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Code phase Global Navigation Satellite System (GNSS) positioning performance is often
described by the Geometric or Position Dilution of Precision (GDOP or PDOP), functions of
the number of satellites employed in the solution and their geometry. This paper develops lower
bounds to both metrics solely as functions of the number of satellites, effectively removing the
added complexity caused by their locations in the sky, to allow users to assess how well their
receivers are performing with respect to the best possible performance. Such bounds will be
useful as receivers sub-select from the plethora of satellites available with multiple GNSS con-
stellations. The bounds are initially developed for one constellation assuming that the satellites
are at or above the horizon. Satellite constellations that essentially achieve the bounds are dis-
cussed, again with value toward the problem of satellite selection. The bounds are then extended
to a non-zero mask angle and to multiple constellations.
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1. INTRODUCTION. Code phase Global Navigation Satellite System (GNSS)
receivers convert the measured satellite pseudoranges into estimates of the position and
clock offset of the receiver. The typical implementation of the solution algorithm is an iter-
ative, linearized least squares method. Assuming that pseudoranges from m non-coplanar
satellites are measured, the direction cosines matrix G is formed and used to solve an
overdetermined set of equations. Since the pseudoranges themselves are noisy, the result-
ing estimates of position and time are random variables. To describe the accuracy of this
solution, it is common to describe it statistically via the error covariance matrix, equal to
the inverse of GTG scaled by the User Range Error (URE) (Misra and Enge, 2006). Rather
than considering the individual elements of this covariance matrix, users frequently reduce
it to a scalar performance indicator. The most common of these is the Geometric Dilution of
Precision (GDOP), the square root of the trace of

(
GTG

)−1; equivalently, this is the square
root of the sum of the variances of the estimates without the URE scaling. Other possible
measures of performance are the Position (PDOP), Horizontal (HDOP), Vertical (VDOP),
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and Time (TDOP) portions of GDOP. One could also include the off-diagonal elements
of the covariance matrix such as are used for the circular error probability (Conley et al.,
2006); when non-zero, these off-diagonal terms describe any directional characteristic in
the error ellipsoid which is lost by focusing only on the PDOP.

It is known that the GDOP is a function of the satellite geometry; with only a few visible
satellites in poor locations the GDOP can become quite large. However, for a future with
multiple, fully occupied GNSS constellations it is expected that receivers would select
those satellites to track so as to achieve the best possible performance; see, for example,
Gerbeth et al. (2016) and Walter et al. (2016). Hence, we think that an understanding of
both how small the GDOP and PDOP can be as a function of the number of satellites
visible and the characteristics of the constellations that meet those bounds are of value
in the satellite selection process. It should be possible to exploit those characteristics (for
example, selecting satellites at the right ratio of high and low elevation and with azimuths
that satisfy balance, described below) in selecting a subset of satellites (Swaszek et al.,
2016).

Investigating the best possible GNSS satellite constellation with respect to GDOP is not
a new problem. The case of m = 4 satellites, with reference to optimising the tetrahedron
formed by their locations, has been considered by multiple authors, see for example Kihara
and Okada (1984). The best constellations of four, five and six satellites are described in
Spilker (1996); the case of five satellites from two GNSS constellations is considered in
Teng et al. (2016). A general lower bound for m satellites from one constellation is known,

GDOP ≥
√

10
m , but does not restrict the satellites’ elevations to be above the horizon (Zhang

and Zhang, 2009).
The goal of this paper is to provide tight lower bounds to the GDOP and PDOP for the

case of m ≥ 4 non-coplanar satellites when the satellites must be at or above the horizon.
Specifically, for a single constellation these bounds are

GDOP ≥
√

11·89
m

and PDOP ≥
√

10·47
m

(1)

The following sections develop these bounds, examine their achievability, modify them
to allow for a non-zero mask angle, and then extend them to satellites from L non-
synchronised satellite constellations. Details of the less elucidating proofs are relegated
to Appendices to improve readability.

2. BOUNDING GDOP. The direction cosines matrix for m satellites from a single
constellation in three dimensions using an East, North, and Up coordinate frame is

G =

⎡
⎢⎢⎢⎣

e1 n1 u1 1
e2 n2 u2 1

...
em nm um 1

⎤
⎥⎥⎥⎦ (2)

in which (ek, nk, uk) is the unit vector pointing toward the kth satellite from the receiver’s
location. The GDOP is defined as

GDOP =
√

trace
{(

GTG
)−1
}

(3)
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and combines terms proportional to the East, North, Up, and time errors in the GNSS
solution; the PDOP ignores the time portion.

