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Analysis of the unstable Tollmien–Schlichting
mode on bodies with a rounded leading edge
using the parabolized stability equation

M. R. TURNER† AND P. W. HAMMERTON
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK

(Received 21 December 2007 and in revised form 5 November 2008)

The interaction between free-stream disturbances and the boundary layer on a body
with a rounded leading edge is considered in this paper. A method which incorporates
calculations using the parabolized stability equation in the Orr–Sommerfeld region,
along with an upstream boundary condition derived from asymptotic theory in the
vicinity of the leading edge, is generalized to bodies with an inviscid slip velocity
which tends to a constant far downstream. We present results for the position of
the lower branch neutral stability point and the magnitude of the unstable Tollmien–
Schlichting (T-S) mode at this point for both a parabolic body and the Rankine body.
For the Rankine body, which has an adverse pressure gradient along its surface far
from the nose, we find a double maximum in the T-S wave amplitude for sufficiently
large Reynolds numbers.

1. Introduction
When a body is placed in a mean flow with a small-amplitude unsteady perturbation,

the position of boundary layer transition depends on the stability characteristics
of the body and the interactions of the unsteady disturbance with the boundary
layer, a process known as receptivity (Morkovin 1985). For two-dimensional large
Reynolds number flows, the transfer of energy from the free-stream disturbance to
the instability wave occurs due to non-parallel mean flow effects. These effects occur
at the leading edge of the body (Goldstein 1983) or further downstream where the
mean flow varies rapidly in the streamwise direction, such as at surface roughness
elements (Goldstein 1985; Kerschen, Choudhari & Heinrich 1990), regions of marginal
stability (Goldstein, Leib & Cowley 1992) or changes in surface roughness (Goldstein
& Hultgren 1989). Once energy has been transferred to this instability wave, the
disturbance typically decays in amplitude downstream until the lower branch neutral
stability point is reached, beyond which the disturbance grows until nonlinear effects
become important and transition occurs. The work by Saric, Reed & Kerschen (2002)
reviews the asymptotic, numerical and experimental approaches to receptivity and
transition.

In this paper we formulate a general theory for calculating the position of the
lower branch neutral stability point and the amplitude of the instability wave at this
point for bodies where the slip velocity tends to a constant far downstream. Using
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168 M. R. Turner and P. W. Hammerton

this theory we make a comparison of the results for a parabolic body, which has a
positive pressure gradient along its surface, and a Rankine body, which has a negative
pressure gradient along the majority of its surface. The qualitative behaviour of these
two bodies along with the flat plate considered in Turner & Hammerton (2006) covers
bodies with a positive, a negative and a zero-pressure gradient on its surface.

For small-amplitude unsteady disturbances to a semi-infinite flat plate, Goldstein
(1983) calculates the asymptotic structure along the plate for large Reynolds numbers.
This asymptotic structure consists of a region close to the leading edge where the flow
is governed by the unsteady boundary layer equation. The far downstream asymptotic
form of the solution in this region consists of a Stokes layer and a sum of asymptotic
eigenmodes (Lam & Rott 1960, 1993) which, through a multiplicative receptivity
coefficient, links the amplitude of these eigenmodes to the free-stream disturbance.
As we move downstream of the leading edge, the linearized unsteady boundary
layer equation (LUBLE) breaks down but it can be asymptotically matched to the
large-Reynolds-number, small wavenumber form of the classical Orr–Sommerfeld
equation. It is also shown that the first of the Lam–Rott eigenmodes matches to the
unstable Tollmien–Schlichting (T-S) mode of the Orr–Sommerfeld equation. In this
Orr–Sommerfeld region for the semi-infinite flat plate there exists asymptotic solutions
to the two-dimensional Navier–Stokes equations which represent two-dimensional T-S
eigenmodes at the lower orders of approximation and eventually account for the weak
non-parallel flow effects at the higher orders (Smith 1979). This will yield expressions
for both the growth rate and the mode shape of these eigenmodes. However, this
asymptotic expansion becomes non-uniform downstream when the work of Goldstein
(1982) is considered, and so cannot be used to calculate the amplitude of the unstable
T-S mode at the lower branch neutral stability point (Turner 2007). This non-
uniformity is not apparent in the work of Smith (1979), and is an ongoing topic of
study.

