x) given in (12)∫
θ∞(x) dx =

i
2π

∫ 1

−1

{
(x +

√
x2− 1)k−1

− (x −
√

x2− 1)k−1
}

dx

=
ik

2π

∫ π
2

−
π
2

(e−i(k−1)α
− (−1)k−1ei(k−1)α) cos(α) dα.

Since k ≡ 0 mod 2, (−1)k−1
= −1 and we have

ik

2π

∫ π
2

−
π
2

(e−i(k−1)α
− (−1)k−1ei(k−1)α) cos(α) dα =

ik

π

∫ π
2

−
π
2

cos((k− 1)α) cos(α) dα

=
ik

4π

(
sin(kα)

k
+

sin((k− 2)α)
k− 2

)∣∣∣∣ π2
−
π
2

= 0,

where in the last line we used k ≡ 0 mod 2 again. Finally we calculate the integral that

appears in the fourth term. Proceeding as above,∫
θ∞(x)
√

1− x2
dx =

i
2π

∫ 1

−1

(x +
√

x2− 1)k−1
− (x −

√
x2− 1)k−1

√
1− x2

dx

=
ik

2π

∫ π
2

−
π
2

(e−i(k−1)α
− (−1)k−1ei(k−1)α) dα

=
ik

2π

∫ π
2

−
π
2

cos((k− 1)α) dα

=
2

π(1− k)
,

where in the last line we used k ≡ 0 mod 2. The corollary now follows from the fact that

ζ(0) = −1/2.

4.2. Analysis of the terms ξ 6= 0

The analysis for the terms ξ 6= 0 is more delicate than the previous calculations. To direct

the reader in what is to come, we remark that we will be dealing with sums over the
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variables l, f, ξ, and n. The analysis will be carried over in two steps: we first break the

region of summation into two sets according to (disregarding epsilons etc.)

n1/4
� l f 2

� n1/2 (16)

and its complement. The complement will be treated in § 4.2.1, where the summation

range is further divided into sub-ranges and each range is bounded by ‘pointwise’

estimates for each n. The critical range (16) is taken in § 4.2.2. We remark that the

estimates therein make use of the cancellation among the n-sum.

To be a little bit more precise, in the complement of the range (16) we bound the

‘Kloosterman-like’ sums Kll, f (ξ, n) pointwise, ignoring the oscillation in the frequencies;

whereas in the range (16) we keep track of the oscillation and make use of the further

cancellation caused by this oscillation.

4.2.1. Preliminary estimates. In this section we give estimates on (15) for l f 2ξ
√

n
running on certain ranges. We emphasize, once again, that these estimates are pointwise

valid for every n. In other words, we are not yet bringing the n-sum of (1) in.

For any integer n > 1 and κ, α > 0 let,

S0(n, κ) :=
∑

l f 2ξ�n
1
2+κ

Kll, f (ξ, n)
√

l

Il, f (ξ, n)

(l f 2)
3
2
, (17)

S1(n, κ, α) :=
∑

l f 2ξ�n
1
2+κ

ξ�n
1
6+κ+α

Kll, f (ξ, n)
√

l

Il, f (ξ, n)

(l f 2)
3
2
, (18)

S2(n, κ, α) :=
∑

l f 2
�n

1
4−κ

0<ξ�n
1
6+κ+α

Kll, f (ξ, n)
√

l

Il, f (ξ, n)

(l f 2)
3
2
. (19)

A heuristic discussion. To make the proofs easier to follow let us begin by giving a

heuristic discussion of Theorems 4.8, 4.10, and 4.12. There are certain structural points

about these sums that we first would like to discuss, with the hope that these clarify the

estimates a bit.

(1) First of all, note that in all of the estimates below the parameters l and f appear

as the product l f 2 rather than individually. So it is the range over which l f 2 runs

over that matters.

(2) Next, by10 [2, Corollary B.8], for a square-free l, and ξ and n such that gcd( f, n) = 1
and gcd(l, ξ) = 1, we have Kll, f (ξ, n)�

√
l. Therefore the quotient

Kll, f (ξ,n)
√

l
, at

least when the above conditions are satisfied, is a complex number of absolute

value at most 1, and for the heuristics we may as well assume that this is the case

disregarding the conditions.

10There is an extra log(l f 2) factor in [2, Corollary B.8]; however, for square-free l one can remove that
factor. This, anyways, is not the main point of the heuristic discussion.
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(3) Finally, by [2, Proposition 4.7] (where their θ
pos
∞,1 is our θ∞) we have Il, f (ξ, n)�( √

n
l f 2ξ

)N 1
ξ2 (cf. (21) below) for every N > 0 and every l, f, n, ξ 6= 0, and by

Proposition 4.9 of loc. cit. we have Il, f (ξ, n)�
(
ξ
√

n
l f 2

)− 3
2

for l f 2ξ
√

n � 1 (cf. (23)

below).

We can now discuss the contents of the theorems below. By the third remark above,

Il, f (ξ, n) decays very rapidly when l f 2ξ �
√

n. Therefore we expect S0 to be very small

and this is the content of Theorem 4.8.

By the same remark, when l f 2ξ �
√

n we have
Il, f (ξ,n)

(l f 2)
3
2
� (
√

nξ)−
3
2 . Therefore, S1 is

going to be comparable to the double integral

n−
3
4

∫ n
1
2

n
1
6
ξ−

3
2

∫ n
1
2
ξ

1
1 = O(n−

1
2 ).

This is the content of Theorem 4.10.

When l f 2
� n

1
4 and ξ � n

1
6 we necessarily have l f 2ξ � n

5
12 <
√

n. Hence, again by the

same remark, in this region
Il, f (ξ,n)

(l f 2)
3
2
� (
√

nξ)−
3
2 . Therefore, we expect S2 to be O(n−

1
2 )

and this is the content of Theorem 4.12.

Theorem 4.8. Let n ∈ Z>0. Then for every N > 0 and κ > 0,

S0(n, κ)� n
1
2−Nκ ,

where the implied constant depends only on k, N , and κ.

Proof. We recall two estimates from [2] that will be used throughout the proof. First,

[2, Corollary B.8] states,

Kll, f (ξ, n)� δ(n; f 2) log(l f 2)

√
l gcd(n, f 2)

√√√√gcd

(
ξ√

gcd(n, f 2)
, l

)
, (20)

where δ(n; f 2) is 1 if n is a square modulo f 2 and 0 otherwise. The second estimate, [2,

Corollary 4.8], is on the Fourier transform that appear in the sum. It states that for every

N > 0

Il, f (ξ, n)�
( √

n
l f 2ξ

)N 1
ξ2 , (21)

where the implied constant depends only on k and N . Using these we can now prove the

proposition. First, we show that the triple sum of the proposition converges absolutely.