For convenience consider the square of the GDOP

GDOP2 = trace
{(

GTG
)−1
}

(4)

The matrix GTG can be written in block partitioned form as

GTG =
[

A B
BT C

]
(5)

with

A =

⎡
⎢⎢⎢⎢⎣

m∑
k=1

e2
k

m∑
k=1

eknk

m∑
k=1

eknk

m∑
k=1

n2
k

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

m∑
k=1

ekuk

m∑
k=1

ek

m∑
k=1

nkuk

m∑
k=1

nk

⎤
⎥⎥⎥⎥⎦ , and

C =

⎡
⎢⎢⎢⎢⎣

m∑
k=1

u2
k

m∑
k=1

uk

m∑
k=1

uk m

⎤
⎥⎥⎥⎥⎦ (6)

By construction both A and C are symmetric. Assuming at least four non-coplanar satel-
lites, then G is full rank and GTG is positive definite. Being principal submatrices of GTG
then both A and C are also positive definite and invertible (Horn and Johnson, 2013).

Inverting GTG yields

GDOP2 = trace
{(

A − BC−1BT)−1
}

+ trace
{(

C − BTA−1B
)−1
}

(7)

which can be lower bounded

GDOP2 ≥ trace
{
A−1} + trace

{
C−1} (8)

with equality if and only if B is a zero matrix (Han et al., 2013; 2014). Equivalently,
to achieve minimum GDOP the satellite constellation should satisfy a set of “balance”
conditions in the satellites’ locations

m∑
k=1

ek = 0,
m∑

k=1

nk = 0,
m∑

k=1

ekuk = 0, and
m∑

k=1

nkuk = 0 (9)

Consider minimising the first term in Equation (8), trace
{
A−1}. Simplifying notation, write

A =
[

a b
b c

]
(10)
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with elements defined in Equation (6). These elements must meet the constraints

a + c = m −
m∑

k=1

u2
k (11)

(due to the ek and nk coming from the m satellites’ unit vectors) and b2 < ac (since A is
positive definite); then

trace
{
A−1} =

a + c
ac − b2 (12)

A simple calculus argument yields that the minimum of this fraction occurs when b = 0
and when a and c are both equal

a = c =
m −∑m

k=1 u2
k

2
(13)

These results add two further conditions to the definition of constellation balance in
Equation (9):

m∑
k=1

eknk = 0 and
m∑

k=1

e2
k =

m∑
k=1

n2
k (14)

The result of the trace is

trace
{
A−1} ≥ 4

m −∑m
k=1 u2

k
(15)

Next, consider the second term in Equation (8), trace
{
C−1}. Simplifying notation, write

C =
[

d f
f m

]
(16)

with elements defined in Equation (6). Assuming that all of the satellites are at or above the
horizon, 0 ≤ uk ≤ 1 for all k, leads to the constraint 0 ≤ d ≤ m. Since uk ≥ u2

k for each k,
then f ≥ d. Finally, for C to be positive definite d > 0 and f 2 < dm. The GDOP2 term is

trace
{
C−1} =

m + d
dm − f 2 (17)

Clearly f 2 should be as small as possible to minimise the trace, so f = d and

trace
{
C−1} ≥ m + d

d (m − d)
(18)

Combining the results of Equations (12) and (18)

GDOP2 ≥ 4
m − d

+
m + d

d (m − d)
=

m + 5d
d (m − d)

(19)

At this point one could follow two routes: (1) imagine that d (=
∑n

k=1 u2
k) can actually

achieve any of the values in its range, 0 < d < m, and find its best value to minimise the
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GDOP2 or (2) identify those values of d consistent with the balance constraints and opti-
mise over that subset. The first method is considered here, leaving the second for discussion
below. Taking a d derivative and equating it to zero yields the unique solution

d∗ =

(√
6 − 1

)
m

5
≈ 0·29m (20)

so

GDOP2 ≥ 2
√

6 + 7
m

≈ 11·89
m

(21)

proving the first result.

3. ACHIEVABILITY. It has been suggested that constellations consisting of p satellites
directly overhead (at zenith) and m − p satellites evenly spaced in azimuth at the horizon,
for some integer p , have small GDOP (Zhang and Zhang, 2009):

ek =

⎧⎨
⎩sin

2πk
m − p

; k = 1, 2, . . . m − p

0; k = m − p + 1, . . . m

nk =

⎧⎨
⎩cos

2πk
m − p

; k = 1, 2, . . . m − p

0; k = m − p + 1, . . . m

uk =

{
0; k = 1, 2, . . . m − p
1; k = m − p + 1, . . . m

(22)

(One can, of course, add an arbitrary rotation in azimuth to these unit vectors.) Clearly
such a constellation1 meets the balance conditions in Equations (9) and (14) as long as
m − p ≥ 3 (hint – use Lagrange’s trigonometric identities). This results in d = p so that
such a constellation has GDOP2 exactly matching Equation (19) if one identifies p with
d. Further, the optimisation over p exactly follows that for d above with the result that a
constellation with 0·29 m satellites overhead and 0·71 m evenly spaced about the horizon
would achieve

