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Let me make one thing crystal clear. . .
R. Nixon

1. Introduction

Let X be a smooth variety over a perfect field k of characteristic p > 0. Let W (k)
denote the ring of p-Witt vectors over k. It is a complete discrete valuation ring with
W (k)/pW (k) = k. Recall (see [I1,I2]) that one has defined a pro-sheaf of W (k)-algebras

WX = {Wn,X}n=1,2,..., (1.1)

where Wn,X is just the sheafified functor of p-Witt vectors of length n, applied to OX .
One has a surjection of algebras Wn � W1, (r1, r2, . . . ) �→ r1, and the formula

(0, r2, . . . ) · (0, s1, . . . ) = p(0, r1s1, . . . )

gives a canonical divided power structure on the kernel. It then follows that, for
U = Spec(R) ⊂ X an affine open, the embedding

U ↪→ Spec(Γ (U, Wn,X))

with the above divided powers represents an object in the crystalline site of X/W . By
definition, a crystal E on X/W is a sheaf of OX,crys-modules on the crystalline site, where
OX,crys(U ↪→ V ) := Γ (V, OV ). The rule which associates to E the Zariski sheaf

E := {U �→ E(U ↪→ Spec(Γ (U, Wn,X)))n=1,2,...} (1.2)

defines a functor from crystals to WX -modules.
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316 S. Bloch

In fact, E has more structure. Quite generally, if U ↪→ V is an object in the crystalline
site and if V (2) ⊂ V ×Spec W (k) V is the first infinitesimal neighbourhood of the diagonal,
we have a diagram

U −−−−→ V (2)

∥∥∥ pr1

⏐⏐�
⏐⏐�pr2

U −−−−→ V

From the crystalline property, we deduce an isomorphism,

pr∗
1 E(U ↪→ V ) ∼= pr∗

2 E(U ↪→ V ), (1.3)

i.e. a connection on the OV -module. This connection is integrable (see [Be]).
Recall that the de Rham–Witt complex is a complex of pro-sheaves for the Zariski

topology on X,
{Wn,X

d−→ WnΩ1
X → · · · → WnΩm

X }n=1,2,..., (1.4)

where m = dimX. At level n, the complex is a quotient of the de Rham complex of
the sheaf of rings Wn,X . In particular, the integrable connection on the W -module E

deduced from (1.3) permits one to couple E to WΩ•,

E
∇−→ E ⊗W WΩ1

X
∇−→ E ⊗W WΩ2

X
∇−→ · · · . (1.5)

We refer to ∇ as a de Rham–Witt connection on E. More generally, for a W -module E,
a de Rham–Witt connection on E will be a map ∇ : E → E ⊗W WΩ1

X satisfying the
Leibniz rule ∇(we) = w∇(e)+ e⊗dw. The connection is integrable if ∇2 = 0 as in (1.5).
Connections arising from crystals are integrable.

The functor E �→ (E, ∇) was studied in [E]. Let un : (X/Wn)crys → Xzar be the natural
map. Assume the crystal E is locally free as an OX,crys-module. (This is the only case to
be considered in the present note.) The main result in [E, Theorem 2.1] is an isomorphism
in the derived category of Zariski sheaves on X,

Run,∗(E) ∼= {E ⊗ Wn → E ⊗ WnΩ1
X → · · · }. (1.6)

Taking H
0, it follows easily that the functor E �→ (E, ∇) is fully faithful. Indeed, for

locally free crystals Ei, i = 1, 2,

Run,∗ Hom(E1, E2) ∼= {E∨
1 ⊗ E2 ⊗ Wn → E∨

1 ⊗ E2 ⊗ WnΩ1 → · · · },

so

Homcrys(E1, E2) ∼= lim←−
n

H
0
Run,∗(E∨

1 ⊗ E2)

∼= lim←−
n

ker(H0(X, E∨
1 ⊗ E2 ⊗ Wn) → H0(X, E∨

1 ⊗ E2 ⊗ WnΩ1))

∼= lim←−
n

Hom∇(E1 ⊗ Wn, E2 ⊗ Wn)

∼= Hom∇(E1, E2).
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The main result in the following is that this functor is an equivalence of category. More
precisely, (E, ∇) is said to be quasi-nilpotent if the connection (note that W1Ω

•
X = Ω•

X

is the de Rham complex over X) E ⊗ OX → E ⊗ Ω1
X is quasi-nilpotent in the sense

of [Be, Definitions 4.10 and 4.14].