Combining this bound and (21) we get that for every N > 0,

S0(n, κ)� n−Nκ
∞∑

f,l=1

1

(l f 2)
3
2

∑
l f 2ξ�n

1
2+κ

|Kll, f (ξ, n)|
√

l

1
ξ2

� n−Nκ
∞∑

f,l=1

1

(l f 2)
3
2

∑
ξ∈Z\{0}

|Kll, f (ξ, n)|
√

l

1
ξ2 , (◦)
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where the implied constant depends only on k and N . Next, we trivially have

gcd(n, f 2) 6 n and

√√√√gcd

(
ξ√

gcd(n, f 2)
, l

)
6
√
ξ .

Substituting these two bounds in (20) gives

Kll, f (ξ, n)� log(l f 2)
√

nlξ . (22)

Using (22) in (◦) shows that

S0(n, κ)� n
1
2−Nκ

∞∑
ξ, f,l=1

log(l f 2)

(l f 2ξ)
3
2
� n

1
2−Nκ .

Corollary 4.9. For every N , κ > 0,∑
n<X

√
n S0(n, κ) = O(X2−Nκ),

where the implied constant depends only on k, κ, and N .

Proof. Follows from Theorem 4.8.

Theorem 4.10. Let n ∈ Z>0. Then for every κ, α > 0,

S1(n, κ, α)�
log(n)

n
3−2κ

4


∑
d2

0 |n

d0�n
1+2κ

6

log(n)

d1/2
0

+
n

1−2(κ+3α)
4

d3/2
0

 ,
where the implied constant depends only on k, κ, and α.

Proof. To prove the theorem we bound

S1(n, κ, δ) :=
∑

l f 2ξ�n
1
2+κ

ξ�nδ

Kll, f (ξ, n)
l2 f 3 Il, f (ξ, n),

for any δ > κ (not to be confused with the function δ(n; f 2) of (24)) and then specialize

to δ = 1
6 + κ +α. This on one hand avoids notational burden, and on the other hand

proves that the exponent 1
6 is the best possible via this argument. Let us first estimate

the integral. We claim that∫ 1

−1
θ∞(x)F

(
l f 2(4n)−1/2
√

1− x2

)
e
(
−xξ
√

n
2l f 2

)
dx �

(
l f 2
√

n

) 3
2 1
ξ3/2 , (?)

∫ 1

−1

θ∞(x)
√

1− x2
H

(
l f 2(4n)−1/2
√

1− x2

)
e
(
−xξ
√

n
2l f 2

)
dx �

l f 2
√

nξ
, (??)
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where the implied constants depend only on k. These bounds, in fact, are the same bounds

in [2, Proposition 4.9, lines (i) and (iii)]. The only difference is that in loc. cit. the bounds

are proved for the range l f 2ξ
√

n � 1; however, our range is l f 2ξ
√

n � nκ and ξ � n
1
6+2κ . We

claim that the bounds still hold for this range. This indeed follows from the proof of

Proposition 4.9 of loc. cit. In order to give the details we first need to remind the reader

how the assumption l f 2ξ
√

n � 1 was used in the proof of Proposition 4.9. First, the proof

itself depends on the asymptotic expansion of Theorem A.14 of loc. cit. The assumption
l f 2ξ
√

n � 1 implies that ξ
√

n
l f 2 =

√
n

l f 2ξ
ξ2
� 1, and substituting this for the parameter D in

the asymptotic expansion of Theorem A.14 implies that the first term dominates the

asymptotic expansion, which is the result of Proposition 4.9. In other words, the essential

ingredient is the bound
√

nξ
l f 2 � 1.

Coming back to our proof we have ξ � nδ, which implies that ξ
√

n
l f 2 �

n
1
2+δ

l f 2 � nδ−κ � 1,

hence the conclusion of [2, Proposition 4.9] still holds. Note also that

l f 2ξ � n
1
2+κ ⇒

l f 2
√

n
�

nκ

ξ
. (? ? ?S1)

Substituting (? ? ?S1) in (??) then gives,∫ 1

−1

θ∞(x)
√

1− x2
H

(
l f 2(4n)−1/2
√

1− x2

)
e
(
−xξ
√

n
2l f 2

)
dx �

(
l f 2
√

n

) 1
2 n

κ
2

ξ3/2 . (??S1)

Using (?) and (??S1) we then get

Il, f (ξ, n)�

(
l f 2
√

n

) 3
2 n

κ
2

ξ3/2 , (23)

where the implied constants depend only k and κ. Next, we bound the character sums,

Kll, f (ξ, n). By [2, Corollary B.8] we have,

Kll, f (ξ, n)�


δ(n; f 2) log(l f 2)

√
l gcd(n, f 2)

√√√√gcd

(
ξ√

gcd(n, f 2)
, l

)
l
√

gcd(n, f 2)

rad(l)

∣∣∣∣ ξ
0 otherwise,

(24)

where δ(n; f 2) is 1 if n is a square modulo f 2 and 0 otherwise, and rad(l) =
∏

p|l p, where

p denotes a prime. This, in particular, implies that if gcd(n, f 2) is not a perfect square

then Kll, f (ξ, n) vanishes. For l, f, ξ, n such that Kll, f (ξ, n) 6= 0 let,

d2
0 := gcd(n, f 2), n = d2

0 n0, f = d0 f0, ξ = d0ξ0,

d1 := gcd(l, ξ0), l = d1l0, ξ0 = d1ξ1.

Note also that l0 is square-free. Substituting these in (24) gives

Kll, f (ξ, n)� log(d2
0 d1l0 f 2

0 )d0d1
√

l0. (25)
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Combining (23) and (25) implies that,

S1(n, κ, δ)�
1

n
3−2κ

4

∑
d2

0 |n

∑
d3

0 d2
1 l0 f 2

0 ξ1�n
1
2+κ

d0d1ξ1�nδ

log(d2
0 d1l0 f 2

0 )
√

d0d1ξ
3/2
1

.

Note that d3
0 d2

1 l0 f 2
0 ξ1 � n

1
2+κ ⇒ d0 � n

1+2κ
6 . Therefore, in the summation range for

S1(n, κ), d0 runs through square divisors of n which are � n
1+2κ

6 . Therefore,

S1(n, κ, δ)�
1

n
3−2κ

4


∑
d2

0 |n

d0�n
1+2κ

6

T (d0, n, κ, δ)
√

d0
+

∑
d2

0 |n

d0�n
1+2κ

6

U (d0, n, κ, δ)
√

d0

 , (26)

where

T (d0, n, κ, δ) :=
∑

d3
0 d2

1 l0 f 2
0 ξ1�n

1
2+κ

d0d1�nδ

log(d2
0 d1l0 f 2

0 )

d1ξ
3/2
1

, U (d0, n, κ, δ)

:=

∑
d3

0 d2
1 l0 f 2

0 ξ1�n
1
2+κ

d0d1�nδ

d0d1ξ1�nδ

log(d2
0 d1l0 f 2

0 )

d1ξ
3/2
1

.