Numerous numerical studies have calculated growth rates of the T-S modes in
the Orr–Sommerfeld region on a semi-infinite flat plate. The simplest methods
use just the Orr–Sommerfeld equation, but this approach neglects the streamwise
growth of the boundary layer. The non-parallel effects can be incorporated into this
equation by considering an asymptotic expansion in powers of Re−1/2, where Re
is the Reynolds number (Gaster 1974; Saric & Nayfeh 1975). This method is not
asymptotically rigorous because the O(1) equation of the expansion contains the
O(1), O(Re−1/6), O(Re−1/3) and O(Re−1/2 lnRe) terms, which have been proved to
exist in Goldstein (1983). Similarly, the O(Re−1/2) equation contains many asymptotic
sub-terms too. The study of Bertolotti, Herbert & Spalart (1992) uses this non-
rigorous asymptotic method to incorporate the non-parallel effects into a single partial
differential equation known as the parabolized stability equation (PSE). In the last 15
years, the PSE formulation has been used extensively with extensions to take account
of hypersonic flows, nonlinearity and chemical reactions within the boundary layer
flow (see for example Langlois, Casalis & Arnal 1998; Chang 2003). One advantage of
incorporating the non-parallel effects into one equation is that this method replaces
the algebra of eliminating singular terms with numerical computations (Saric &
Nayfeh 1975). The PSE is marched downstream from some initial condition and
is computationally faster than direct numerical simulations (DNS). Previous studies
using the PSE (Bertolotti et al. 1992; Andersson, Henningson & Hanifi 1998) have
initiated the code using an upstream boundary condition from Orr–Sommerfeld
theory or using a local solution to the PSE, without taking complete account of the
interaction of the free-stream disturbance with the boundary layer (the receptivity
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Figure 1. Illustration of the boundary layer structure for a general body with dimensional
nose radius rn at zero angle of attack to the mean flow. The three-deck asymptotic structure
in the Orr–Sommerfeld region consists of: 1, the viscous wall layer; 2, the main inviscid layer;
3, the outer irrotational layer.

problem). Hence, these methods only give the amplitude of the unstable T-S mode up
to an unknown multiplicative constant. Turner & Hammerton (2006) fix the value of
this unknown constant by producing a method which combines the PSE in the Orr–
Sommerfeld region with an upstream boundary condition of the Lam–Rott eigenmode
from the leading edge receptivity analysis. This method allows the amplitude of the
unstable T-S mode to be calculated at the lower branch neutral stability point, and
allows comparison with other numerical studies (Haddad & Corke 1998). This paper
extends this method to incorporate bodies with non-zero nose curvature.

For bodies with a rounded leading edge, the same asymptotic structure as for the
flat plate holds along the surface of the body, as shown in figure 1. The LUBLE
region is valid when the streamwise variable ξR =ω∗ξ ∗/U∞ = O(1), where U∞ is the
mean flow velocity and ω∗ is the dimensional frequency of the free-stream disturbance.
The Orr–Sommerfeld region is valid when ξR = O(Re1/3), where Re = U 2

∞/(ω∗ν) is the
Reynolds number based on the acoustic wavelength U∞/ω∗ (Goldstein 1983; Nichols
2001; Turner 2005). The asymptotic Lam–Rott eigenmodes for a flat plate have
been generalized for a parabolic body by Hammerton & Kerschen (1996), who also
calculate the free-stream-dependent receptivity coefficient as a function of the nose
radius. This analysis has been generalized further by Nichols (2001) to bodies which
have an inviscid free-stream velocity which tends to unity far downstream. Nichols
also calculates the receptivity coefficient for the Rankine body as a function of the
nose radius.

Numerical investigations of finite thickness bodies have been carried out mainly
via DNS methods (Reed 1994). Fuciarelli, Reed & Lyttle (1998) discuss such DNS
results for a flat plate with an elliptical leading edge, while the alternative approach of
Corke and co-workers linearizes about the basic flow, which then decouples the steady
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and unsteady flow fields that can then be solved separately. Haddad & Corke (1998)
consider parabolic bodies at a zero angle of attack to the mean flow, while Erturk &
Corke (2001) and Haddad, Erturk & Corke (2005) extend this to consider parabolic
bodies at a non-zero angle of attack. Wanderley & Corke (2001) consider bodies with
an elliptical leading edge in order to compare with the results of Fuciarelli et al. (1998)
and the experiments of Saric & White (1998). A purely asymptotic theory for these
cases is not currently available due to the algebraic complexity of the analysis, and so
the numerical and experimental investigations described above cannot be compared
to asymptotic theory. However, the numerical/asymptotic theory for general bodies
presented in this paper will allow for direct comparisons in future studies.

The structure of this paper is as follows. Section 2 formulates the PSE for bodies
with non-zero curvature, and also reviews the work of Nichols (2001) to give the
general form of the leading edge asymptotic eigenmodes, which can then be used as
the upstream boundary condition for the PSE. Positions of neutral stability and the
amplitude of the unstable T-S modes at these points are presented in § 3 for both the
parabolic body and the Rankine body. Some comments and concluding remarks are
given in § 4.

2. Formulation
2.1. Formulation of the parabolized stability equation

In this section, we derive the parabolized stability equation (PSE) valid within the
boundary layer on a two-dimensional body with a rounded leading edge. We use the
coordinate system (x∗, y∗) where the dimensional coordinates x∗ and y∗ are measured
along the body and normal to the body, respectively. Introducing dimensionless
quantities based on the velocity scale U∞ and the fixed length scale δ0 = (νx∗

0/U∞)1/2,
the vorticity equation can be written in terms of the stream function Ψ as(

∂

∂t
− 1

R0

∇2 +
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
∇2Ψ = 0, (2.1)

where

R0 =
U∞δ0

ν
. (2.2)

Here ν is the kinematic viscosity, x∗
0 is the dimensional distance along the body at

which the PSE analysis is started and R0 is the Reynolds number based upon the
length scale δ0. The Reynolds number R0 is assumed to be large so that the flow
field is inviscid and irrotational everywhere, except in the vicinity of the surface of
the body. The corresponding non-dimensional position that we start our analysis is
x0 = R0.

