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The transfer of an alcohol, 2-propanol, from an aqueous to an organic phase causes
convection due to density differences (Rayleigh convection) and interfacial tension
gradients (Marangoni convection). The coupling of the two types of convection
leads to short-lived flow structures called eruptions, which were reported in
several previous experimental studies. To unravel the mechanism underlying these
patterns, three-dimensional direct numerical simulations and corresponding validation
experiments were carried out and compared with each other. In the simulations, the
Navier–Stokes–Boussinesq equations were solved with a plane interface that couples
the two layers including solutal Marangoni effects. Our simulations show excellent
agreement with the experimentally observed patterns. On this basis, the origin of
the eruptions is explained by a two-step process in which Rayleigh convection
continuously produces a concentration distribution that triggers an opposing Marangoni
flow.
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1. Introduction

Mass transfer between fluidic phases is central to many processes in nature and
engineering such as liquid–liquid extraction (Rydberg 2004), CO2 sequestration
(Loodts et al. 2014) or drying of films (Yiantsios et al. 2015). Frequently, the
transport of a solute between immiscible liquids is accompanied by convection driven
by two primary mechanisms: buoyancy (Rayleigh convection) and interfacial tension
gradients (Marangoni convection). Investigations of Marangoni flows frequently
employ the classical configuration of two stratified liquid layers stable to Rayleigh
convection (Sternling & Scriven 1959; Orell & Westwater 1962; Linde & Schwarz
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1963). Here, the transfer of surface-active solutes across the interface gives rise to
complex, hierarchically structured patterns that are transient in time. The basic patterns
of the non-oscillatory Marangoni instability, also including the highly nonlinear
regimes, can be categorized into three classes (Linde, Schwarzenberger & Eckert
2013; Schwarzenberger et al. 2014): (i) polygonal Marangoni cells (named roll cells
by Linde et al. (2013)), (ii) relaxation oscillations or (iii) relaxation oscillation waves.
Recently, the first two patterns were successfully reproduced in direct numerical
simulations (Köllner et al. 2013, 2015).

However, upon reversal of the direction of solute transport, these hierarchical
Marangoni patterns are replaced by a new class of structures called ‘eruptions’,
which obviously do not fit into the previous classification scheme. Eruptions refer to
vigorous movements at the interface coupled to Rayleigh convection, as observed, for
example, during the transport of acetic acid from ethyl acetate into water (Kroepelin
& Neumann 1957). Eruptions are not a rare event: similar experimental observations
were reported by Orell & Westwater (1962), Bakker, van Buytenen & Beek (1966)
and Berg & Morig (1969). Further, Schwarz (1968) described their occurrence for
more than 20 liquid/liquid systems with mass transfer of an organic solute. At an
extended interface, eruptions are inherently coupled to erratic circular spreading
motions (called ‘Spreitungen’ in German) as worked out by Schwarz (1968, 1970)
in the material system water + 1-propanol/cyclohexanol. Due to its disorganized
appearance, this convective regime has so far resisted a deeper analysis, and its
patterns have often been placed in the category ‘interfacial turbulence’.

The first formal, theoretical attempt to describe such a system was carried out in the
linear stability analysis of Imaishi, Fujinawa & Tadaki (1980). Considering the growth
of oscillatory perturbations, they concluded that the eruptions might result from an
interplay of the counteracting Rayleigh and Marangoni effects.

Mass transfer studies in droplet geometries also showed that the coupling of
Rayleigh convection with a counteracting Marangoni effect can lead to certain
oscillatory flow patterns. However, the distinct geometry of a droplet, i.e. the diameter
as a distinguishing length scale and the type of the surrounding phase, are crucial
for the specific hydrodynamic pattern emerging. For example, Lappa & Piccolo
(2004) observed structures resembling the eruptions in the vicinity of dissolving
droplets with an imposed vertical temperature gradient, which they called ‘shooting’.
Droplets dissolving in binary systems are susceptible to an irregular Marangoni
convection, triggered by the introduction of surfactants. Without surfactants, only
buoyant convection is present (Agble & Mendes-Tatsis 2000). In the studies of
Kostarev et al. (2011) and Schwarzenberger et al. (2015a), such a coupling leads to
regular oscillations for droplets subjected to a concentration gradient.