We now bound T (d0, n, κ, δ) and U (d0, n, κ, δ).

T (d0, n, κ, δ) =
∑

d3
0 d2

1�n
1
2+κ

d0d1�nδ

1
d1

∑
f 2
0�b

n
1
2+κ

d3
0 d2

1
c

∑
l0�b n

1
2+κ

d3
0 d2

1 f 2
0
c

log(d2
0 d1l0 f 2

0 )
∑

ξ1�b
n

1
2+κ

d3
0 d2

1 f 2
0 l0
c

1

ξ
3/2
1

�

∑
d3

0 d2
1�n

1
2+κ

d0d1�nδ

1
d1

∑
f 2
0�b

n
1
2+κ

d3
0 d2

1
c

∑
l0�b n

1
2+κ

d3
0 d2

1 f 2
0
c

log(d2
0 d1l0 f 2

0 )

�

∑
d3

0 d2
1�n

1
2+κ

d0d1�nδ

1
d1

∑
f 2
0�b

n
1
2+κ

d3
0 d2

1
c

(
log(d2

0 d1 f 2
0 )+

(
1+

n1/2+κ

d3
0 d2

1 f 2
0

)
log

(
n1/2+κ

d0d1

))

�

∑
d3

0 d2
1�n

1
2+κ

d0d1�nδ

(
log(d2

0 d1)

d1
+

n1/2+κ

d3
0 d3

1
log

(
n1/2+κ

d0d1

))

� log2 (n)+
n1/2+κ−2δ

d0
log(n). (◦)
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We remark that all of the implied constants depend only on κ and δ. Moving on to

U (d0, n, κ, δ) we have:

U (d0, n, κ, δ) =
∑

d3
0 d2

1�n
1
2+κ

d0d1�nδ

1
d1

∑
b

n
1
2+κ

d3
0 d2

1
c�ξ1�b

nδ
d0d1
c

1

ξ
3/2
1

∑
f 2
0�b

n
1
2+κ

d3
0 d2

1 ξ1
c

∑
l0�b n

1
2+κ

d3
0 d2

1 f 2
0 ξ1
c

log(d2
0 d1l0 f 2

0 )

�

∑
d3

0 d2
1�n

1
2+κ

d0d1�nδ

1
d1

∑
b

n
1
2+κ

d3
0 d2

1
c�ξ1�b

nδ
d0d1
c

1

ξ
3/2
1

×

∑
f 2
0�b

n
1
2+κ

d3
0 d2

1 ξ1
c

(
log

(
d2

0 d1 f 2
0

)
+

(
1+

n1/2+κ

d3
0 d2

1 f 2
0 ξ1

)
log

(
n1/2+κ

d0d1ξ1

))

�

∑
d3

0 d2
1�n

1
2+κ

d0d1�nδ

1
d1

∑
ξ1�b

nδ
d0d1
c

(
log(d2

0 d1)

ξ3/2 +

(
n1/2+κ

d3
0 d2

1ξ
5/2
1

+
1
ξ3/2

)
log

(
n1/2+κ

d0d1ξ1

))

�

∑
d3

0 d2
1�n

1
2+κ

d0d1�nδ

√d0 log(d2
0 d1)

nδ/2
√

d1
+

n(1+2κ−3δ)/2 log(n)√
d3

0 d3
1



�

(
1+
√

d0

nδ/2
+

n(1+2κ−3δ)/2

d3/2
0

)
log(n). (◦◦)

Once again, all of the implied constants depend only on κ and δ.

Finally, substituting (◦) and (◦◦) into (26) gives,

S1(n, κ, δ)�
log(n)

n
3−2κ

4


∑
d2

0 |n

d0�n
1+2κ

6

log(n)

d1/2
0

+
n(1+2κ−3δ)/2

d3/2
0

+
1

nδ/2

 ,

where the implied constant depends only on k, κ, and δ. The theorem then follows from

substituting δ = 1
6 + κ +α.

Corollary 4.11. For every κ, α > 0,∑
n<X

√
n S1(n, κ, α)�

(
log2(X)X

3+2κ
4 + log(X)X1− 3α

2

)
.

where the implied constant depends only on k, κ, and α.

https://doi.org/10.1017/S1474748018000427 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000427


Beyond Endoscopy via the trace formula – III The standard representation 1373

Proof. By Theorem 4.10 we get

∑
n<X

√
n S1(n, κ, α)�

∑
n<X

log(n)

n
1−2κ

4


∑
d2

0 |n

d0�n
1+2κ

6

log(n)

d1/2
0

+
n

1−2(κ+3α)
4

d3/2
0



�

∑
n<X

log(n)

n
1−2κ

4


∑
d2

0 |n

d0�n
1+2κ

6

log(n)

d1/2
0

+
n

1−2(κ+3α)
4

d3/2
0

 .

Bounding each term in the double sum separately we get,

∑
n<X

log2(n)

n
1−2κ

4

∑
d2

0 |n

d0�n
1+2κ

6

1

d1/2
0

=

∑
d0�X

1+2κ
6

1

d1−κ
0

∑
n�b X

d2
0
c

log2(nd2
0 )

n
1−2κ

4

�

∑
d0�X

1+2κ
6

log2(X)

d1−κ
0

( X

d2
0

) 3+2κ
4

+

(
d2

0
X

) 1−2κ
4

+ 1


� log2(X)X

3+2κ
4 ,∑

n<X

log(n)
n3α/2

∑
d2

0 |n

d0�n
1+2κ

6

1

d3/2
0

=

∑
d0�X

1+2κ
6

1

d(3+6α)/2
0

∑
n�b X

d2
0
c

log(nd2
0 )

n3α/2

�

∑
d0�X

1+2κ
6

log(X)

d(3+6α)/2
0

( X

d2
0

)1− 3α
2

+

(
d2

0
X

) 3α
2

+ 1


� log(X)X1− 3α

2 .

The corollary follows.

Theorem 4.12. Let n ∈ Z>0. Then for every κ > 0 and 1
12 > α > 0,

S2(n, κ, α)� log2(n)n−
1
2−κ ,

where the implied constant depends only on k, κ, and α.