GDOP2 =
11·89

m
(23)

Now, of course, m − p = 0·71 m might not be an integer greater than or equal to 3. An
obvious approach, then, is to round p up and down to the two nearest integers, choosing the
constellation with best GDOP. This approach yields the optimum integer choice for p since
GDOP2 is convex in p for the range 0 < p < m (proof: the second derivative of GDOP2

with respect to p is positive for the relevant range of p). Define GDOP2(m) as the better of

1 We note that uniform spacing of the first m − p satellites around the horizon is a sufficient, but not necessary,
condition to achieve balance; see Swaszek et al. (2016) for other examples.

https://doi.org/10.1017/S0373463317000248 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000248


1046 PETER F. SWASZEK AND OTHERS VOL. 70

Figure 1. Comparison of optimum and achievable GDOP results for one constellation versus the total number
of satellites, m: (top) number of satellites, p , at zenith; (bottom) the resulting GDOP.

these two constellations

GDOP2(m) = min
{

m + 5p
p (m − p)

,
m + 5 (p + 1)

(p + 1) (m − p − 1)

}
(24)

with p =
⌊(√

6−1
)

5 m
⌋

and 0 < p < m. Figure 1 compares the optimum results of the pre-

vious section to those of the best achievable constellation. The upper subplot shows the
number of satellites at zenith, p , versus the total satellite count, m; the lower subplot com-
pares the resulting GDOP. The observation is that the resulting GDOPs, actual and lower
bound, are nearly identical; that the bound is essentially achievable2.

As an example of the match between the bound and practice, satellite positions were
collected for the GPS constellation over a 24-hour period; the number of satellites above the
horizon ranged from nine to 14. Figure 2, left, shows the GDOP performance for the best
subset of seven satellites from the constellation as compared to the m = 7 bound. Figure 2,
right, shows the sky view of the seven satellites at the time marked by the arrow; two
satellites (approximately 29% of the seven) high in the sky and five satellites distributed
somewhat evenly about the horizon.

4. POSITION DILUTION OF PRECISION (PDOP). It might be more meaningful to
discuss PDOP, ignoring the clock bias estimate’s variance when describing performance.
This is especially relevant below when discussing multiple constellations as GDOP, in that
case, includes the variances of multiple additional clock biases.

2 We, of course, never get perfect equality to the lower bound since the proportionality factor relating p to m,(√
6−1

)
5 is irrational; hence, the number of satellites required at zenith, p , is never an integer for finite m.
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Figure 2. (left) Comparison of the lower bound (red, dashed) and actual (blue, solid) GDOP values for seven
GPS satellites; (right) the constellation at the marked sample point.

Paralleling the analysis above for GDOP, partitioning GTG and computing its inverse
(in partitioned form) yields

PDOP2 = trace
{(

A − BC−1BT)−1
}

+
(
C − BTA−1B

)−1
[1,1] (25)

(the subscript [1, 1] on the second term indicating that only the top left element of this
matrix is kept). Having B being the zero matrix minimises the first of these terms; it
is shown in Appendix A that this also minimises the second. Using the notation of
Equation (16) (

C − BTA−1B
)−1

[1,1] ≥ m
dm − f 2 (26)

Further, setting f equal to its minimum value, d, yields the lower bound

PDOP2 ≥ 4
m − d

+
m

d(m − d)
=

m + 4d
d(m − d)

(27)

which needs to be minimised over the choice of d. Taking a d derivative and equating it to
zero yields the unique result

d∗ =

(√
5 − 1

)
m

4
≈ 0·31 m (28)

(slightly larger than that for minimum GDOP) and the second result

PDOP2 ≥ 16(√
5 − 1

)2
m

≈ 10·47
m

(29)

achievable by a constellation with 31% of its satellites at zenith and the remaining 69%
balanced at the horizon.
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5. A NON-ZERO MASK ANGLE. The analyses above allowed for satellites on the
horizon (and the optimum constellations put approximately 70% of the satellites there).
What happens if a minimum elevation angle of φ is enforced? Note that the balance condi-
tions on A and B only restrict the satellites’ azimuths. However, when working with C−1 f
can no longer equal its lower bound of d. For GDOP the goal is to minimise

trace
{
C−1} =

m + d
dm − f 2 (30)

while for PDOP to minimise
C−1

[1,1] =
m

dm − f 2 (31)

(the arguments of Appendix A hold independent of any mask angle) both of which are still
achieved by making f as small as possible for the given d while satisfying the mask angle.