A transfer of these insights to classical layered mass transfer systems is hardly
possible since a restricting length scale, such as the droplet diameter, is absent
here. For miscible two-layer systems, the full diversity of patterns resulting from
buoyancy-driven instabilities recently received a systematic characterization (Trevelyan,
Almarcha & De Wit 2011). However, due to the additional effects of interfacial
tension for the immiscible case considered here, a deeper understanding of the
underlying cause of eruptions has been lacking up to now. With the aim of resolving
this deficiency, an example of a mass transfer system is analysed in the present
paper via simulation and experiment. In contrast to our prior studies (Köllner et al.
2013, 2015), the system is chosen such that it is stable with respect to stationary
Marangoni instability but susceptible to Rayleigh convection on both sides of the
interface. Based on this configuration, we show that the eruptions result from a
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two-step process. Rayleigh convection continuously produces localized regions of
elevated concentration at the interface, which in turn trigger a vigorous Marangoni
flow.

2. Methods

2.1. Experimental set-up
Similar to Schwarz (1970), water + 2-propanol/cyclohexanol is used as the material
system. It is prepared as follows. A separating funnel is filled with water and
cyclohexanol and the mixture is agitated for sufficiently long until the binary phases
are in equilibrium. After separating the two phases, 2-propanol is dissolved in
the water-rich phase with a volume concentration of 2.5 vol.%. The two phases
are then injected into separate glass cuvettes with an inner size of L × W × H =
60 mm× 60 mm× 20 mm. To start mass transfer across the interface, the phases are
joined by sliding the top cuvette including the lighter organic phase over the aqueous
phase. This procedure of superposition (referred to as layering) was described in
detail in Köllner et al. (2013). The start of the mass transfer experiment (texp = 0) is
regarded as the time when the two phases come into contact for the first time. The
subsequent cautious sliding of the layers against each other took 20 s.

A shadowgraph optics using parallel light aligned with the vertical direction is used
to visualize the structures in the concentration field. The experimental shadowgraph
images sexp(x, y) result from the deflection of light that is caused by the dependence
of the refractive index on solute concentration. Furthermore, the optical flow field uof
is calculated from the shadowgraph images to capture the dynamics of the highly
unsteady pattern. For that purpose, a commercial particle image velocimetry (PIV)
tool ‘PivView2C’ (Willert 2013) is applied, which detects the moving solute fronts
as ‘tracers’.

2.2. Two-layer model
Our model considers two superposed immiscible, isothermal liquid phases. The
kinematic viscosity, diffusivity of 2-propanol and height of the layer i are ν(i), D(i)

and d(i). It is assumed that the interfacial tension σ and density ρ(i) in layer i
decrease linearly with the concentration of 2-propanol as ρ(i) = ρ(i)ref + ρ(i)refβ

(i)
c c(i)c0

and σ = σref + σrefαcc(1)c0 relative to their values without 2-propanol, ρ(i)ref and
σref . In these material laws, the initial concentration of 2-propanol in the aqueous
phase, the expansion coefficients, the coefficient of change in interfacial tension
and the non-dimensional concentration are denoted by c0, β(i)c , αc and c(i). The
estimation of material parameters is given in the supplementary material available
at http://dx.doi.org/10.1017/jfm.2016.63, which also includes the mathematical model.
As reference units of length, time, velocity, pressure and concentration we use d(1) =
20 mm, (d(1))2/ν(1) = 333.3 s, ν(1)/d(1) = 60 µm s−1, ρ(1)ref (ν

(1))2/(d(1))(2) = 3.59 µPa
and c0 = 0.32 mol l−1. Figure 1(a) sketches the cubic computational domain with
horizontal dimensions of lx = ly = 0.75 and vertical dimensions of −1 6 z 6 0 for the
lower water-rich phase and 0 6 z 6 1 for the upper cyclohexanol-rich phase.

The momentum transport is modelled by the incompressible Navier–Stokes–
Boussinesq equations and the solute transport by an advection–diffusion equation.
At the plane interface, the partition of solute is governed by a Henry condition, and
interfacial tension effects are introduced by the Marangoni shear stress balance. The
present model equations are identical to the ones used in our previous investigation
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FIGURE 1. Employed two-layer system: (a) sketch of the numerical domain, (b) simulated
concentration profiles for pure diffusion, i.e. G = Ma = 0 with an inset showing the
variation of density r = (c(i)β(i)c ρ

(i)
ref /ρ

(1)
ref ) × 100 for the same times and vertical range

(including identical grid line positions).