Proof. The proof follows the same argument as in the proof of Theorem 4.10. First,

note that since l f 2
� n

1
4−κ and ξ 6= 0 we necessarily have ξ

√
n

l f 2 � 1. Therefore the first

paragraph of the proof of Theorem 4.10 goes through verbatim and implies the same
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bounds as in (?) and (??) of that theorem. Moreover, since S2(n, κ, α) has the summation

ranges l f 2
� n

1
4−κ and ξ � n

1
6+κ+α we have l f 2ξ � n

5
12+α. Therefore,

l f 2
√

n
�

1
n1/12−αξ

. (? ? ?S2)

Substituting (? ? ?S2) into (??) and using α 6 1
12 gives∫ 1

−1

θ∞(x)
√

1− x2
H

(
l f 2(4n)−1/2
√

1− x2

)
e
(
−xξ
√

n
2l f 2

)
dx �

(
l f 2
√

n

) 1
2 1
ξ3/2 . (??S2)

Finally, substituting (?) and (??S2) in Il, f (ξ, n) we get

Il, f (ξ, n)�

(
l f 2
√

n

) 3
2 1
ξ3/2 . (27)

We also remark that the implied constant is independent of l, f, ξ and n. Moving on

to the character sum, Kll, f (ξ, n), we once again have the bound in (24). Note that

because of the presence of δ(n; f 2) implies that the gcd(n, f 2) has to be a perfect square

otherwise the sum vanishes. Moreover, when gcd(n, f 2) is a square, the sum still vanishes

unless
√

gcd(n, f 2) | ξ . This implies that whenever Kll, f (ξ, n) 6= 0 we have to have ξ =√
gcd(n, f 2)ξ1 for some ξ1, and we have the bound

Kll, f (ξ, n) = Kll, f (gcd(n, f 2)ξ1, n)� log(l f 2)

√
l gcd(n, f 2)ξ1 = log(l f 2)

√
lξ . (28)

Substituting the bounds in (27) and (28) into S2(n, κ) gives,

S2(n, κ, α)�
∑

l f 2�n
1
4−κ

1

(l f 2)
3
2

∑
ξ�n

1
6+κ+α

log(l f 2)
√

lξ
√

l

(
l f 2
√

n

) 3
2 1

ξ
3
2
� log2(n)n−

1
2−κ .

Corollary 4.13. For every κ > 0 and 1
12 > α > 0,∑

n<X

√
n S2(n, κ, α)� log2(X)X1−κ ,

where the implied constant depends only on k, κ and α.

Proof. Follows from Theorem 4.12.

4.2.2. Estimating the critical range. In this section, we estimate the critical range

of summation where X
1
2+κ � l f 2

� X
1
4−κ . Let

S(X, κ, α) :=
∑
n<X

√
n

∑
X

1
2+κ�l f 2

�X
1
4−κ

1
l2 f 3

∑
ξ∈Z\{0}

l f 2ξ�X
1
2+κ

ξ�X
1
6+κ+α

Kll, f (ξ, n)Il, f (ξ, n). (29)

The basic strategy for estimating this sum is to apply Poisson summation to the n-sum.

The heuristic reason is pretty simple:
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Using a smooth dyadic partition we can assume that n ∼ X . Moreover, in the region

of summation Il, f (ξ, n) is roughly 1 (we have used all of its decay properties to get the

estimates of the previous section). Therefore, bounding (29) reduces to bounding
√

X
∑
n∈Z

G
( n

X

) ∑
X

1
2�l f 2

�X
1
4

l f 2ξ�X
1
2

ξ�X
1
6

Kll f (ξ, n)
l2 f 3 .

Now notice that Kll, f (ξ, n) is periodic in n modulo 4l f 2. Therefore Poisson summation

on the above sum gives

X
3
2

∑
X

1
2�l f 2

�X
1
4

l f 2ξ�X
1
2

ξ�X
1
6

1
l3 f 5

∑
ν∈Z

Ĝ
(

Xν
4l f 2

)
ωl, f (ξ, n),

where ωl, f (ξ, ν) is as in (38), and it is roughly of size l f (cf. Corollary 5.9). Since l f 2
�

√
X we deduce that as long as ν 6= 0 the decay of Ĝ will guarantee that the sum is

very small in terms of the variable X . The only remaining point is to analyze the term

corresponding to ν = 0. By a local analysis we can show that this term is 0 unless ν and

ξ satisfy certain divisibility conditions and in our range of summation those conditions

cannot be satisfied (see the proof of Theorem 4.14).

The only difficulty in executing this simple strategy is that the function G is not alone.

It comes as the product of G( n
X )Il, f (ξ, n) so that one needs to get the decay properties

of the Fourier transform of this product uniformly in all the variables, and this is done

in Proposition 5.2 of § 5.

We can now go on and execute the strategy described above. First of all, let G ∈
C∞c ([

1
4 ,

5
4 ]) be a smooth function. In Corollary 4.15, we specialize this mollifier to a

smooth approximation to the characteristic function of the interval of [ 12 , 1) to get back

from the estimates on smoothed sums to estimating (29). Set,

SG(X, κ, α) :=
∑
n∈Z

G
( n

X

)√
n

∑
X

1
2+κ�l f 2

�X
1
4−κ

1
l2 f 3

∑
ξ∈Z\{0}

l f 2ξ�X
1
2+κ

ξ�X
1
6+κ+α

Kll, f (ξ, n)Il, f (ξ, n). (30)

Theorem 4.14. For every G ∈ C∞c ([
1
4 ,

5
4 ]), M > 2, κ, α > 0 such that 1

12 > 2κ +α we have

SG(X, κ, α) = O(‖G‖M,1 X
17
12+2κ+α−M( 1

3−κ−α) log(X)),

where

‖G‖M,1 =

M∑
j=0

‖G( j)
‖1,

G( j) denoting the jth derivative of G (i.e., the Sobolev W M,1-norm of G), and the implied

constant depends only on k, κ, α, and M.
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Proof. Note that the character sum, Kll, f (ξ, n), is periodic in n modulo 4l f 2. Using this

we interchange the n-sum with the rest of the terms and break it up into arithmetic

progressions mod 4l f 2. This gives,

SG(X, κ, α) =
∑

X
1
2+κ�l f 2�X

1
4−κ

1
l2 f 3

∑
ξ∈Z\{0}

l f 2ξ�X
1
2+κ

ξ�X
1
6+κ+α

∑
b mod 4l f 2

Kll, f (ξ, b)

×

∑
n∈Z

n≡b mod 4l f 2

√
n G

( n
X

)
Il, f (ξ, n).