Theorem 1.1. The functor E �→ (E, ∇) defines an equivalence of category between the
category of locally free crystals on X and the category of locally free WX -modules E

with a quasi-nilpotent, integrable connection ∇.

The Witt vector sheaf WX has a canonical Frobenius endomorphism σ given by raising
coordinates to the pth power. The differential dσ : WΩ1

X → WΩ1
X is defined. In fact,

dσ = pF , where F : WΩ1
X → WΩ1

X is the Frobenius endomorphism [I2]. Let (E, ∇) be
as above. A Frobenius structure on (E, ∇) is, by definition, a map Φ : σ∗E → E that is
horizontal for the connection. When E is an F -crystal [K], then (E, ∇) has a Frobenius
structure. As a consequence of Theorem 1.1, one gets the following result.

Corollary 1.2. The functor E �→ (E, ∇) defines an equivalence of category between the
category of locally free F -crystals on X and the category of locally free WX -modules E

with a quasi-nilpotent, integrable connection ∇ and a Frobenius structure Φ : σ∗E → E.

The de Rham–Witt complex is globally defined and functorial in X. Heretofore, much
of the work on crystals has involved choosing local liftings of X and Frobenius, and then
studying connections on the local lifting. My hope is that the possibility of doing this
canonically will simplify and clarify the picture.

It seems natural to ask whether one has some sort of D-module interpretation of
de Rham–Witt connections. The naive idea of defining derivations to be HomW (WΩ1, W )
does not seem to work, but perhaps there is something more clever.

2. The structure of WΩ• over a polynomial ring

Much of the material in this section is taken from [I2]. Let A = k[T1, . . . , Tn] be a
polynomial ring where k is a perfect field as above. Let K be the quotient field of W (k),
and let

C :=
⋃
r�0

K[T p−r

1 , . . . , T p−r

n ].

An element x ∈ Ωm
C/K can be written uniquely in the form

x =
∑

1�i1<···<im�n

ai1,...,im
(T ) d log(Ti1) ∧ · · · ∧ d log(Tim), (2.1)

where aI ∈ C is divisible by (Ti1 . . . Tim
)p−r

for some r � 0. We say that such an x is
integral if the aI(T ) have coefficients in W (k) ⊂ K. Define a subcomplex E• ⊂ Ω•

C by

Ei = {x ∈ Ωi
C | x, dx integral}. (2.2)

For example, since dT p−r

= p−rT p−r

d log(T ), it follows that

E0 =
⋃
r�0

prW [T p−r

1 , . . . , T p−r

n ]. (2.3)
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The subcomplex E• is compatible with the natural grading on Ω•
C , where the I =

(i1, . . . , in)-graded piece is spanned as a K-vector space by

T i1
1 · T i2

1 · · · · · T in
n d log(Tj1) ∧ · · · ∧ d log(Tjr )

for varying {j1, . . . , jr}. We write E•(I) for the corresponding grading.
The main point [I1, § 2, p. 550] is that WΩ•

A is a suitable completion of E•. Indeed,
define an operator F on Ω•

C from the ring automorphism F ∗ : C ∼= C, F ∗(T ) = T p,
F ∗|W (k) = Frobenius via the formula

F

(∑
aI(T ) d log(Tj1) ∧ · · · ∧ d log(Tjr )

)
=

∑
F ∗(aI) d log(Tj1) ∧ · · · ∧ d log(Tjr ).

Then F stabilizes E•, as does V := pF−1. Define filrEi := V rEi + d(V rEi−1). One
shows that WrΩ

i
A = Ei/filrEi.