(Köllner et al. 2013). Non-dimensional velocity is denoted by u(i). According to the
experimental set-up, no-slip and impermeable boundary conditions are imposed for
the solid walls at the bottom and top. The x–y directions are periodic.

The arising non-dimensional groups and their actual values for a concentration
of c0 = 0.32 mol l−1 are the Marangoni number Ma = c0αcσref d(1)/(ρ(1)ν(1)D(1)) =
−0.68× 107, the Schmidt number in the aqueous phase Sc(1) = ν(1)/D(1) = 1348, the
Grashof number G = c0β

(1)
c g(d(1))3/(ν(1))2 = −1.81 × 105, the partition coefficient

H = c(2)eq /c
(1)
eq = 1.6, the ratio of densities ρ = ρ(2)ref /ρ

(1)
ref = 0.96, the ratio of kinematic

viscosities ν = ν(2)/ν(1) = 20.74, the ratio of diffusivities D = D(2)/D(1) = 0.082 and
the ratio of expansion coefficients β(2)c /β(1)c = 0.92.

2-propanol is initially dissolved only in the bottom layer, i.e. c(1)(t= 0, x, y, z)= 1,
c(2)(t = 0, x, y, z) = 0. To trigger convection, the velocity field is initialized (t = 0)
with a random noise of small magnitude: we set the grid values of vertical velocity
u(i)z (xl, ym, zk) and the vertical vorticity ∇× u(i)(xl, ym, zk) · ez as uniformly distributed
in the interval from 0 to 10−3, and zero mean flow. The representation of the velocity
field by the vertical velocity, the vertical vorticity and the horizontally averaged
velocity component (mean flow) is detailed by Boeck et al. (2002).

The shadowgraph technique used in the experiments is mimicked by averaging the
horizontal Laplacian of the concentration distribution over both layers (Merzkirch
1987), s(x, y) = 0.5

∫
[−1,1](∂

2
x + ∂2

y )c(x, t) dz. A more accurate model of the
shadowgraph technique could be used by taking into account the derivative of the
refractive index with respect to the 2-propanol concentration for each layer separately,
i.e. κ (i) = ∂n(i)/∂c(i). However, we keep the simpler formulation since those material
properties κ (i) have not been measured, and for the observation of eruptive flow
structures the top layer contributes clearly more due to lower diffusivity there.

The numerical method rests on a pseudospectral algorithm using a Fourier
expansion in the x–y direction with Nx = 1024, Ny = 1024 modes and a Chebyshev
expansion in the z dimension with polynomial degree of N(1)

z = 256 and N(2)
z = 512.

The present code has been used and validated in previous studies (Boeck et al. 2002;
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FIGURE 2. Temporal evolution of convection in the simulation: (a) r.m.s. velocities,
(b) horizontally averaged velocity at three instants of time.

Köllner et al. 2013), where details can be found. The time step is adapted such that
the grid Courant–Friedrichs–Lewy number is in the range of 0.1–0.2. Additionally,
the time step is restricted to values smaller than 10−3.

3. Numerical and experimental results

Before we turn to the full model, let us consider the case when Rayleigh and
Marangoni effects are disregarded, i.e. Ma = G = 0. Then solute is transported by
diffusion only, which is shown by solute profiles for successive times in figure 1(b).
This base state is known to be stable with respect to the stationary Marangoni
instability (Sternling & Scriven 1959) because 2-propanol lowers the interfacial
tension and diffuses faster in the phase that delivers solute. However, since 2-propanol
decreases the density in both phases, a less dense concentration boundary layer
develops above the interface and a denser one below the interface, cf. inset with
variation of density r(z) in figure 1(b). This density configuration is susceptible to a
Rayleigh instability that leads to buoyant convection.

For the full model, figure 2(a) shows the root-mean-square velocity u(i)rms in each
layer and at the interface u(s)rms =

√〈u2(x, y, z= 0, t)〉xy. A clear division into three
regimes can be recognized. Regime I (0< t . 0.04) refers to the diffusive base state,
which is free of convection. The diffusive regime ends with the onset of the primary
Rayleigh instability. We defined the time of onset as the earliest time for which the
average of r.m.s. velocities (u(1)rms + u(2)rms)/2 is growing. Additional simulations with
initial amplitudes that were varied over several orders of magnitude all show onset
times in the range of 0.04< t< 0.05.