We now apply Poisson summation to the n-sum and get

SG(X, κ, α) =
∑

X
1
2+κ�l f 2�X

1
4−κ

1
l2 f 3

∑
ξ∈Z\{0}

l f 2ξ�X
1
2+κ

ξ�X
1
6+κ+α

∑
ν∈Z

ωl, f (ξν)

4l f 2 Jl, f (ξ, ν, X), (31)

where Jl, f (ξ, ν, X) is the Fourier transform defined in (37) and ωl, f (ξ, ν) is the character

sum defined in (38). In order to bound Jl, f,(ξ, ν) and ωl, f (ξ, ν), we use Proposition 5.2

and Corollary 5.9 respectively. For any M, N > 0 and ν 6= 0, Proposition 5.2 gives the

following bound on Il, f (ξ, ν),

Jl, f (ξ, ν)� ‖G‖M,1
X

N−M+3
2

νM (l f 2)N

( l f 2
√

X

)M

+ ξM

 , (•)

where the implied constant depends only on k,G,M, and N . For ωl, f (ξ, ν) Corollary 5.9

gives

ωl, f (ξ, ν)�


log(l f )l f

√
gcd(l f 2, ν) gcd(l, ν)

l
rad(l)

| ν, gcd(l f 2, ν) | ξ

0 otherwise,

(••)

where the implied constant is absolute. Going back to (31) we break the analysis of the

ν sum into two according to ν = 0 and ν 6= 0.

• ν = 0. In this case the character sum ωl, f (ξ, 0) does not vanish only if l f 2
| ξ . But the

ranges in SG(X, κ, α) are l f 2
� X

1
4−κ and ξ � X

1
6+κ+α. Since 2κ +α < 1

12 these ranges

do not intersect, hence for all l, f, ξ in the range for SG(X, κ, α) the term corresponding

to ν = 0 vanishes.

• ν 6= 0. We will be using the bounds in (•) and (••). We first need to separate the

gcd-factors from (••). Let gcd(l, ν) = d0. Then,

ωl, f (ξ, ν) 6= 0 ⇒

{
l=d0l0
ν=d0ν0
ξ=d0ξ0

∣∣∣∣ gcd(l0,ν0)=1

}
.
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Then (••) implies that,

ωd0l0, f (d0ξ0, d0ν0)� log(d0l0 f )d2
0 l0 f

√
gcd( f 2, ν0) 6 log(d0l0 f )d2

0 l0 f
√
ν0. (••′)

Now, taking N = 0 in (•) and using (••), we get the following bound valid for every

M > 2,

Sν 6=0
G (X, κ, α) � ‖G‖M,1 X

3−M
2

∑
X

1
2+κ�d0l0 f 2�X

1
4−κ

log(d0l0 f )
d0(l0 f 2)2

×

∑
ξ0,ν0∈Z\{0}

d2
0 l0 f 2ξ0�X

1
2+κ

d0ξ0�X
1
6+κ+α

1

ν
M− 1

2
0

( l0 f 2
√

X

)M

+ ξM
0

 ,

where the implied constant is independent of X and G. Since the ν0-sum converges

absolutely (recall that M > 2) and since d0l0 f 2
� X

1
2+κ ⇒ log(d0l0 f ) 6 log(X), we

have

Sν 6=0
G (X, κ, α)� ‖G‖M,1 X

3−M
2 log(X)

∑
X

1
2+κ�d0l0 f 2�X

1
4−κ

1
d0(l0 f 2)2

×

∑
ξ0∈Z\{0}

d2
0 l0 f 2ξ0�X

1
2+κ

d0ξ0�X
1
6+κ+α

( l0 f 2
√

X

)M

+ ξM
0



= ‖G‖M,1 X
3−M

2 log(X)
(

S(1)ν 6=0(X, κ, α)+ S(2)ν 6=0(X, κ, α)
)
, (◦)

where

Sν 6=0,(1)
G (X, κ, α) : = X−

M
2

∑
X

1
2+κ�d0l0 f 2�X

1
4−κ

(l0 f 2)M−2

d0

∑
ξ0∈Z\{0}

d2
0 l0 f 2ξ0�X

1
2+κ

d0ξ0�X
1
6+κ+α

1,

Sν 6=0,(2)
G (X, κ, α) : =

∑
X

1
2+κ�d0l0 f 2�X

1
4−κ

1
d0(l0 f 2)2

∑
ξ0∈Z\{0}

d2
0 l0 f 2ξ0�X

1
2+κ

d0ξ0�X
1
6+κ+α

ξM
0 .

We now bound Sν 6=0,(1)
G (X, κ, α) and Sν 6=0,(2)

G (X, κ, α).

Sν 6=0,(1)
G (X, κ, α)� X−

M
2

∑
X

1
2+κ�d0l0 f 2�X

1
4−κ

(l0 f 2)M−2

d0

(
1+min

{
X

1
2+κ

d2
0 l0 f 2

,
X

1
6+κ+α

d0

})
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� X−
1
2+κ(M−1) log(X)+ X−

M
2

×

∑
l0 f 2�X

1
2+κ

(l0 f 2)M−2 min

{
X

1
2+κ

l0 f 2 , X
1
6+κ+α

}

� X−
1
2+κ(M−1) log(X). (i)

To bound Sν 6=0,(2)
G (X, κ, α) first note that since d0ξ0 � X

1
6+κ+α we have d0 � X

1
6+κ+α.

Then,

Sν 6=0,(2)
G (X, κ, α)�

∑
d0�X

1
6+κ+α

X
1
2+κ�d0l0 f 2

�X
1
4−κ

1
d0(l0 f 2)2

×

1+min


(

X
1
2+κ

d2
0 l0 f 2

)M+1

,

(
X

1
6+κ+α

d0

)M+1



� log(X)+
∑

d0�X
1
6+κ+α

l0 f 2
�b

X
1
4−κ

d0
c

1
d0(l0 f 2)2

×min


(

X
1
2+κ

d2
0 l0 f 2

)M+1

,

(
X

1
6+κ+α

d0

)M+1


� log(X)+ X (
1
6+κ+α)(M+1)(Xκ−

1
4 + Xα−

1
3 )

6 X (
1
6+κ+α)(M+1)− 1

4+κ . (ii)

Where, we used the assumption that 2κ +α < 1
12 therefore 1

4 − κ <
1
3 −α. Finally,

substituting (i) and (ii) into (◦) gives,

Sν 6=0
G (X, κ, α)� ‖G‖M,1 X

3−M
2 log(X)(X−

1
2+κ(M−1) log(X)+ X (

1
6+κ+α)(M+1)− 1

4+κ)

� ‖G‖M,1 X
17−4M

12 +(M+1)(κ+α)+κ log(X).

Corollary 4.15. Let κ, α > 0 such that 2κ +α < 1
12 . Then for every ε > 0 we have

S(X, κ, α) = O
(
X

11
12+κ+α+

11ε
6
)
,

where the implied constant depends only on k, κ, α, and ε.