It will be convenient to write
E i := Ei/pEi, (2.4)

so, for example, E0 is an augmented A-algebra,

E0 = A ⊕ J . (2.5)

Here, J ⊂ E0 is generated over k by the classes psT I , where I = (i1, . . . , in), with
ij ∈ Z[1/p], ij � 0, s := maxj{− ordp(ij)} > 0.

Lemma 2.1. There is a split-exact sequence

0 → J d−→ E1/J E1 → Ω1
A → 0.

Proof. Here, d is induced from the differential E0 → E1. The definition of the maps and
the splitting are clear. It remains to show exactness.

One has a grading E• = ⊕E•(I) as above.
We claim that

E1 = Ω1
A + J E1 + dJ . (2.6)

To see this, let T I
∑

jbj d log(Tj) ∈ E1(I) represent an element in E1(I). In other
words, writing I = (i1, . . . , in), we have bj , irbj − ijbr ∈ W (k). Let s = s(I) :=
max(− ordp(ij)) > 0 as above, and write ι = ps(i1, . . . , in). Let f := min(ordp(bj)),
and write β = p−f (b1, . . . , bn). Write ῑ and β̄ for the images of these vectors mod p in
kn. By construction, these vectors are non-zero. We have

β̄ ∧ ῑ = ps−f (. . . , bjir − brij , . . . ). (2.7)

If f < s, we conclude that β ≡ cι mod p for some c ∈ W (k). This implies that

T I
∑

j

bj d log(Tj) ≡ pfc · d(psT I) mod pf+1. (2.8)
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(Note that the right-hand side lies in dJ .) Continuing in this way, we may assume that
ps|bj for all j, which implies that

T I
∑

j

bj d log(Tj) =
∑

j

psT I−{ij}(p−sbjT
ij

j d log(Tj)) ∈ J E1. (2.9)

The claim (2.6) follows. In particular, we see that Ω1
E0 � E1, from which it follows that

Ω1
A ⊕ J � E1/J E1.
It remains to show that the map d in the exact sequence is injective. This can be

done one graded piece at a time, so it suffices to show d(psT I) �≡ 0 mod J E1. By the
assumption on s, d(psT I) = T I

∑
j psij d log(Tj) and psij is a unit for some j. On the

other hand, elements in the I-graded piece of J E1 are of the form T I
∑

cj d log(Tj),
where all the cj ≡ 0 mod p (cf. (2.9)). It follows that d : J ↪→ E1/J E1, proving the
lemma. �

In what follows we shall need detailed information about the de Rham–Witt complex.
For a careful exposition of the de Rham–Witt complex, see [I1, §§ 1, 2].

Corollary 2.2. Let W(A) = W (A)/pW (A) and let

IA := ker(W(A) → A), WΩ1
A = WΩ1

A/pWΩ1
A.

Then there is a split-exact sequence

0 → IA
d−→ WΩ1

A/IAWΩ1
A → Ω1

A → 0. (2.10)

Proof. Using the lemma and the identity

WrΩ
i
A = Ei/(V nEi + d(V nEi−1)),

one reduces to showing
(V nE1 + J E1) ∩ dJ = (0).

A non-zero element in dJ of graded degree I is represented by an element

T I
∑

j

aj d log(Tj) ∈ E1,

where one at least of the aj ∈ W (k) is a unit. On the other hand, elements in V nE1 +
J E1 are represented by elements where all the aj are divisible by p. (For example,
V (T I

∑
j bj d log(Tj)) = pT I/p

∑
bj d log(Tj).) The corollary follows from this. �

Lemma 2.3. The composition

J E1 d−→ E2 → E2/(Ω2
A + J E2 + V E2)

is injective.
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Proof. We can work with I-graded pieces for I non-integral and ignore Ω2
A. The map

sends ∑
τµwµ �→

∑
dτµ ∧ wµ mod J E2, τµ ∈ J , wµ ∈ E1. (2.11)

If we lift elements of J E2 + V E2 to E2 and expand as

T I
∑
q,r

cq,r d log(Tq) ∧ d log(Tr),

we find all coefficients cq,r ≡ 0 mod p. (Indeed, J is generated by elements psT I for
s = s(I) > 0, and V = pF ∗−1.) On the other hand, if we lift