Let θk, θk ≥ φ, represent the elevation angle of satellite k, then

d =
m∑

k=1

sin2 θk and f =
m∑

k=1

sin θk (32)

Adding the requirement on d with a Lagrange multiplier, λ, it is equivalent to minimise

F =
m∑

k=1

sin θk + λ

(
m∑

k=1

sin2 θk − d

)
(33)

over the θk. Taking the θk derivatives yields m necessary conditions

∂F
∂θk

= cos θk (1 + 2λ sin θk) = 0 (34)

each of which has two solutions: θk = 90◦ (so that the cosine term is zero) or

θk = cos−1
(

− 1
2λ

)
≡ θ (35)

so that the second term is zero. Note that since 2λ is a constant, any elevation angles not
equal to 90◦ are identical to each other. The solution, then, is that given a specific value for
d there is some number, say p , of satellites at zenith and m − p at elevation angle θ so that
p satisfies

m∑
k=1

u2
k = p + (m − p) sin2 θ = d (36)

The corresponding value for f is

f = p + (m − p) sin θ = m − m − d
1 + sin2 θ

(37)

Recall that the immediate goal is to make f as small as possible. Since m − d > 0 this
occurs when θ is as small as possible; hence, θ = φ. The resulting GDOP expression is

GDOP2 ≥ β

m − p
+

mγ

p(m − p)
(38)
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Figure 3. Results versus mask angle, φ: (top) the fraction of satellites at zenith; (bottom) the numerator of the
DOP2 expression.

with notation

β =
5 − 3 sin φ − sin2 φ − sin3 φ

(1 − sin φ)2 (1 + sin φ)
and γ =

1 + sin φ + sin2 φ + sin3 φ

(1 − sin φ)2 (1 + sin φ)
(39)

This expression can be optimised to yield the best choice of p

p∗ =
√

γ (γ + β) − γ

β
m (40)

The lower bound, then, is the GDOP expression with this choice of p

GDOP2 ≥ β2

β + 2γ − 2
√

γ (γ + β)

1
m

(41)

Figure 3 demonstrates these results (the solid curves) versus mask angle φ. The top
subfigure shows the percentage of satellites at zenith, starting at 29% when φ = 0 and
increasing toward 50% as the mask angle increases. The lower subfigure shows the numer-
ator of the GDOP2 expression, equivalently m × GDOP2, starting at 11·89 when φ = 0 and
increasing as φ increases. Note that this numerator grows slowly for small mask angles (i.e.
a mask angle of 10◦ only increases the lower bound on GDOP by 12·6%), picking up speed
for larger mask angles.

These results for PDOP are similar. With p satellites at zenith and m − p at elevation φ

the resulting bound is

PDOP2 ≥ μ

m − p
+

mν

p(m − p)
(42)

with

μ =
4

1 − sin φ
and ν =

1
(1 − sin φ)2 (43)
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The optimum choice for p is now

p∗ =

√
ν(ν + μ) − ν

μ
m (44)

which yields

PDOP2 ≥ μ2

μ + 2ν − 2
√

ν (ν + μ)

1
m

(45)

Figure 3 also compares these results (the red dashed curves) to those for the GDOP
bound. The top subfigure shows that the best PDOP constellation has slightly more satel-
lites at zenith; the lower subfigure shows that the numerator of the expression also grows
with mask angle, slowly at first.

6. L CONSTELLATIONS. The problem for satellites from L constellations is similar.
Recall that the fourth column of G in Equation (2) consisted of all ones to account for
the clock bias in the linearized pseudorange equations. With L constellations, and assum-
ing that there are L separate clock offsets (i.e. the constellations are not synchronized), G
increases in size to L + 3 columns so as to include the separate impact of these unknowns
on the individual pseudorange equations (Teng and Wang, 2014). (If the inter-constellation
clock offsets are known then those values can be incorporated into the pseudoranges and
the satellites treated as coming from one constellation.) Let m1m2, . . . , mL represent the
number of satellites from each of these constellations, respectively, with

∑L
j =1 mj = m. Let

the unit vector pointing toward the kth satellite in the j th constellation be (ej ,k, nj ,k, uj ,k). For
convenience assume that the satellites have been sorted by constellation; then G is of the
form

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1,1 n1,1 u1,1 1 0 0 · · · 0 0
...

...
...

...
...

...
...

...
e1,m1 n1,m1 u1,m1 1 0 0 · · · 0 0
e2,1 n2,1 u2,1 0 1 0 · · · 0 0

...
...

...
...

...
...

...
...

e2,m2 n2,m2 u2,m2 0 1 0 · · · 0 0
e3,1 n3,1 u3,1 0 0 1 · · · 0 0

...
...

...
...

...
...

...
...

eL,mL nL,mL uL,mL 0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

and the GDOP is still as defined in Equation (3), but now includes the variances of L + 3
variables, three for the receiver’s position plus the L clock biases.