Proof. We start with bounding each individual Tk(n). Although there are better bounds

(in particular, the Ramanujan conjecture | tr(Tk(n))| = Oε(nε) is known in this case thanks

to Deligne [6], and see [13] for an excellent survey of bounds toward the Ramanujan

conjecture in general) in order to keep the proof self contained, and use only the trace
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formula we refer to [2, Theorem 1.1] which, translated to the setting of the current

paper, tells us that tr(Tk(p)) = O(p
k
4 ) for any prime p. Then, by the recursion relations

the Tk(pk)’s satisfy (cf. [15, (73) on p. 102]) it is straightforward to see that tr(Tk(n)) =
Oε(n

1
4+ε).

Using this it is now straightforward to prove the theorem by choosing a specific mollifier

G(x). Let φ ∈ C∞c ((−1, 1)) such that it is normalized by
∫
φ = 1, and let 1

[
1
2 ,1)

be the

characteristic function of the interval [ 12 , 1). Let 1 > δ > 0 set φY δ (x) = Y 1−δφ(xY 1−δ).

Using φY δ (x) define GY δ (x) := 1
[

1
2 ,1)
∗φY δ (x), i.e.,

GY δ (x) = Y 1−δ
∫

1
[

1
2 ,1)
(x − y)φ(yY 1−δ) dy. (32)

Then it is straightforward to see that

GY δ
( x

Y

)
=


1

Y
2
+ Y δ 6 x 6 Y − Y δ

O(1)
∣∣∣∣x − Y

2

∣∣∣∣ < Y δ or |x − Y | < Y δ

0 otherwise,

(33)

and the

‖GY δ (x)‖M,1 = O(Y M(1−δ)). (34)

Then, by (33) and the bound tr(Tk(n)) = O(n
1
4+ε) we get

S(X, κ, α) =
log(X)∑

j=1

∑
2 j−16n<2 j

√
n

∑
X

1
2+κ�l f 2

�X
1
4−κ

1
l2 f 3

∑
ξ∈Z\{0}

l f 2ξ�X
1
2+κ

ξ�X
1
6+κ+α

Kll, f (ξ, n)Il, f (ξ, n)

�

log(X)∑
j=1

{
SG2 jδ (2

j , κ, α)+ 2 jδ+ 1
4+ε

}
, (*)

where the implied constant depends only on k, δ and ε. By Theorem 4.14 for every M > 0,

the sub-sums, SG2 jδ (2
j , κ, α), satisfy

SG2 jδ (2
j , κ, α) = O(‖G2 jδ‖M,1 j (2 j )

17
12+2κ+α−M( 1

3−κ−α)),

where the implied constant depends only on k, κ, α, and M . Substituting this bound in

(*) and using (34) we get

S(X, κ, α) = O

log(X)∑
j=1

j2 j M(1−δ)(2 j )
17
12+2κ+α−M( 1

3−κ−α)+ 2 jδ+ 1
4+ε


= O

(
X M( 2

3+κ+α−δ)+
17
12+2κ+α log(X)+ X δ+

1
4+ε

)
,

where the implied constant depends only on k, ε,M, and δ. Finally choosing δ = 2
3 + κ +

α+ 5ε
6 and M = 2

ε
the corollary follows.
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5. Local analysis

In this section, we derive bounds on the Fourier transforms and character sums that

appear after the Poisson summation on the n-sum.

5.1. Archimedean analysis

We begin with a technical lemma that will be useful for the rest of this section. For

what follows let us fix two positive integers l and f, and let X denote an independent

parameter as in the previous sections.

Lemma 5.1. Let 8 ∈ S(R), ξ, α ∈ Z, and ν ∈ Z\{0}. Let,

Vl, f,α(ξ, ν, X) :=
∫

G
( y

X

)
y
α
28

(
l f 2

√
4y
√

1− x2

)
e
(
−(xξ

√
4y+ yν)

4l f 2

)
dy.

Then, for any G(x) ∈ C∞c ([
1
4 ,

5
4 ]) and M, N ∈ N we have

Vl, f,α(ξ, ν, X) = O

‖G‖M,1
X1+ α2

νM X
M
2

( l f 2
√

X

)M

+ ξM

(√X
√

1− x2

l f 2

)N
 ,

where the implied constant depends only on 8,α,M, and N .

Proof. First using the change of variables y 7→ X y and then applying integration by parts

M-times (keeping in mind that G is compactly supported) gives,

Vl, f,α(ξ, ν, X) = X1+ α2

(
4l f 2

−2π i Xν

)M ∫
d M

dyM

×

{
G (y) y

α
28

(
l f 2

√
4X y
√

1− x2

)
e
(
−xξ
√

4X y
4l f 2

)}
e
(
−X yν
4l f 2

)
dy. (35)

The Mth derivative above is a combination of derivatives (of orders 6 M) of G, y
α
2 ,

8

(
l f 2

√
4X y
√

1−x2

)
, and the exponential. Note that since G(y) is compactly supported

away from y = 0 the negative powers of y that appear in the derivative are bounded

uniformly depending only on M and cause no problem. The only point we need to pay

attention is the derivatives of 8. To that end, note that since 8 decays faster than any

polynomial, for any β1, β2 ∈ N we have

(
l f 2

√
X
√

1− x2

)β1

8(β2)

(
l f 2

√
4X y
√

1− x2

)
�8,N1,β1,β2

(√
X
√

1− x2

l f 2

)N

.
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Using this bound we then get

d M

dyM

{
G (y) y

α
28

(
l f 2

√
4X y
√

1− x2

)
e
(
−xξ
√

4X y
4l f 2

)}

�

(√
X
√

1− x2

l f 2

)N
1+

(
ξ
√

X
l f 2

)M
 , (36)

where the implied constant depends only on 8,M, N , and ‖G‖M,1. Combining (35) with

(36) finishes the proof.

For the next corollary let us introduce the following notation,

Jl, f (ξ, ν, X) :=
∫∫
√

y G
( y

X

)
θ∞(x)

×

{
F

(
l f 2

√
4y
√

1− x2

)
+

l f 2

√
4y
√

1− x2
H

(
l f 2

√
4y
√

1− x2

)}

× e
(
−(xξ

√
4y+ yν)

4l f 2

)
dx dy. (37)

Proposition 5.2. Let ξ, α ∈ Z, and ν ∈ Z\{0}. Then, for any G(x) ∈ C∞c ([
1
4 ,

5
4 ]) and

M, N ∈ N we have

Jl, f (ξ, 0, X)� ‖G‖1
X

N+3
2

(l f 2)N ξ N+2 ,

Jl, f (ξ, ν, X)� ‖G‖M,1
X

N−M+3
2

νM (l f 2)N

( l f 2
√

X

)M

+ ξM

 ,
where the implied constant depends only on θ∞, F,M, and N .

Proof. We first remark that because G(y) is compactly supported away from y = 0 we

always have y > 0.