The growth of the Rayleigh instability governs regime II (0.04 6 t < 0.3). It lasts
until the growth of u(s)rms(t) stops for a moment. At this point, the eruptive regime III
(0.3 6 t) is initiated. The interfacial velocity grows rapidly to reach a maximum at
t= 0.32. The intense interfacial flow can also be noted as a high peak at z= 0 in the
corresponding velocity profile (t= 0.324) in figure 2(b). After this vivid initial phase,
regime III reaches a chaotic state that changes on a slower time scale, i.e. the changes
in u(i)rms and u(s)rms are less pronounced in figure 2(a). Regimes II and III are the focus
of this work.
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FIGURE 3. Onset of convection in the simulation: (a) concentration and velocity field at
a plane y= 0.25 for t= 0.299, (b) space–time plot of interfacial concentration c(1)(x, y=
0.25, z= 0, t). The dashed line in (b) indicates the time instant of the vertical cut in (a);
the solid lines indicate time and space in figure 5(d–f ).

3.1. Regime II: primary Rayleigh instability
As a result of the density variation, both layers are prone to Rayleigh convection.
However, in the lower layer (1), convection is more pronounced (see the velocity data
in figure 2) due to smaller viscosity and a thicker boundary layer there. Figure 3(a)
shows the convection structures near the interface by plotting the concentration and
velocity field in a vertical plane y = 0.25 at t = 0.299. Solutal plumes composed of
denser fluid due to depletion in 2-propanol sink downward in the lower layer, whereas
less dense fluid rises quite slowly in the top layer.

At this stage, interfacial concentration is lowest at those places where mixed
fluid departs from the interface, cf. figure 3(b). Hence, interfacial tension gradients,
although small, are supporting the Rayleigh effect up to this time. The 3D pattern
of the primary Rayleigh instability forms a polygonal pattern in a top view as
shown in figure 4(a–c) (t = 0.299). The experimental pattern in figure 4(c, f,i) (see
also supplementary movie 1) appears similar but does not possess this pronounced
polygonal structure seen in the simulations. By comparison with the simulation data
(see also supplementary movie 2), we observe that bright schlieren in the experiment
result from solute transferred to the upper layer that remains localized near the
interface (marked A). This less dense fluid rises only slowly all along the sides of
the polygons in the upper layer. Before fluid rises preferably in the vertices, eruptions
are initialized and break up this ordered polygonal pattern. Due to the faster Rayleigh
convection in the lower layer, the downwelling plumes of denser fluid are mostly
located at the x, y position of a cell vertex, as observed in the synthetic shadowgram
of the simulations (marked B). In the experimental shadowgram, these falling plumes
are not clearly visible, probably because of a lower change in refractive index κ (1)

(cf. § 2.2).

3.2. Eruptive regime III
As time progresses, the tips of density plumes depart from the interface and
gradually encompass the bulk volume – see the further increase in u(1)rms in figure 2.
Simultaneously, the interfacial velocity u(s)rms(t) shortly stops increasing around t= 0.30,
indicating a qualitative change in the flow structure, i.e. the onset of eruptions.
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FIGURE 4. Simulated and experimental patterns: (a,d,g) simulated isosurfaces c(1) = 0.97,
c(2) = 0.2; (b,e,h) simulated synthetic shadowgraph image s(x, y) in a domain of 0.75
(15 mm) × 0.75 (15 mm); (c, f,i) experimental shadowgraph image of identical size.
Circles with labels refer to the explanations in the text. The time of individual figures
is as follows: (a,b) t= 0.299 (99.8 s), (c) texp = 0.080 (26.8 s), (d,e) t= 0.324 (107.9 s),
( f ) texp = 0.105 (34.9 s), (g,h) t= 0.904 (301.33 s), (i) texp = 0.685 (228.3 s).