The stream function is split into a steady base-flow part ΨB(x, y) and a time-
dependent disturbance part ψ(x, y, t) � ΨB(x, y), and we assume that at the edge of
the boundary layer, the mean flow has a slip velocity Uf (x) parallel to the surface
of the body. The equation for the disturbance quantity ψ is obtained by substituting
Ψ = ΨB + ψ into (2.1) and subtracting off the equation satisfied by the mean flow
(Bertolotti et al. 1992). The resulting equation for ψ holds at leading order for the
disturbance as long as the curvature of the body is assumed to be small away from the
vicinity of the leading edge (Rosenhead 1963; Turner 2005). To make a comparison
with the analysis in the leading edge region, formulated in § 2.2, we change our
coordinate system to

ξ =

∫ x

0

Uf (x ′) dx ′, N = R
1/2
0 Uf (ξ )(2ξ )−1/2y, (2.3)
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which remain in the streamwise and normal directions to the body, respectively
(Nichols 2001; Turner 2005).

We seek a solution for the disturbance stream function ψ(ξ, N, t) in the form of a
spatially evolving two-dimensional wave with constant frequency ω, local streamwise
wavenumber α(ξ ) and a complex mode shape φ(ξ, N ) of the form

ψ(ξ, N, t) = φ(ξ, N) exp(i (θ(ξ ) − ωt)) + complex conjugate, (2.4)

where
dθ

dξ
= α(ξ ).

The amplitude of the disturbance is assumed to be sufficiently small (|ψ | � 1) so
that the nonlinear terms can be neglected. This condition suffices for the calculations
in this study because we are interested only in calculating the amplitude of the
unstable T-S mode up to the lower branch neutral stability point, and nonlinear
effects only become significant downstream of this point if the initial disturbance
amplitude is above some threshold. It is possible to calculate amplitudes up to the
upper branch neutral stability point, but the nonlinear form of the PSE, which is
discussed in Bertolotti et al. (1992), should also be considered. The main assumption
in the formulation of the PSE is that the streamwise variation of α and φ is sufficiently
small (Bertolotti et al. 1992; Turner & Hammerton 2006), that is ∂2α/∂ξ 2, ∂2φ/∂ξ 2

and the product of first derivatives ∂α/∂ξ and ∂φ/∂ξ are O(R−2
0 ), and hence negligible

if we retain only terms of O(R−1
0 ) in our analysis. This assumption has been seen to

hold in numerical computations (Morkovin 1985), and we have checked that these
conditions hold for the values of R0 considered in this paper.

Using these assumptions and retaining terms of O(R−1
0 ) leads to the derivation of

the linear PSE, which in operator form is

(L0 + L1 + L2) φ + M1

∂φ

∂ξ
+

dα

dξ
M2φ = 0, (2.5)

where

L0 = − 1

R0

(
R0D

2

2ξ
− α2

)2

+

(
iα

Uf

∂ΨB

∂y
− iω

U 2
f

)(
R0D

2

2ξ
− α2

)
− iα

U 3
f

∂3ΨB

∂y3
, (2.6)

L1 =
R

1/2
0

(2ξ )1/2U 3
f

∂3ΨB

∂x∂y2
D − R

1/2
0

(2ξ )1/2Uf

∂ΨB

∂x

(
R0D

3

2ξ
− α2D

)
, (2.7)

L2 =

(
U ′

f

Uf

− 1

2ξ

)
N

(
1

Uf

∂ΨB

∂y

(
R0D

3

2ξ
− 3α2D

)
+

2ωα

U 2
f

D − 1

U 3
f

∂3ΨB

∂x∂y2
D

)

+
2R0

Uf

∂ΨB

∂y

(
U ′

f

2ξUf

− 1

4ξ 2

)
D2 +

ωαU ′
f

U 3
f

−
3U ′

f α2

U 2
f

∂ΨB

∂y
, (2.8)

M1 =
1

Uf

∂ΨB

∂y

(
R0D

2

2ξ
− 3α2

)
+

2ωα

U 2
f

− 1

U 3
f

∂3ΨB

∂x∂y2
, (2.9)

M2 =
ω

U 2
f

− 3α

Uf

∂ΨB

∂y
, (2.10)

and D ≡ ∂/∂N . For a semi-infinite flat plate, Uf = 1 and the system of equations
(2.5–2.10) is equivalent to the governing equations in Turner & Hammerton (2006).
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In (2.4) there is ambiguity in the choice of functions α(ξ ) and φ(ξ, N ). To resolve
this we introduce a normalization condition on φ which restricts the rapid variation
in the ξ direction. We define this normalization condition as∫ ∞

0

φξφ
† dN = 0, (2.11)

where † denotes the complex conjugate. This normalization condition is equivalent to∫ ∞