• ν = 0. By [2, Corollary 4.8], for any N > 0 and y 6= 0, we have∫
θ∞(x)

{
F

(
l f 2

√
4X y
√

1− x2

)
+

l f 2

√
4X y
√

1− x2
H

(
l f 2

√
4X y
√

1− x2

)}

× e
(
−xξ
√

4X y
4l f 2

)
dx �

(√
X y

l f 2ξ

)N 1
ξ2 .

Using the change of variables y 7→ X y and using the above bound gives,

Jl, f (ξ, 0, X)�
X

N+3
2

(l f 2)N ξ N+2

∫
G(y)y

N+1
2 dy � ‖G‖1

X
N+3

2

(l f 2)N ξ N+2 ,

where the implied constants depend only on θ∞, F, and N . This finishes the proof of

the case ν = 0.
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• ν 6= 0. Let,

Jl, f (ξ, ν, X) = J 1
l, f (ξ, ν, X)+ J 2

l, f (ξ, ν, X),

where

J 1
l, f (ξ, ν, X) :=

∫∫
G
( y

X

)
√

yθ∞(x)F

(
l f 2

√
4y
√

1− x2

)
e
(
−(xξ

√
4y+ yν)

4l f 2

)
dx dy,

J 2
l, f (ξ, ν, X) :=

l f 2

2

∫∫
G
( y

X

) θ∞(x)
√

1− x2
H

(
l f 2

√
4y
√

1− x2

)
e
(
−(xξ

√
4y+ yν)

4l f 2

)
dx dy,

By [2, Lemma 4.5] both F and H are in S(R). Moreover recall that θ∞(x) and G(y)
are both compactly supported. Therefore, the double integrals in J 1

l, f (ξ, ν, X) and

J 2
l, f (ξ, ν, X) are both absolutely convergent, and hence we can interchange the order

of integration in both. Doing so and using Lemma 5.1 in the y-integrals (take α = 1 in

J 1
l, f (ξ, ν, X) and α = 0 in J 2

l, f (ξ, ν, X)) gives, for any M, N0, N1 ∈ N,

J 1
l, f (ξ, ν, X)� ‖G‖M,1

X
N0−M+3

2

νM (l f 2)N0

( l f 2
√

X

)M

+ ξM

∫ θ∞(x)(1− x2)
N0
2 dx,

J 2
l, f (ξ, ν, X)� ‖G‖M,1

X1+ N1−M
2

νM (l f 2)N1−1

( l f 2
√

X

)M

+ ξM

∫ θ∞(x)(1− x2)
N1−1

2 dx .

Finally choosing N0 = N and N1 = 1+ N , which guarantees that the x-integrals

converge, finishes the proof.

5.2. Non-Archimedean analysis

Let us first introduce some notation that will be used throughout the calculations. Let

p be a prime. For any integer A ∈ Z let vp(A) denote the p-adic valuation of A. In what

follows, we denote the ‘p-part’ and the ‘prime to p-part’ of A respectively by A(p) and

A(p). They are defined by,

A(p) := qvp(A) and A(p) :=
A

A(p)
.

For an integer A ∈ Z\{0}, let rad(A) denote the radical of A. i.e.,

rad(A) =
∏
p|A

p−prime

p.

Finally, let us introduce the character sums that will be the focus of this section:

ωl, f (ξ, ν) :=
∑

b mod 4l f 2

Kll, f (ξ, ν)e
(

bν
4l f 2

)
. (38)
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Lemma 5.3. Let k1, k2 ∈ N. Then,

ωl, f (ξ, ν) =
∏

p

ωpvp (l),pvp ( f )

(
((4l f 2)(p))−1ξ, ((4l f 2)(p))−1ν

)
.

Proof. The proof follows from the Chinese remainder theorem. The details are exactly

the same as in [2, Lemma B.1].

Lemma 5.3 reduces the calculation of ωl, f (ξ, ν) to ωpk1 ,pk2 (α, β), where α, β ∈ Z.

Lemma 5.4. Let p be an odd prime, m ∈ N, and α, β ∈ Z. Then,

∑
a mod pm

e

(
2aα+ a2β

pm

)
=



pm β = 0, vp(α) > m

0 β = 0, vp(α) < m

p
m+min{m,vp (δ)}

2 η(pm−vp(δ))

×

(
p−vp(δ)β

pm−vp(δ)

)
e

(
−β(α0β

−1
0 )2

pm

)
β 6= 0,

where

δ = gcd(α, β), α = δα0, β = δβ0,

and for any n ∈ N

η̄(n) =
1+ in

1+ i
(η̄(n) denoting the complex conjugate of η(n)). Finally, we emphasize that if vp(β) >

vp(gcd(α, β)) the right hand side is 0 because of the appearance of the Jacobi symbol,(
p−vp (δ)β

pm−vp (δ)

)
.

Proof. First, note that if β = 0 the sum is a complete character sum over a and is 0
unless vp(α) > m, in which case it is pm . Also, the sum is trivially pm if vp(δ) > m, so

for the rest of the calculation we assume that β 6= 0 and vp(δ) < m.

Let δ = δ0 pvp(δ) and let a = a0+ a1 pm−vp(δ), where a0 and a1 are running modulo

pm−vp(δ) and pvp(δ) respectively. Then,∑
a mod pm

e

(
2aα+ a2β

pm

)
= pvp(δ)

∑
a0 mod pm−vp (δ)

e

(
δ0(2a0α0+ a2

0β0)

pm−vp(δ)

)
. (39)

• Claim: vp(β0) > 0⇒ (39) = 0.

Proof. Suppose vp(β0) > 0 and let a0 = a2+ a3 pm−vp(δ)−vp(β0)., where a2 and a3 are

running modulo pm−vp(δ)−vp(β0) and pvp(β0) respectively. Then,

(39) = pvp(δ)
∑

a2 mod pm−vp (δ)−vp (β0)

e

(
δ0(2a2α0+ a2

2β0)

pm−vp(d)

) ∑
a3 mod pvp (β0)

e
(

2δ0a3α0

pvp(β0)

)
.

Since gcd(α0, β0) = 1, vp(β0) > 0⇒ vp(α0) = 0. We also have vp(2δ0) = 0 (recall that

p 6= 2). Therefore, the last sum over a3 vanishes.
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Furthermore, again by the claim above we can assume that vp(β0) = 0, otherwise (39) is 0.

Then,

(39) = pvp(δ)
∑

a0 mod pm−vp (δ)

e

(
δ0β0(2a0α0β

−1
0 + a2

0)

pm−vp(δ)

)

= pvp(δ)
∑

a0 mod pm−vp (δ)

e

(
δ0β0((a0+α0β

−1
0 )2− (α0β

−1
0 )2)

pm−vp(δ)

)

= pvp(δ)e

(
−β(α0β

−1
0 )2

pm

) ∑
a0 mod pm−vp (δ)

e

(
δ0β0a2

0

pm−vp(δ)

)

= p
m+vp (δ)

2 η(pm−vp(δ))

(
δ0β0

pm−vp(δ)

)
e

(
−β(α0/β0)

2

pm

)
.