To invert GTG employ the partitioned form of Equation (5) with A as in Equation (6),
but with summations over all of the satellites (all L constellations),

B =

⎡
⎢⎢⎢⎢⎢⎣

L∑
j =1

mj∑
k=1

ej ,kuj ,k

m1∑
k=1

e1,k · · ·
mL∑
k=1

eL,k

L∑
j =1

mj∑
k=1

nj ,kuj ,k

m1∑
k=1

n1,k · · ·
mL∑
k=1

nL,k

⎤
⎥⎥⎥⎥⎥⎦ (47)
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(grown from 2-by-2 to 2-by- L + 1 so as to include the East and North sums for each
constellation separately), and

C =

⎡
⎢⎢⎢⎢⎢⎣

D f1 f2 · · · fL
f1 m1 0 · · · 0
f2 0 m2 0
...

...
. . .

fL 0 0 mL

⎤
⎥⎥⎥⎥⎥⎦ (48)

with

fj =
mj∑
k=1

uj ,k and D =
L∑

j =1

mj∑
k=1

u2
j ,k (49)

For convenience define the notation

dj =
mj∑
k=1

u2
j ,k (50)

(a sum over a particular constellation) so that

D =
L∑

j =1

dj (51)

The linear algebraic arguments of the proof for one constellation are unchanged in this
extension to L constellations; the resulting lower bound on GDOP is achieved when B is
the zero matrix (effectively a form of balance on the constellations, both individually and
jointly) so that

GDOP2 ≥ trace
{
A−1} + trace

{
C−1} (52)

The minimisation over the elements of A follows the same development as in the case of
one constellation; the result is

trace
{
A−1} ≥ 4

m − D
(53)

which, itself, requires some additional balance on the constellations. (Specifically, looking
back at Equation (47), B being all zeroes requires East and North balance on each constella-
tion separately and East-Up and North-Up balance on the combined set of satellites.) What
is different with additional constellations is the minimisation of trace

{
C−1} which is now

a function of the dj , fj , and mj . The constraints on these variables are 0 ≤ dj ≤ fj ≤ mj
and that C be positive definite. It is shown in Appendix B that both the GDOP and PDOP
expressions are minimised when each fj = dj (above f = d was best for one constellation).
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The resulting DOP expressions are

GDOP2 ≥ 4
m − D

+
1 +

∑L
j =1

d2
j

m2
j

D −∑L
j =1

d2
j

mj

+
L∑

j =1

1
mj

(54)

and

PDOP2 ≥ 4
m − D

+
1

D −∑L
j =1

d2
j

mj

(55)

Strictly it is not yet shown that the minimum of PDOP for multiple constellations occurs
when B is the zero matrix; this is discussed below. Appendix B also provides details on
the minimisation of these expressions over the choices of the dj and mj . For GDOP the
minimum occurs when each of these is the same for all constellations

dj =
D
L

and mj =
m
L

(56)

Equal numbers of satellites in each constellation reflects the need in GDOP to assess the
performance of each clock bias estimate; unequal mj would result in some of these clock
variances being significantly larger than others, dominating the GDOP expression. Equal
dj reflects the L = 1 result of having the proper mix of zenith and horizon satellites. With
these selections, the GDOP expression is

GDOP2 ≥ 4mD + m2 + LD2 + L2D(m − D)
mD(m − D)

(57)

Optimising over D yields

D∗ =

√
L + 5 − 1
L + 4

m (58)

and

GDOP2 ≥

⎛
⎜⎝ (L + 4)

(
L + 4

√
L + 5

)
√

L + 5
(√

L + 5 + 1
)2 +

L√
L + 5

+ L2

⎞
⎟⎠ 1

m
(59)

Equation (58) shows that as L increases the optimal percentage of satellites at zenith
slowly decreases; Equation (59) shows the GDOP’s clear inclusion of the L clock bias
variances as the expression grows like L2 (and since it is a square, the GDOP grows like L).
For small values of L the results are

DL=1 = 0·29m and GDOPL=1 =

√
11·89

m

DL=2 = 0·27m and GDOPL=2 =

√
15·29

m

DL=3 = 0·26m and GDOPL=3 =

√
20·66

m

(60)
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For PDOP, optimising over the dj results in the fraction of satellites at zenith being the
same for all constellations

dj

mj
=

D
m

(61)

With this choice

PDOP2 ≥ 4D + m
D(m − D)

(62)

and the PDOP lower bound is independent of the counts of satellites from the different
constellations. As long as the zenith-to-horizon satellite ratio is consistent one can effec-
tively combine constellations of different sizes. This expression for PDOP matches the one
constellation result in Equation (27), so the optimum choice of D is

D∗ =

(√
5 − 1

)
m

4
≈ 0·31 m (63)

so that

PDOP2 ≥ 16(√
5 − 1

)2
m

≈ 10·47
m

(64)

achieved by having each constellation place 31% of its satellites at zenith and the remain-
ing 69% balanced at the horizon. Further, it was stated above, without proof, that PDOP
was minimised by setting B to the zero matrix; however, the fact that the lower bound on
PDOP is independent of L suggests that this is true. Specifically, consider the question,
“How could additional constellations further improve PDOP performance over that of one
constellation?”