0

|ψ |2 dN = C exp(−2Im(θ(ξ ))) ,

which shows that the majority of the streamwise variation with ξ is now in the
wavenumber α(ξ ). This normalization condition minimizes the streamwise change
∂φ/∂ξ in a weighted sense over the N domain, which also keeps ∂φ/∂ξ small in
accordance with our initial assumption. Other normalization conditions could be
implemented (Herbert 1993; Andersson et al. 1998); however, we find this one to be
most desirable because it gives results which are in excellent agreement with those
for a boundary layer on a flat plate (Turner & Hammerton 2006). Although the
formulation does not prove that a solution satisfying (2.11) exists, the agreement of
the PSE results with those of Goldstein (1983) for a flat plate justifies this choice
(Turner 2005; Turner & Hammerton 2006).

Equations (2.5) and (2.11) are solved numerically via a spectral collocation technique
using Chebyshev polynomials. This method is equivalent to that described in Turner
& Hammerton (2006) and Bertolotti et al. (1992), and so the reader is directed to
these for more details.

In this study, we are interested only in the propagation of the eigenmodes from
the leading edge region through the Orr–Sommerfeld region, and hence we solve
(2.5) with homogeneous boundary conditions and an upstream boundary condition
stipulated by

φ(ξ0, N) = F̂ (N), α(ξ0) = α0, (2.12)

where ξ0 is the dimensionless starting position for the analysis along the surface of
the body. These conditions depend upon the form of the boundary layer at ξ0 and
the interaction of the free-stream disturbance with the boundary layer upstream of
this point.

2.2. Leading edge receptivity analysis

Near to the leading edge of the body, the PSE is no longer valid because the boundary
layer grows rapidly in this region and the assumption that αξξ , φξξ and αξφξ are small
breaks down. In this region we have a different balance of terms at leading order
as opposed to § 2.1. The solution for the mode shape in this region has a three-deck
structure: the bottom deck is a Stokes layer solution where viscosity is important;
the solution in this deck satisfies the no-slip condition at the wall. An outer inviscid
region occurs outside the boundary layer and the solution here tends to zero for large
N . Between these two layers is the main inviscid layer within the boundary layer
where the solution must match to the other two solutions in the appropriate limits.

In the leading edge receptivity region the slip velocity at the edge of the boundary
layer Us is assumed to have a steady part and a linear perturbation due to the
harmonic external disturbance,

Us(xR, t) = Uf (xR) + ε̂Ud(xR)e−it . (2.13)
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Here ε̂ � 1, xR is the streamwise coordinate non-dimensionalized by the acoustic
length scale U∞/ω∗ and ω∗ is the dimensional frequency of the small-amplitude
perturbation. We define Re = ε−6 = U 2

∞/(νω∗) to be the Reynolds number based on
this acoustic length scale, which is assumed to be large, so the parameter ε is small.

We seek a solution to the non-dimensional form of (2.1), derived in the receptivity
variables (xR, yR), of

ΨR =
(2ξR)1/2

Re1/2

(
φ1(ξR, NR) + φ2(ξR, NR)e−it

)
,

where

ξR =

∫ xR

0

Uf (x ′) dx ′ and NR =
Uf (ξR)Re1/2

(2ξR)1/2
yR. (2.14)

The subscript R denotes that we are in the receptivity region of the body. Neglecting
higher order terms in inverse powers of Re and equating powers of ε̂ we find that the
steady equation for φ1(ξR, NR) is

φ1NRNRNR
+ φ1φ1NRNR

= β(ξR)
(
φ2

1NR
− 1

)
+ 2ξR

(
φ1NR

φ1NRξR
− φ1NRNR

φ1ξR

)
, (2.15)

where β(ξR) = 2ξRU−1
f dUf /dξR is the mean pressure gradient along the surface of the

body. Equation (2.15) is solved with the boundary conditions φ1 =φ1NR
= 0 on NR =0

and φ1NR
→ 1 as NR → ∞. The unsteady flow component φ2(ξR, NR) satisfies

φ2NRNRNR
+ φ2NRNR

(
φ1 + 2ξRφ1ξR

)
+ φ2NR

(
iΩ(ξR) − 2β(ξR)φ1NR

− 2ξRφ1NRξR

)
+ φ2φ1NRNR

+ 2ξR

(
φ1NRNR

φ2ξR
− φ1NR

φ2NRξR

)
= h(ξR), (2.16)

where Ω(ξR) = 2ξR/U 2
f and the boundary conditions are φ2 = φ2NR

=0 on NR = 0 and
φ2NR

→ Ud(ξR)/Uf (ξR) as NR → ∞. The function h(ξR) is determined by the unsteady
forcing of the boundary layer by the free-stream disturbance. Equation (2.16) is known
as the linearized unsteady boundary layer equation (LUBLE).