It is most instructive to consider the interfacial concentration in figure 3(b): in
regime II, the gradients ∂xc and therewith ∂xσ simply increase. After t = 0.30,
however, they reverse their sign, causing the interfacial velocity u(s) to reverse its
direction locally due to the balance of Marangoni and viscous stresses. Finally,
eruptions are manifested as expanding circular schlieren in the shadowgraph images
of figure 4(d–f ) (marked C).
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FIGURE 5. Development of an eruption: (a–c) surface of c(2) = 0.2 including the cutting
plane (triangles) of (d–f ) numerical concentration and velocity field at y = 0.25, (g–i)
numerical shadowgraph images s(x, y) with interfacial velocity u(x, y, z = 0, t) and ( j–l)
experimental shadowgraph images sexp(x, y) (same size as numerical) with optical flow uof .
The simulated images start at t= 0.3173, denoted by τ = 0, and the experimental images
start at texp= 0.3468 (115.6 s), thus τ refers to the relative time that is matched: (a,d,g,j)
τ = 0, initialization; (b,e,h,k) τ = 0.006, maximum speed; (c, f,i,l) τ = 0.016, decay.

The evolution of a single eruption from both experiment and simulation is depicted
as an example in figure 5; its position and time correspond to the three solid
horizontal lines in figure 3(b). Figure 5 shows a sequence of isosurfaces c(2) = 0.2
(a–c), vertical cuts through the concentration and velocity fields at y = 0.25 (d–f )
and the corresponding synthetic shadowgram with interfacial velocity (g–i). For the
experimental shadowgram with optical flow ( j–l), an eruption of similar appearance
is chosen. An eruption cycle proceeds in three characteristic stages. First (τ = 0,
left-hand column), eruptions are initialized at a specific point. The location of this
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FIGURE 6. Temporal evolution of convection: (a) averaged interfacial velocity and optical
flow for simulations and experiments with offset time 1t = 0.219, (b) volume-averaged
concentration in layer 2 normalized by the equilibrium concentration.

point results from the complex interaction between the growing portions of solute-rich
fluid in the upper layer and the downwelling plumes in the lower layer. In this
process, the solute-rich fluid (in the upper phase) that gathered near the interface
is transported towards the interface. It is manifested as a diverging radial motion
in both experimental and numerical shadowgraph images. Second, the spreading
motion accelerates by the continuing inflow of solute-rich fluid and adopts a state
of maximum speed (τ = 0.006, middle column). Third, the eruptions decay, i.e. the
spreading of solute ceases by interfering with the neighbouring structures (τ = 0.016,
right-hand column).

After the eruptions have become established, the system dynamics appears rather
chaotic but can be characterized by three features: (1) frequent emission of solutal
plumes in the bottom layer, (2) the continuous presence of erratic interfacial motion
(eruptions) and (3) the formation of larger portions of enriched fluid that slowly rise
in the form of plumes in the top layer (marked D in figure 4). Two different stages of
plume development can be distinguished. In the early stage, the plumes rise freely in
the bulk (marked D1 in figure 4). Hence, they are observed as small circular schlieren
that marginally change their position and size. In the late stage, the plumes hit the
top wall and, therefore, appear as a distinctly growing circular pattern (marked D2 in
figure 4).

For a quantitative comparison, we look at the temporal evolution of characteristic
velocities from experiment and simulations. Therefore, the r.m.s. value of the optical

flow ūof (t)=
√
〈u2

of (x, y, t)〉xy is calculated over the 15 mm × 15 mm middle section
of the experimental cuvette (also shown in figure 4). Simulations are represented by
equally applying this method to the synthetic shadowgraph images s(x, y) and by
the actual interfacial velocity u(s)rms(t). These three quantities are plotted in figure 6(a).
To match the onset of convection between experiment and simulation, an offset time
of 1t = 0.219 was added to the experimental time texp. All three velocity curves
show the same characteristic behaviour: vigorous onset with subsequent decay in
motion. The experimental flow appears accelerated. It is approximately twice as fast
as the simulated optical flow. Furthermore, optical flow and interfacial velocity (of
the simulation) seem to be well correlated, but interfacial velocity was roughly twice
as high as the simulated optical flow.
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Since eruptions are supposed to occur in several solvent systems relevant for
chemical engineering, we finally address the impact of this regime on the mass
transfer. The latter is quantified by the averaged solute concentration 〈c(2)〉xyz
normalized with the equilibrium concentration in the top layer c(2)eq = H/(1 + H).
Figure 6(b) shows this value for the full simulation (solid line), for a simulation
without Marangoni effect (i.e. taking Ma = 0 but keeping other parameters, dashed
line) and for pure diffusion (dashed-dotted line). In general, convection enhances mass
transport, as expected. Remarkably, the eruption regime shows the highest transferred
amount of solute.