These results can be extended to non-zero mask angle. Specifically, the lower bound for
PDOP with L constellations is identical to that in Equation (45) with μ and ν as defined in
Equation (43).

To conclude this section Figure 4 presents a real sky example. The data consists of
locations for a total of 30 satellites (12 GPS, 12 GLONASS, and six Galileo) as shown in
the top three subfigures. For m = 12, using GPS or GLONASS alone results in PDOPs of
1·15 and 1·17, respectively. The best set of 12 satellites using the combined constellations
results in PDOP = 1·00 (the lower bound is 0·934) and appears in the bottom left subfig-
ure: five GPS satellites and seven GLONASS satellites, includes the two highest elevation
satellites from each constellation, with the remainder low in elevation and distributed in
azimuth (the available Galileo satellites do not help in this case). The remaining subfigure
summarises all choices for this 30 satellite example, comparing the lower bound to the best
satellite subsets of sizes m = 4 through 30. For m = 4 GPS alone yielded the best PDOP; for
m = 5 through 21 combining GPS and GLONASS was best; above 22 the resulting PDOP
starts to separate from the bound (primarily due to the lack of balance in the combined
satellite set).
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Figure 4. A multi-constellation example: (top) the available satellites; (bottom left) the best 12 satellite choice;
(bottom right) comparison versus m.

7. CONCLUSIONS. This paper developed achievable lower bounds to GDOP and
PDOP for GNSS satellites from one constellation. It was noted that the “best” constellation
for either metric would have approximately 30% of the satellites at zenith and the remain-
ing 70% distributed about the horizon in a balanced pattern. Note that a similar analysis for
Vertical DOP (VDOP) would change the zenith and horizon distribution to half and half.

These lower bounds were then extended to the case of a non-zero mask angle. The
result is much as expected: keep a significant fraction of the satellites at zenith and place
the others balanced at the mask angle. Of interest is that the distribution of the satellites to
the two elevation angles changes as the mask angle increases; specifically, the bound for
a non-zero mask angle occurs with more than 30% zenith satellites. These results further
support the view that good constellations are a mix of high elevation and low elevation
satellites, shying away from mid elevation ones (Wei et al., 2012).

Finally, the bounds were generalised to L constellations. For GDOP, the inclusion of the
additional clock biases’ variances results in optimum constellations (i.e. those achieving
the lower bound) having equal numbers of satellites in balanced locations; restricting the
numbers of satellites from each constellation to unequal numbers results in GDOP far from
the developed lower bound. Since PDOP does not include the clock biases, the bound
is unchanged with different numbers of satellites from the multiple constellations and the
zenith/horizon split remains at the L = 1 value, approximately 30–70 for each constellation.
These multi-constellation bounds are most useful in describing potential performance when
the numbers of satellites per constellation justify the use of the extra constellation(s); when
it has both high and low elevation satellites. For example, ten properly spaced satellites

from one constellation can almost achieve PDOP =
√

10·47
10 ; however, it is impossible to

add a single satellite from a second constellation and achieve PDOP =
√

10·47
11 , the extra

satellite adds no new position information.
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APPENDIX A – THE PDOP PROOF

This appendix proves Equation (26) of the text with equality if and only if B is the zero
matrix.

Since A is symmetric and positive definite then for any B the matrix BTA−1B is also
symmetric and positive semi-definite (only positive semi-definite since B might not be full
rank). Introduce simple notation for this matrix product

BTA−1B =
[
α β

β γ

]
(A1)

in which α ≥ 0, β ≥ 0, and β2 ≤ αγ (all required so that this matrix is positive semi-
definite). Using the notation in Equation (16) for C with 0 < d ≤ f ≤ m and f 2 ≤ dm,
then

C − BTA−1B =
[

d − α f − β

f − β m − γ

]
(A2)

Since C − BTA−1B must be positive definite, the ranges for the parameters α and γ can be
further restricted to 0 ≤ α < d and 0 ≤ γ < m; also they must satisfy

� ≡ (d − α) (m − γ ) − (f − β)2 > 0 (A3)
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Taking the inverse

(
C − BTA−1B

)−1
=

1
�

[
m − γ − (f − β)

− (f − β) d − α

]
(A4)

and for PDOP the goal is to minimise

(
C − BTA−1B

)−1
[1,1] =

m − γ

(d − α) (m − γ ) − (f − β)2 (A5)

over the choices for α, β, and γ . While some of the choices might appear to be obvious
(e.g. β = f or α = 0), recall that these parameters are linked by the constraints and the
minimisation is not so simple.