Note that in the last line we used the explicit calculation of the Gauss sum (cf. [9,

Theorem 3.4]).

Lemma 5.5. Let p be an odd prime, m ∈ N, and α, β ∈ Z. Then,

∑
b mod pm

(
b

pm

)
e
(

bβ
pm

)
=



φ(pm) vp(β) > m, m ≡ 0 mod 2

−pm−1 vp(β) = m− 1, m ≡ 0 mod 2(
p−vp(β)β

p

)
η(p)pm− 1

2 vp(β) = m− 1, m ≡ 1 mod 2

0 otherwise.

Proof. Let b = b0+ b1 p. Then,

∑
b mod pm

(
b

pm

)
e
(

bβ
pm

)
=

∑
b0 mod p

b1 mod pm−1

(
b0

pm

)
e
(

b0β

pm

)
e
(

b1β

pm−1

)

=

∑
b0 mod p

(
b0

pm

)
e
(

b0β

pm

) pm−1 vp(β) > m− 1

0 otherwise.

A case by case calculation of the b0-sum finishes the proof.

Proposition 5.6. Let p be an odd prime, k1, k2 ∈ N, and α, β ∈ Z. Then,

ωpk1 ,pk2 (α, 0) =

 pk1+2k2φ(pk1) vp(α) > k1+ 2k2, k1 ≡ 0 mod 2

0 otherwise,
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and for β 6= 0 we have,

ωpk1 ,pk2 (α, β) = τp(k1, k2, α, β)



φ(pk1) vp(β) > k1, k1 ≡ 0 mod 2

−pk1−1 vp(β) = k1− 1, k1 ≡ 0 mod 2(
−p−vp(β)β

p

)
× η(p)pk1−

1
2 vp(β) = k1− 1, k1 ≡ 1 mod 2

0 otherwise,

where α0, β0, and δ are as in Lemma 5.4, and

τp(k1, k2, α, β) :=
k1+2k2+min{vp (β),k1+2k2}

2 η(pk1+2k2−vp(β))

(
p−vp(β)β

pk1+2k2−vp(β)

)
e

(
−β(α0β

−1
0 )2

pk1+2k2

)
if vp(α) > min{vp(β), k1+ 2k2}, and is 0 otherwise.

Proof. First note that since p is odd, the substitution a 7→ 2a does not change the sum

and gives

ωpk1 ,pk2 (α, β) =
∑

a,b mod pk1+2k2

a2
≡b mod p2k2

(
(a2
− b)/p2k2

pk1

)
e
(

2aα+ bβ
pk1+2k2

)
.

For each a mod pk1+2k2 the elements b mod pk1+2k2 satisfying a2
≡ 4b mod p2k2 can be

parametrized by b = a2
+ b0 p2k2 , where b0 is running mod pk1 . Note that with this

parametrization a2
− b ≡ −b0 p2k2 mod pk1+2k2 . Using this observation we get,

ωpk1 ,pk2 (α, β) =
∑

a mod pk1+2k2

b0 mod pk1

(
−b0

pk1

)
e
(

b0β

pk1

)
e

(
2aα+ a2β

pk1+2k2

)
.

The proposition now follows from Lemmas 5.4 and 5.5 (One just needs to keep in mind

that in Lemma 5.4 the sum vanishes unless vp(α) > min{m, vp(β)}.).

Corollary 5.7. Let p be an odd prime, k1, k1 ∈ N, and α, β ∈ Z. Then,

ωpk1 ,pk2 (α, β)�

 pk1+k2

√
gcd(pk1+2k2 , β) gcd(pk1 , β) pk1−1

| β, gcd(pk1+2k2 , β) | α

0 otherwise,

where the implied constant is absolute.

Proof. First assume β 6= 0. Then, by the second statement of Proposition 5.6 we know

that ωpk1 ,pk2 (α, β) is the product of two terms (the first is τp(k1, k2, α, β), and the second

is in the braces). The second one of those terms is 0 unless pk1−1
| β, in which case it
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is O(p
k1
2
√

gcd(β, pk1)), where the implied constant is absolute. On the other hand, the

first term satisfies the following bound:

τp(k1, k2, α, β)�

 p
k1+2k2

2

√
gcd(pk1+2k2 , β) vp(α) > min{vp(β), k1+ 2k2}

0 otherwise.

These two bounds imply the corollary in the case β 6= 0. For β = 0, the bound in the

statement is O(p2k1+2k2) if vp(α) > k1+ 2k2 and 0 otherwise. A comparison of this bound

with the first statement of Proposition 5.6 finishes the proof.

Lemma 5.8. Let k1, k1 ∈ N and α, β ∈ Z. Then,

ω2k1 ,2k2 (α, β)�

 2k1+k2

√
gcd(2k1+2k2 , β) gcd(2k1 , β) 2k1−1

|β, gcd(2k1+2k2 , β) | α

0 otherwise,

where the implied constant is absolute.

Proof. The proof of this case follow the proofs of Proposition 5.6 and Corollary 5.7

verbatim. One just needs to take into account the extra condition a2
−4b

p2k2
≡ 0, 1 mod 4

and recall that the Kronecker symbol
(
·

2

)
is periodic mod 8. These do not bring any new

ingredients to the proof but rather a delicate case by case analysis whose details we leave

to the reader.

Corollary 5.9. Let l, f ∈ Z>0 and ξ, ν ∈ Z. Then,

ωl, f (ξ, ν)�


log(l f )l f

√
gcd(l f 2, ν) gcd(l, ν)

l
rad(l)

| ν, gcd(l f 2, ν) | ξ

0 otherwise,

where the implied constant is absolute.

Proof. By Lemma 5.3 it is enough to bound ωpk1 ,pk2 (αp, βp), where αp = ((4l f 2)(p))−1ξ

and βp = (4l f 2)(p))−1ν, and to bound
∏

p|l f 2 O(1). The bound on the character sums

follow from Corollary 5.7 and Lemma 5.8. Finally, by the prime number theorem we have∏
p|l f 2 O(1) = O(log(l f 2)) = O(l f ). The corollary follows.
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1. S. A. Altuğ, Beyond endoscopy via the trace formula-I: Poisson summation and isolation
of special representations, Compos. Math. 151(10) (2015), 1791–1820.

https://doi.org/10.1017/S1474748018000427 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000427


Beyond Endoscopy via the trace formula – III The standard representation 1387
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