We assume that far downstream (xR −→ ∞), the steady form of the slip velocity
Uf (xR) acts parallel and symmetric to the surface of the body. Thus, the asymptotic
form of Uf (xR) in this limit is

Uf (xR) = 1 +
γ1

xR

+
γ2

x2
R

+ O
(
x−3

R

)
, (2.17)

or using (2.14)

Uf (ξR) = 1 +
γ1

ξR

+
γ 2

1 ln(ξR)

ξ 2
R

+
γ2

ξ 2
R

+ O
(
ξ−3
R ln2(ξR)

)
, (2.18)

where γ1 and γ2 are real constants.
In this limit the steady solution for φ1(ξR, NR) can be determined as

φ1(ξR, NR) = f − 1.2023γ1(NRf ′ − f )
ln(ξR)

ξR

+
D(NRf ′ − f ) + γ1E(NR)

ξR

+ O(ξ−1.887
R ),

(2.19)
where f (NR) is the Blasius function which satisfies

f ′′′ + ff ′′ = 0, f (0) = f ′(0) = 0, f ′ −→ 1 as NR −→ ∞,

and the prime denotes d/dNR . The constant D in (2.19) is calculated numerically
and depends upon the curvature of the body (Hammerton & Kerschen 1996; Nichols
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2001; Turner 2005). The function E(NR) is also calculated numerically by solving the
differential equation

E′′′ + f E′′ + 2f ′E′ − f ′E = −2(f ′ − 1) − 2.4046ff ′′,

with E = E′ = E′′ = 0 at NR = 0. The correction terms to (2.19) correspond to non-
integer eigenvalues of (2.15) (Libby & Fox 1963).

In the limit of large ξR the solution for φ2 consists of a Stokes solution, which
depends on the form of the unsteady disturbance Ud(ξR), and a sum of asymptotic
eigenmodes which satisfy (2.16) with h(ξR) = 0 and with homogeneous boundary
conditions (Lam & Rott 1960, 1993; Brown & Stewartson 1973). The precise
relationship between these two sets of eigenmodes is unclear (Hammerton 1999);
however, the Lam–Rott eigenmodes are important in receptivity as they exhibit the
wavelength shortening needed to convert the long-wavelength free-stream disturbances
to short-wavelength disturbances in the boundary layer. Nichols (2001) calculates the
form of these Lam–Rott eigenmodes for a general body with an asymptotic steady-slip
velocity as in (2.17). The j th eigenmode takes the form

ψLR
j (ξR, NR) = (2ξR)1/2φ2(ξR, NR) = Cjξ

τj

R g0(ξR, NR)eTj (ξR ), (2.20)

where Cj is an arbitrary constant dependent on the curvature of the body known as
the receptivity coefficient. The constants τj are expressed in terms of ρj and γ1, where
ρj is the j th root of the equation Ai′(−ρj ) = 0 and Ai′ is the derivative of the Airy
function of the first kind. The function Tj (ξR) is given by

Tj (ξR) = −e−iπ/4(2ξR)3/2

U ′
0ρ

3/2
j

(
1

3
+ 1.2023γ1

ln(ξR)

ξR

+ (−5.4046γ1 − D)
1

ξR

)
+ O

(
ξ−0.387
R

)
,

where U ′
0 = f ′′(0) = 0.4696. In this study, we are interested only in the propagation

of the first of these eigenmodes as it is this mode which matches onto the spatially
growing T-S mode in the Orr–Sommerfeld region (Goldstein 1983); hence ρ1 = 1.0188
and τ1 = −0.6921−7.9508γ1i (Nichols 2001; Turner 2005). The function g0(ξR, NR) can
be represented in the leading edge region as a composite of the three-deck solutions
(Turner 2005; Turner & Hammerton 2006) and can be written as

g0(ξR, NR) = ξ
τ1

R

(
(2ξR)1/2f ′(NR) + U ′

0

∫ M

0
(M − M̃)Ai(z̃)dM̃∫ ∞

0
Ai(z̃)dM̃

− U ′
0(2ξR)1/2NR

)

× exp

(
−ε3

√
2(1 + i)ξRNR

U ′
0γ̂ (ξR)ρ3/2

1

)
, (2.21)

where

M = (2ξR)1/2

(
1 − γ1

ξR

)
N,

z̃ = −ρ1 + ρ
−1/2
1 eiπ/4M̃,

γ̂ = 1 − 1.2023γ1

ln(ξR)

ξR

+ (D + 3γ1)
1

ξR

+ O
(
ξ−1.887
R

)
.

Equation (2.20) with g0(ξR, NR) given by (2.21) is now used as the initial condition
for the PSE calculations where the PSE and the receptivity variables are related to
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one another by

ξR =
R0

Re
ξ and NR = N.

Hence, we start our analysis for the PSE calculation at the scaled streamwise
receptivity variable ξ̃1 = ξ̃

(0)
1 where

ξ0 = R0 = ε−4U ′
0

(
ξ̃

(0)
1

2

)1/2

, ω =
R0

Re
,

and ε = Re−1/6. The variable ξ̃1 = 2ε2ξR/U ′2
0 is introduced to make comparisons with

the works of Goldstein (1983) and Turner & Hammerton (2006) easier. Thus, from
(2.12) and (2.20) the initial wavenumber is given by

α(ξ0) =
iε6R0e

−iπ/4
(
ξ̃

(0)
1

)1/2

ρ
3/2
1

(
1 + 1.2023γ1

ln(ξ0)

ξ0

− (D + 3γ1)
1

ξ0

)
, (2.22)

and the form of the base flow is given by

ΨB =
(2ξ )1/2

R
1/2
0

(
f − 1.2023γ1

Re

R0

(NfN − f )
ln(R0ξ/Re)

ξ
+

Re

R0

D(NfN − f ) + γ1E(N)

ξ

)
+ O(ξ−1.387).