Consider the impact of γ on this term. For notational simplicity, write this functional
relationship as V (γ ) as it is related to the VDOP term

V (γ ) =
m − γ

(d − α) (m − γ ) − (f − β)2 (A6)

Note that at γ = 0 this function is positive. Its slope is

dV (γ )

dγ
=

(f − β)2[
(d − α) (m − γ ) − (f − β)2]2 (A7)

To continue, consider the two cases of β =/ f and β = f :

• For β =/ f this slope is a ratio of squares; hence, is positive for all 0 ≤ γ < m and
V (γ ) takes its minimum at γ = 0. Recall that BTA−1B being positive semi-definite
requires that β2 ≤ αγ . With γ = 0 then β must equal zero. With these two choices

(
C − BTA−1B

)−1
[1,1] =

m
(d − α) m − f 2 (A8)

which is minimised at α = 0 (which also satisfies the constraints), yielding Equation
(26) with equality when B is the zero matrix (α = β = γ = 0) as was to be shown.

• If β = f then

(
C − BTA−1B

)−1
[1,1] =

m − γ

(d − α) (m − γ )
=

1
d − α

(A9)

(cancelling terms is valid since γ =/ m, noted above). To minimise this expression,
the approach is to choose the smallest valid value for α and compare the result to
that found above when β =/ f . Recall that β2 ≤ αγ . Since β = f this is f 2 ≤ αγ

so clearly one cannot pick α = 0; the smallest possible α corresponds to the largest
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possible γ , say m − ε for some small, positive ε. The smallest α is

α =
f 2

m − ε
(A10)

and the PDOP term is

(
C − BTA−1B

)−1
[1,1] =

m − ε

d (m − ε) − f 2 (A11)

Recalling that ε > 0 consider this result for small ε. First, its slope with respect
to ε is

ε2[
d (m − ε) − f 2

]2 (A12)

positive for all ε > 0. Next, its limit as ε goes to zero is

lim
ε→0

m − ε

d (m − ε) − f 2 =
m

dm − f 2 (A13)

which matches the lower bound when β =/ f . Since β = f requires that ε > 0 the
resulting value is greater than that found when β =/ f ; hence, the first case with
β =/ f (equivalently B being the zero matrix) also minimizes the PDOP term.

APPENDIX B – PROOFS FOR L CONSTELLATIONS

Referring to the text of Section 6, the GDOP and PDOP expressions both include the
inverse of C. First, its determinant can be developed by expanding on its first column
or row

det C =

⎛
⎝ L∏

j =1

mj

⎞
⎠
⎛
⎝D −

L∑
j =1

f 2
j

mj

⎞
⎠ =

⎛
⎝ L∏

j =1

mj

⎞
⎠� (B1)

defining � as the second of these terms (note that � is positive since the determinant must
be positive). Next, note that for fixed mj , j = 1, 2, . . . L, � is trivially maximised by making
each fj as small as possible (equal to dj in this notation). The inverse of C is

C−1 =
1
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ∗ ∗ ∗
∗ 1

m1

(
� − f 2

1

m1

)
∗ ∗
. . .

∗ ∗ 1
mL

(
� − f 2

L

mL

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(B2)

in which each ∗ represents a term of no current interest. The result is

trace
{
C−1} =

1
�

+
L∑

j =1

1
mj

+
1
�

L∑
j =1

f 2
j

m2
j

(B3)
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for GDOP and

C−1
[1,1] =

1
�

(B4)

for PDOP. It is clear that the PDOP term is minimised by maximising �; equivalently,
PDOP is minimised by setting fj = dj . The same is true for GDOP. Specifically, examining
the trace expression, the second term is fixed (not dependent upon the fj ), the first term is
smallest when � is largest (and fj is smallest), and the third term is also smallest when fj is
smallest; hence, for both GDOP and PDOP, and any number of constellations, the bounds
are minimised when fj = dj . The resulting DOP expressions are

GDOP2 ≥ 4
m − D

+
1 +

∑L
j =1

d2
j

m2
j

D −∑L
j =1

d2
j

mj

+
L∑

j =1

1
mj

(B5)

and

PDOP2 ≥ 4
m − D

+
1

D −∑L
j =1

d2
j

mj

(B6)

Below the minimum of the right-hand side of each of these expressions is found over the
choices of the mj , 0 < mj < m, and dj , 0 ≤ dj ≤ mj , under the constraints

L∑
j =1

mj = m and
L∑

j =1

dj = D < m (B7)

B.1. PDOP. For PDOP, the dj and mj appear only in the denominator of the quotient
term of Equation (B6); hence, it is sufficient to maximise that component or, equivalently, to
minimise just the summation over j . Employing a Lagrange multiplier, λ, for the constraint
on the dj , minimise