∑
τµwµ to an element

ω ∈ E1 and expand dω = T I
∑

q,r Cq,r d log(Tq) ∧ d log(Tr), then this class is trivial in
E2 if and only if the Cq,r are divisible by p. Indeed, the condition for a form to lie in
E• is that both it and its differential have integral coefficients. Since dω is closed and
since the E• have no p-torsion, the assertion follows. But notice the expansion of ω ∈ E1

also has all coefficients divisible by p because the τµ do, so if the coefficients of dω are
divisible by p, then ω/p is integral, so ω ≡ 0 mod p. �

3. The structure of WΩ•
R for general R

Let R be a commutative ring in which every rational prime 
 �= p is invertible. We write
W (R) for the ring of p-Witt vectors with coefficients in R. Recall (see [I1]) that an
element a ∈ W (R) has Witt coordinates a = (a0, a1, . . . ). The ghost coordinates

wn(a) :=
n∑

j=0

pjapn−j

j , n = 0, 1, . . . ,

define ring homomorphisms W (R) → R. The Frobenius F : W (R) → W (R) (respec-
tively, Fn : Wn(R) → Wn−1(R)) is a ring homomorphism satisfying wn ◦ F = wn+1.
When pR = 0, F (a0, a1, . . . ) = (ap

0, a
p
1, . . . ).

Lemma 3.1. Let S be a W (k)-algebra and assume S has no p-torsion. Let f : S →
S be a ring homomorphism lifting the pth power Frobenius map on S/pS. Write
W (S) = lim←−Wn(S) for the ring of p-Witt vectors on S. Then there exists a unique ring
homomorphism ρ = ρf : S → W (S) such that ρ ◦ f = F ◦ ρ. One has wn ◦ ρ = fn,
n = 0, 1, . . . .

Proof. The referee suggests this lemma is due to Cartier. For a proof, see [L, VII,
§ 4]. �

With notation as above, let R = S/pS. We will be more interested in the composed
map, which we also denote by ρ = ρf ,

ρ = ρf : S → W (S) → W (R). (3.1)

(This composed map still depends on the choice of f lifting Frobenius.) Write

W(R) = lim←−Wn(R) = W (R)/pW (R), WΩr
R = WΩr

R/pWΩr
R. (3.2)
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Let I ⊂ W be the kernel of the projection W → R. Let

σ := ρ mod p : R → W. (3.3)

We have a split-exact sequence

0 → I → W
σ←−−−→ R → 0. (3.4)

Note that I2 = (0), because I = V W and V (x)V (y) = pV (xy). In particular, I has
a natural R-module structure, which is independent of the choice of σ. (Recall that σ

depends on the choice of f .) Let
d : I → WΩ1

R (3.5)

be induced by the de Rham–Witt differential.

Lemma 3.2. With notation as above, assume R is smooth over k. There is a split-exact
sequence of R-modules,

0 → I
d−→ WΩ1

R/IWΩ1
R

σ←−−−→ Ω1
R → 0.

Proof. The maps are all defined. To check exactness, it suffices to work locally on
Spec(R), so we may assume that R is an étale algebra over a polynomial ring A :=
k[T1, . . . , Tn]. One knows (see [I1, Proposition 1.14, p. 549]) that, in this case, WmΩi

R
∼=

WmΩi
A ⊗Wm(A) Wm(R), which implies

WmΩi
R/IRWmΩi

R
∼= WmΩi

A ⊗Wm(A) R ∼= WmΩi
A/IAWmΩi

A ⊗ R. (3.6)

Let Im,R = ker(Wm(R) → R). Since R = RpA and V (rpa) = rV (a), we see that

Im,R = Im,A ⊗A R. (3.7)

Also, of course, Ω1
R = Ω1

A ⊗A R. Combining these identities, exactness in Lemma 3.2
reduces to the case R = A = k[T1, . . . , Tn]. This is Corollary 2.2. �

4. Descent modulo p

Let R be a smooth k-algebra as above, and let (M, ∇) be an integrable de Rham–
Witt connection. We assume M ∼= W (R)r as a W (R)-module. (For the complicated
calculations that follow, it is convenient to work with W (R)-modules rather than pro-
objects of Wn(R)-modules. Because our W -modules are assumed to be locally free in
Theorem 1.1, this is legitimate. I do not know what is true more generally.)