4. Discussion and outlook

The results presented in § 3 show that our simulations reproduce the key features of
the patterns observed in our experiment remarkably well. The considered mass transfer
system water + 2-propanol/cyclohexanol thereby serves as a representative example
of various experimental systems displaying a specific phenomenon of interfacial
convection, known as eruptions. On this basis, the so far poorly understood eruptive
regime of mass transfer-driven Rayleigh–Marangoni convection can be deciphered
as follows: eruptions are spontaneous circular spreading motions of surface-active
solute along the interface in a system that is a priori stable with respect to a primary
Marangoni instability. The unstable concentration distribution is provided by the
preceding and sustained Rayleigh convection.

In the present system, Rayleigh convection is weaker in the accepting phase.
Thus, enriched fluid portions are barely transported away from the interface, which
causes an asymmetric distribution of solute that especially triggers eruptions. By their
strong tangential motion, eruptions prevent the Rayleigh convection from appearing
in persistent convection cells. In turn, the locus of buoyant plume emission is altered,
which causes a stochastic occurrence of new eruptions in space and time.

In this view, the interplay of eruptions and buoyant convection can be regarded
as an oscillatory flow state due to the ‘sign’ change in the velocity and the surface
tension gradient at a fixed location. This change from Rayleigh to the Marangoni
effect as the origin of the eruptions was already anticipated by Imaishi et al. (1980)
from the stability results of their linear model.

In contrast to Rayleigh convection, the effect of Marangoni convection is rather
localized to a narrow zone near the interface. However, simulations without the
Marangoni effect show a distinctly retarded transfer of solute compared to the
presented case. This implies that the presence of interfacial tension gradients may
play a crucial role in the prediction of mass transfer in systems with solutal Rayleigh
convection, even for very large layers.

An exact reproduction of the early experimental phase was not fully achieved
since the onset of convection and the layering procedure act on similar time
scales, and the complex process of layering is not described by the simulation.
By analysing the shadowgraph images in terms of optical flow, the simulations show
a similar qualitative progression, but lower ‘interfacial’ velocities, approximately
half the experimental value. A clear physical reason could not be identified due
to the complexity of the physical system, the uncertainty of material properties
and the numerous simplifications in the model equations, which are, however,
necessary for an efficient numerical treatment. A similar relationship between
experimental and simulated velocities was found for convection in Marangoni roll
cells (Schwarzenberger et al. 2015b).
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The question of for which physical parameters eruptions are to be expected deserves
further studies. Circumstances for their occurrence are as follows. (1) A solute that
lowers the interfacial tension (αc < 0) is to be transported from the layer with higher
diffusivity to the layer with lower diffusivity, in our case D< 0. Otherwise, Marangoni
convection is amplified (Sternling & Scriven 1959). (2) Solute has to lower (increase)
the density when transported upwards (downwards), i.e. β(i)c < 0 in our case. What
happens if the density is increasing in one phase but decreasing in the other phase
upon addition of solute remains to be studied. (3) The characteristic Rayleigh number
Ra(i) = 1c(i)β(i)c gd(i)/(ν(i)D(i)) in layer (i), here to be calculated with the actual
difference in concentration between the interface and the undisturbed bulk 1c(i), has
to be large enough. This is because the linear threshold for the onset of Rayleigh
convection has to be exceeded; it is of the order of 103. Since the present study
employs a system with large layer heights, i.e. Ra(1) ≈ −8 × 107, Ra(2) ≈ −2 × 108,
we expect the influence of layer heights to be negligible for the eruptions. However,
the effects of a finite layer size (especially for shallow layers) may prevent or alter
the occurrence of eruptions (Imaishi et al. 1980). (4) The Marangoni effect has to be
strong enough compared to the buoyant convection. (5) Last, we are not aware that
eruptions are observed in the case of thermal convection between two layers. Hence,
we assume that the Schmidt number has to be distinctly larger than one. In this view,
a comprehensive coverage of the rather large parameter space where eruptions may
occur is an issue for further investigation.
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