L∑
j =1

d2
j

mj
+ λ

⎛
⎝ L∑

j =1

dj − D

⎞
⎠ (B8)

The necessary condition for an extremum is that the m first derivatives with respect to the
dj are all equal to zero; the unique solution is

dj = D
mj

m
(B9)

yielding

PDOP2 ≥ 4
m − D

+
1

D − D2

m

=
4D + m

D (m − D)
(B10)

only a function of D and m, not L or the mj .

https://doi.org/10.1017/S0373463317000248 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000248


NO. 5 LOWER BOUNDS ON DOP 1059

B.2. GDOP. This case follows a somewhat unorthodox manner to minimize the right-
hand side of Equation (B5): first the larger quotient is examined, selecting the dj so as to
separately maximise the denominator and minimise the numerator and then, recombining,
find an extremum of the overall expression in terms of the mj .

The denominator of the quotient is identical to that considered above under PDOP;
specifically, it is maximised if the dj are selected as in Equation (B9), yielding

D −
L∑

j =1

d2
j

mj
≤ D (m − D)

m
(B11)

Next consider the minimisation of the numerator of the quotient in Equation (B5)

1 +
L∑

j =1

d2
j

m2
j

(B12)

Since the one is irrelevant, following a nearly identical argument to that above yields the
best choice

dj = D
m2

j∑L
n=1 m2

n

(B13)

(note that while the expressions for the optimum dj resulting from these two steps are
different, it is possible to simultaneously achieve them as described below) yielding

1 +
L∑

j =1

d2
j

m2
j

≥ 1 +
D2∑L
j =1 m2

j

(B14)

Combining these yields the lower bound is

GDOP2 ≥ 4D + M
D (m − D)

+
mD

m − D
1∑L

j =1 m2
j

+
L∑

j =1

1
mj

(B15)

Note that contrary to the PDOP result, the resulting right hand side is a function of the mj .
While Lagrange multipliers could again be employed, it is more convenient to optimise

this expression over the constraint on the mj using substitution. Specifically, rewriting the
constraint equation as

mL = m −
L−1∑
j =1

mj (B16)

and substituting into the right-hand side of Equation (B15), define

W =
4D + m

D (m − D)
+

mD
m − D

1∑L−1
j =1 m2

j +
(

m −∑L−1
j =1 mj

)2 +
L−1∑
j =1

1
mj

+
1

m −∑L−1
j =1 mj

(B17)
as an unconstrained function of L − 1 variables (requiring that each mj > 0). The nec-
essary condition for a minimum of W is that its first derivatives with respect to the mn,
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n = 1, 2, . . . L − 1, equate to zero:

∂W
∂mn

= −
(

2md
m − D

)
mn − mL(∑L

j =1 m2
j

)2 − 1
m2

n
+

1
m2

L
= 0 (B18)

There are several observations:

• One solution to satisfying these first derivative expressions is having all the mj being
equal

mj =
m
L

(B19)

Note that this also results in both conditions on the dj being met with

dj =
D
L

(B20)

The resulting GDOP expression reduces to

GDOP2 ≥ 4mD + m2 + LD2 + L2D (m − D)

mD (m − D)
(B21)

• At this solution, the second derivatives are

∂2W
∂mn∂mr

∣∣∣∣
mn=mr= m

L

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4L2

m3

(
L − D

m − D

)
; n = r

2L2

m3

(
L − D

m − D

)
; n =/ r

(B22)

so that the L − 1-by- L − 1 Hessian matrix is

∇W =
2L2

m3

(
L − D

m − D

)
⎡
⎢⎢⎢⎣

2 1 · · · 1
1 2 1

...
. . .

...
1 1 · · · 2

⎤
⎥⎥⎥⎦ (B23)

This Hessian is positive definite if its coefficient is; hence, a minimum of the GDOP
bound is achieved if

L >
D

m − D
(B24)

equivalently,
D
m

<
L

L + 1
(B25)

Since the ratio of D to m is the fraction of satellites at zenith, and this was seen to be
approximately 30% for L = 1, this condition is expected to be met for all L.

• The optimisation approach is quite atypical:
◦ First, just the one denominator term was optimised (maximised) over the dj .

While the result is truly a lower bound on GDOP, the condition that each dj
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be proportional to its corresponding mj might not be necessary for the overall
minimisation of GDOP and the lower bound resulting from this denominator
might not be achievable.

◦ Next, the resulting GDOP expression was minimised over the dj yielding the
condition that each dj now be proportional to the square of its corresponding
mj . As in the first step the function being optimised is convex in the dj so this
extremum is unique. Further, while different from the first result, the two sets of
conditions on the dj are not mutually exclusive; the two expressions are identical
if the mj are all equal.

◦ Finally, it was observed that an extremum of the GDOP expression results when
the mj are all equal. The only caveat is that this might not be a unique minimum.
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