Write M = M/pM and let ∇ = ∇M denote the corresponding connection on M as
well. Define

(N0, Ξ0) := (M, ∇) ⊗W (R) R = (M,∇) ⊗W R, (4.1)

where W = W (R)/pW (R).
Assume we are given a flat, p-adically complete W (k)-algebra S, an isomorphism of

k-algebras R ∼= S/pS, and a lifting f : S → S of Frobenius. Let σ : R → W be the
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corresponding map (3.3). Corresponding to σ, we have the direct sum decomposition
from Lemma 3.2,

WΩ1
R/IWΩ1

R
∼= Ω1

R ⊕ I. (4.2)

Define a map ∇I : M → N0 ⊗R I to be the composition

M ∇−→ M ⊗W WΩ1
R → M ⊗W (WΩ1

R/IWΩ1
R)

∼= M ⊗W R ⊗R (Ω1
R ⊕ I)

proj−−→ N0 ⊗R I. (4.3)

Let π : M → N0 = M/IM be the reduction map, and let

θ = (π,∇I) : M → N0 ⊕ (N0 ⊗R I) ∼= N0 ⊗R,σ W. (4.4)

Proposition 4.1. The map θ is a horizontal isomorphism of connections

(M,∇M) ∼= (N0, Ξ0) ⊗R,σ W.

Proof. Note first that θ is a homomorphism of W-modules. In other words, given x ∈ R,
m ∈ M and ι ∈ I, we have θ(σ(x)m) = xθ(m) and θ(ιm) = π(m) ⊗ ι. In particular, θ is
the identity mod I, so it is an isomorphism.

We must show θ is compatible with connections, i.e. the diagram

M θ−−−−→ N0 ⊗(R,σ) W⏐⏐�∇
⏐⏐�Ξ0⊗1+1⊗d

M ⊗W WΩ1
R

θ⊗1−−−−→ N0 ⊗(R,σ) WΩ1
R

(4.5)

commutes.
Identify N0 = ker(∇I) ⊂ M. Let {mi} be an R-basis for the free module N0. By

assumption,
∇(m�) =

∑
i

mi ⊗ ηi
� +

∑
i,µ

mi ⊗ τµwi,µ
� , (4.6)

where ηi
� ∈ Ω1

R

σ
↪→ WΩ1

R, τµ runs through an R-basis of I, and wi,µ
� ∈ WΩ1

R. It follows
from integrability that

0 = ∇2(m�) ≡
∑
i,µ

mi ⊗ dτµ ∧ wi,µ
� mod N0 ⊗ (Ω2

R + IWΩ2
R). (4.7)

I claim that the composition map

IWΩ1
R

d−→ WΩ2
R → WΩ2

R/(Ω2
R + IWΩ2

R) (4.8)

is injective. Granting this, it follows from (4.6) that

∇(m�) =
∑

i

mi ⊗ ηi
� ∈ N0 ⊗R Ω1

R, (4.9)

which shows that the diagram (4.5) commutes on the m�. Since these form a W-basis for
M, the diagram commutes, proving the proposition.

To see that (4.8) is injective, one can localize R and assume R is étale over a polynomial
ring A. The assertion then follows by tensoring with R from the corresponding assertion
for A. This is Lemma 2.3. �
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5. Descent modulo pN ; proof of Theorem 1.1

We keep the same notations as above. In particular, we view Ω•
R ⊂ WΩ•

R via the map
σ : R ↪→ W. Define C• = WΩ•

R/Ω•
R. We define a decreasing filtrations P ∗WΩ•

R and
P jC• by

P jWΩi
R = Image(WΩi−j

R ∧ Ωj
R) ⊂ WΩi

R, P jCi = P jWΩi
R/Ωi

R. (5.1)

Lemma 5.1. We have Hi(grj
P C•) = (0) for i = 0, 1 and all j.