Alternative forms for the initial condition to the PSE include using the most unstable
eigenmode of the Orr–Sommerfeld equation or the local PSE at ξ = ξ0. However, the
advantage of the receptivity condition is that it contains all the information required
to give the amplitude of the unstable T-S mode as it enters the Orr–Sommerfeld
region, and hence we have the complete T-S mode amplitude at the lower branch
point. This is discussed in more detail in Turner & Hammerton (2006) for the case
of a flat plate.

3. Results
In this section we present results giving the position of the lower branch neutral

stability point and the amplitude of the unstable T-S mode at this point for bodies
with a slip velocity which has the form given in (2.17). It is noted from (2.20) that
to have the complete amplitude of the unstable T-S mode as it enters the Orr–
Sommerfeld region, we need to know the value of the receptivity coefficient |C1|
which varies as a function of the nose curvature of the body. Hence in this section we
present results for bodies for which the value of |C1| has been calculated. Therefore,
we consider a parabolic body (Hammerton & Kerschen 1996) and the Rankine body
(Nichols 2001). In the remainder of this section, we use the superscripts P and R to
represent the parabola and the Rankine body, respectively.

The calculation of the position of the neutral stability point can be made easier by
placing all the wave amplitude information into one single growth-rate function. This
is achieved by splitting the amplitude function in (2.4) in the following way:

φ(ξ, N) = φmax(ξ )φ̄(ξ, N),

where the maximum value of φ̄ is 1. Thus, the stream function is given by

ψ = φ̄(ξ, N) exp(iθ̃ (ξ ) − ωt) + complex conjugate, with
dθ̃

dξ
= G(ξ ),
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where all the wave amplitude information is now contained in the growth rate G(ξ ),
which, when written as a function of the receptivity variable ξR , has the form

G(ξR) =
Re

R0

(
iα +

1

φmax

∂φmax

∂ξ

)
. (3.1)

The lower branch neutral stability point can now be defined as the position where
Im(G) = 0. Although G(ξR) is defined as a function of the streamwise variable ξR , we
usually display our results in terms of the scaled receptivity variable ξ̃1 = 2ε2ξR/U ′2

0

as this makes comparisons with the flat-plate analysis of Goldstein (1983) and Turner
& Hammerton (2006) easier.

In this study, we are interested in calculating the amplitude of the unstable
T-S mode ψ1, from (2.20), which is achieved by integrating the growth rate
G(ξR) from a position within the matching region between the leading edge
and the Orr–Sommerfeld regions, ξLE

R , to the lower branch (branch I) neutral
stability point ξ I

R . The value of ξLE
R can take any value in the region close the

leading edge where the downstream amplitude is independent of the value of ξLE
R .

This region has been shown to exist for a flat plate by Turner & Hammerton
(2006). Thus, the amplitude of ψ1 at the branch I neutral stability point can be
written as ∣∣ψI

1

∣∣ =

∣∣∣∣∣C1ψ
LR
1

(
ξLE
R

)
exp

(∫ ξ I
R

ξLE
R

G(x) dx

)∣∣∣∣∣ . (3.2)

Throughout this study, we shall refer to |ψI
1 | as the T-S mode amplitude at the

lower branch neutral stability point, and |C−1
1 ψI

1 | as the eigenmode amplitude at this
point.

An important factor needed in order to use this PSE method is the existence
of a matching region between the leading edge asymptotic result and the result in
the Orr–Sommerfeld region. This was shown to exist for a flat plate in Turner &
Hammerton (2006) for sufficiently small ε and figure 2 shows that the same is true
for the parabola where S = rnω

∗/U∞ is the Strouhal number and corresponds to the
dimensionless nose radius of the parabola. The figure shows Re(G(ξ̃1)) for two nose
radii and for (a) ε = 0.05 and (b) ε = 0.1. The leading edge solution is given by (3.1)
with α replaced by (2.22) and the local PSE result is a solution of (2.5) about ξ̃1 for
each ξ̃1. For more details on the local PSE solution, see Bertolotti et al. (1992) and
Turner & Hammerton (2006). The local PSE is an indication of how close to the nose
of the body the PSE solution can be before the PSE code fails converge to the correct
growth rate because of initial transients in the solution (Turner & Hammerton 2006).
Figure 2(a) shows that a clear matching region exists, and thus for small values of
ε = Re−1/6 the PSE can be started back in the matching region near ξLE