Proof. Again, as above, we reduce to the case where R = A = k[T1, . . . , Tn] is a poly-
nomial ring and we work with I-graded pieces. For I integral, we are in Ω•

A, so C•(I) = (0).
Assume s = s(I) = max{− ordp(ij)} > 0. Then

H0(gr0
P C•(I)) = ker(d : C0(I) → C1(I)/P 1C1(I)). (5.2)

Suppose − ordp(ij) = s(I). Then d(psT I) contains the term T Id log(Tj), which does not
lie in P 1C1(I), from which it follows that this kernel is zero.

For H1, there are two complexes to consider

C0(I) → C1(I)/P 1C1(I) → C2(I)/P 1C2(I), (5.3)

0 → P 1C1(I) → P 1C2(I)/P 2C2(I). (5.4)

We write s = s(I) > 0 and note that PmCm(I) consists of elements of the form
T I

∑
|J|=m aJd log(TJ) with ordp(aJ) � s > 0. (Here, of course, d log(Tj) := d log(Tj1) ∧

d log(Tj2) ∧ · · · .) In particular, if w ∈ P 1C1(I) and dw ∈ P 2C2(I), then w/p is integral,
so w ≡ 0 mod p. It follows that the complex (5.4) has H1 = (0).

Finally, we consider the complex (5.3). We start with w ∈ C1(I) represented by
T I

∑
vj d log(Tj) ∈ E1. Integrality means that

vj ∈ W (k) ∀j, xm� := v�im − vmi� ∈ W (k) ∀m, 
. (5.5)

The assumption dw ∈ P 1C2 means that

∑
xm� d log(Tm�) =

∑
ν

(∑
µ

yµν d log(Tµ)
)

∧ d log(Tν), (5.6)

where
yµν ∈ W (k), yµνiτ − yτνiµ ∈ W (k) ∀µ, ν, τ. (5.7)

Furthermore, if yµν �= 0, then because of the denominators in the d log terms, we must
have iµiν �= 0. Thus we can define θab := yabi

−1
a with the understanding that θab = 0 if

yab = 0. Note that, by (5.7),

θab − θcb ∈ i−1
a i−b

b W (k). (5.8)
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Fix ε so that ordp(iε) = −s = −s(I) < 0. Define w′ := T I
∑

� θε� d log(T�). Because
ps|θε�, we see that w′ ∈ P 1C1. We have (defining z�m)

d(w − w′)

= T I
∑
m,�

((v� − θε�)im − (vm − θεm)i�) d log(T�m)

= T I
∑
m,�

((v� − θm� + (θm� − θε�))im − (vm − θ�m + (θ�m − θεm))i�) d log(T�m)

= T I
∑
m,�

(xm� − (ym� − y�m) + pszm�) d log(Tm�)

= psT I
∑
m,�

zm� d log(Tm�). (5.9)

Here, zm� ∈ W (k).
Replacing w by w−w′, it follows from the above calculation that we may suppose that

v�im − vmi� ∈ psW (k). (5.10)

Recall we had chosen ε, so that − ordp(iε) = s = s(I). Since v� ∈ W (k), we can write

vε = cps iε, c ∈ W (k). (5.11)

Then, for any m,

vm = cps im − i−1
ε psx, x ∈ W (k). (5.12)

In particular, cps T I ∈ C0(I), and

d(cps T I) = w + p2sT I
∑

j

bj d log(Tj), bj ∈ W (k). (5.13)

It follows that w = d(cps T I) ∈ C1(I). �

Our final task will be to ‘lift’ (so to speak) our mod p descent to a descent mod pN . We
keep the notation from § 4. Recall that we have chosen a lifting S of R and a Frobenius
f : S → S which induces ρ : S ↪→ W (R). We view S as a subring of W (R) via ρ. We
fix a trivialization M = W (R)⊕r, and we write G for the connection matrix. G is an
r × r matrix with entries in WΩ1

R. We assume inductively that the entries of G lie in
Ω1

S + psWΩ1
R for some s � 1,

G = β + psγ. (5.14)

Lemma 5.2. There exists a matrix Us ∈ Matr(W (R)) such that the coordinate change
I + psUs leads to a connection matrix with entries in Ω1

S + ps+1WΩ1
R. The matrix Us is

unique modulo p.
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Proof. The new connection matrix is

(I + psUs)G(I + psUs)−1 + psdUs(I + psUs)−1

≡ β + ps(γ + [Us, β] + dUs) mod ps+1. (5.15)

The curvature equation dG − G2 = 0 yields

dβ − β2 + ps(dγ − βγ − γβ) ≡ 0 mod p2s. (5.16)

Recall that we have defined (C•, d) = (WΩ•
R/Ω•

R, d). One has an action of Ω•
R on C•

in an obvious sense. Let b := β mod p ∈ Matr(Ω1
R). Note that db − b2 = 0. Define a

complex (Matr(C•), δb) by

δb(e) = de + (−1)deg e[e, b], (5.17)

where the bracket is the graded bracket [e, b] = eb − (−1)deg ebe. Note that

δ2
b (e) = (−1)deg e(d[e, b] − [de + (−1)deg e[e, b], b])

= (−1)deg e(de)b + e(db) − (db)e + b(de) − (−1)deg e(de)b

− b(de) − eb2 + (−1)deg ebeb + (−1)deg e+1beb + b2e

= 0. (5.18)

By (5.16), γ represents an element in H1(Matr(C•), δb). By (5.15), the desired matrix Us

exists if and only if the cohomology class of γ is trivial. If H0 = (0), then Us is unique
mod p.

The filtration P ∗ Matr(C•) := Matr(P ∗C•) is stabilized by δb, and the differential on
grP Matr(C•) is just given by d. Using the exact sequences associated to the filtration,
we see for any i that

Hi(gr∗
P Matr(C•), d) = (0) ⇒ Hi(Matr(C•), δb) = (0).

But the complex gr∗
P Matr(C•), d) is just a direct sum of copies of (gr∗

P C•, d), so the
desired vanishing follows from Lemma 5.1. �

We turn now to the proof of Theorem 1.1. As explained in the introduction (see
equation (1.2)), one has a functor E �→ (E, ∇) associating a de Rham–Witt connection
to a crystal on X. By [E, II, Théorème 2.1], there is a canonical isomorphism between
the cohomologies of E and (E, ∇). In particular, looking at H0, we see that the above
functor is fully faithful. This reduces the problem of essential surjectivity to a local
problem (gluing data lifts canonically).

We may assume that X = Spec(R) and we have S, f lifting R and the Frobenius as
above, so S ↪→ W (R). Given an integrable de Rham–Witt connection (M, ∇), we have,
from Proposition 4.1 and Lemma 5.2, that there exists a canonical descent (N, Ξ) to an
S-module with an integrable connection such that (M, ∇) = (N, Ξ) ⊗S W (R). Recall
that in § 1 we defined (M, ∇) to be quasi-nilpotent if the connection M/V W · M on

https://doi.org/10.1017/S147474800400009X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800400009X


326 S. Bloch

Spec(R) was quasi-nilpotent. This connection coincides with the connection on N/pN ,
so it follows that the functor

N �→ N ⊗S W (R), (5.19)

from quasi-nilpotent connections on S to quasi-nilpotent de Rham–Witt connections, is
essentially surjective. One knows (from a theorem of Berthelot; for a precise statement,
see [K, § 2.4, p. 145]) that the category of crystals on Spec(R) is equivalent to the
category of quasi-nilpotent connections on S. The functor associating a de Rham–Witt
connection to a crystal is easily identified with (5.19) (use the crystal property). It follows
that the functor from crystals to quasi-nilpotent de Rham–Witt connections is essentially
surjective, and hence, by the result of Etesse cited above, is an equivalence of category.
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