R , and so
the growth rate is defined over the whole domain of integration. However, for larger
values of ε, the PSE code cannot be initiated back in the matching region as can be
seen in figure 2(b). We overcome this problem by patching the growth rate back to
ξLE
R using the same method as in Turner & Hammerton (2006). This method involves

fixing the value of the growth rate and its derivative using both the leading edge
solution and the PSE solution, and then patching the region in between by a cubic
polynomial with complex coefficients. For more information on this patching method
and its validity, see Turner & Hammerton (2006). Care was taken to ensure that the
wave amplitude downstream was independent of the step size chosen and also not
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Figure 2. Plot of the real part of the growth rate G(ξ̃1) as a function of downstream distance
ξ̃1 = 2ε2ξR/U ′2

0 , calculated by the leading edge receptivity analysis and local PSE theory, for
S = 0.1 and S = 0.2 for the cases (a) ε = 0.05 and (b) ε = 0.1.

sensitive to the choice of streamwise position at which the PSE solution was patched
to the receptivity analysis.

The parabolic body is described in terms of the Strouhal number, while the Rankine
body is described in terms of the dimensionless parameter A= 2rnω

∗/3U∞, which is
linked to the dimensionless nose radius 3A/2 (Turner 2005). Thus, the two bodies
have the same nose radius if S = 3A/2. The inviscid flow around the parabolic body
is calculated using slender body theory (Hammerton & Kerschen 1996), while the
inviscid flow around the Rankine body is determined by complex potential theory
(Nichols 2001). The forms of the slip velocity Uf at the edge of the boundary layer
for these bodies are

UP
f (ξR) =

(2ξR)1/2

(2ξR + S)1/2
, (3.3)

UR
f (yc) =

(
1 +

A2

y2
c

sin2

(
yc

A

)
− A

yc

sin

(
2yc

A

))1/2

, (3.4)

where yc is the Cartesian y-coordinate. The large ξR form of each slip velocity can be
calculated as

UP
f = 1 − S

4ξR

+
3S2

32ξ 2
R

+ O
(
ξ−3
R

)
, (3.5)

UR
f = 1 +

A

ξR

+
A2 ln(ξR)

ξ 2
R

+
A2

x2
R

+ O
(
ξ−3
R ln2(ξR)

)
. (3.6)
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Figure 3. Plot of (a) Uf (xR) and (b) β(xR) for the Rankine body and the parabolic body
with the same nose radius S = 0.15 (A =0.1).

Thus, comparing these expressions with (2.18) we see that γ P
1 = −S/4 and γ R

1 = A.
The respective values of the constant D in (2.19) can thus be calculated as

DP =
S

2

(
2.075 − 0.60115 ln

(
S

2

))
, (3.7)

DR = A (−4.71125 + 1.2023 ln(A)) , (3.8)

for the parabolic and Rankine bodies, respectively.
From (3.3) and (3.4), the mean pressure gradient β(xR) can be calculated, and figure

3 plots both (a) Uf (xR) and (b) β(xR) for the parabolic and Rankine bodies with
the same nose radius (A= 0.1, S = 0.15). These quantities are plotted as functions of
xR because this variable is independent of the curvature of the body, whereas ξR is
a function of A and S (see (2.14)). The parabolic body has a slip velocity which is
always less than 1 and this gives a favourable (or positive) pressure gradient along
the surface of the body. The Rankine body has a slip velocity which rises above 1
before asymptoting to 1 as xR −→ ∞ and this gives an adverse (or negative) pressure
gradient along the majority of the body’s surface. The absolute value of the pressure
gradient is larger on the Rankine body than on the parabolic body for xR � 1, and
this affects the position of the neutral stability point as we shall see later.

We now consider numerical results for three values of the Reynolds number,
corresponding to ε = 0.05, 0.1 and 0.2. The small value of epsilon examines the large
Reynolds number asymptotic limit, and if asymptotics are developed for either of
these bodies then this value of ε would allow for an easy comparison. The middle value
of ε is too large for experimental data, but it is comfortably in the range of Reynolds
numbers that could be used in a DNS model to verify our results. The largest value of
ε is in the range of values that could be considered by experimentalists and DNS. This
value of ε corresponds to a dimensionless frequency of F = ω∗ν/U 2

∞ = ε6 = 64 × 10−6

which lies in the tail of the neutral stability curve (see Haddad & Corke 1998). This
value is also at the lower edge of the values used in the DNS study of Haddad &
Corke. The top of the neutral stability curve tail has values of ε � 0.25, and so
the values of ε considered in this paper give a good understanding of the structure
behind T-S wave propagation on a body with non-zero nose radius.

Figures 4 and 5 plot the position of the lower branch neutral stability point for
both the parabolic body and the Rankine body respectively for the three values of
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Figure 4. Plot of the neutral stability point on a parabolic body as a function of S for both
ξ̃1 and x̃1 for (a) ε = 0.05, (b) ε = 0.1 and (c) ε = 0.2.

ε = 0.05, 0.1 and 0.2. In each figure, we plot the neutral stability point as both a
function of ξ̃1 = 2ε2ξR/U ′2

0 and x̃1 = 2ε2xR/U ′2
0 , as the latter is independent of the nose

curvature. The small bumps occurring in the solution are due to numerical error, and
appear to diminish as ε is increased because the scale of the figures increases as ε

is increased. Figure 4 shows that the favourable pressure gradient along the surface
of the parabolic body gives a lower branch neutral stability point which is further
downstream than the corresponding flat-plate value (S = 0). For the larger value of
ε = 0.2 in figure 4(c), the relative position of the neutral stability point moves even
further downstream. The adverse pressure gradient on the Rankine body on the other
hand gives a neutral stability point positioned nearer to the nose of the body as the
nose radius (3A/2) is increased. This is shown in figure 5. Again, as ε is increased
from 0.05 in figure 5(a) to 0.2 in figure 5(c), the relative position of the neutral point
moves further downstream when compared to the flat-plate value.

A comparison of the deviation away from the flat-plate neutral stability point
|x̃1 − x̃FP

1 | for both bodies is given in figure 6. For the values of ε considered here,
x̃FP

1 = 3.402, 3.946 and 6.359 for ε = 0.05, 0.1 and 0.2, respectively. Due to the
magnitude of the adverse pressure gradient on the Rankine body being larger than
that of the parabolic body at the same streamwise position (see figure 3), we note
that the neutral stability point on the Rankine body is displaced further from the
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Figure 5. Plot of the neutral stability point for the Rankine body as a function of A for
both ξ̃1 and x̃1 for (a) ε = 0.05, (b) ε = 0.1 and (c) ε = 0.2.

flat-plate value than the parabolic body for the same nose radius. As ε increases, the
difference in displacement from the flat-plate value increases between the two bodies.

Having considered the position of the point of neutral stability, we now consider
the wave amplitude at this point as this affects the location of any transition point
downstream of the lower branch point. In figures 7 and 8, we plot log plots of the
amplitude of the unstable T-S mode |ψI

1 | defined in (2.20) at the lower branch (branch
I) neutral stability point along with the corresponding amplitude of the eigenmode
|C−1

1 ψI
1 |. The results for small ε have unphysically small amplitudes; however, we

merely use these small ε values to study the underlying mathematical structure of
the solution, rather than for comparison with DNS or experiments. These small
amplitudes suggest that the leading edge receptivity may be dominated by another
receptivity mechanism, such as acoustic wave interaction with surface roughness
elements, but this requires further analysis. For the parabolic body in figure 7, we
see that the amplitude of the eigenmode at lower branch |C−1

1 ψI
1 | decreases as S

increases for all the values of ε considered. When we include the effect of the
receptivity coefficient C1, the overall amplitude of the T-S mode |ψI

1 | decays even
faster. However, Hammerton & Kerschen (1996) found that the Strouhal number
S = 0.025 gives a receptivity coefficient |C1| that is larger than the flat-plate value. For
the smallest value of ε considered here, ε =0.05, the decay rate of the eigenmode is
large enough so that the T-S mode amplitude still decreases from the flat-plate value
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Figure 6. Plot of |x̃1 − x̃FP
1 | for the parabolic body and the Rankine body as a function of A

(S = 3A/2) for (a) ε = 0.05, (b) ε = 0.1 and (c) ε = 0.2.

for S = 0.025, but for sufficiently small ε it is likely that there will be a range of S

for which the T-S mode amplitude at lower branch is larger than for the flat-plate
case. This remains an area of future research as the numerical study of Haddad &
Corke (1998) does not show an increase in T-S mode amplitude above the flat-plate
value either, but it is not clear if they were in the correct parameter range to see this
behaviour. However, for the reasons discussed earlier, any such increase is unlikely to
have any physical significance.

For the values of ε considered in this study, the amplitude of the T-S mode for the
Rankine body has a more interesting structure than for the parabolic body, because
there is conflict between the eigenmode amplitude which increases as A increases,
and the receptivity coefficient which decreases as A increases. The actual receptivity
coefficient |C1| for the Rankine body tends to zero much faster than for the parabolic
body because of the adverse pressure gradient, and so this gives a much smaller range
of nose radii with non-zero receptivity coefficient available to us to study (Nichols
2001). The resulting T-S mode and eigenmode amplitudes for the Rankine body
can be seen in the log plot in figure 8. The amplitude of the eigenmode appears to
have almost an exponential growth in A, but due to the variation of the receptivity
coefficient with A, the amplitude of the T-S mode has a double-maximum appearance
as a function of A. For the ε =0.05 case in figure 8(a), this double maximum is
very clear, with maxima around A= 0.015 and A= 0.055, and the second maximum
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Figure 7. Amplitude plot on a log scale for the eigenmode |C−1
1 ψI

1 | and the unstable T-S
mode |ψI

1 | for a parabolic body at the lower branch neutral stability point as a function of S
for (a) ε = 0.05, (b) ε = 0.1 and (c) ε = 0.2.

is almost a factor of 10 larger than the first. The case ε = 0.1 in figure 8(b) has a
slightly different appearance, because the rate of increase of the eigenmode amplitude
is smaller than the ε = 0.05 case, while the values of the receptivity coefficients remain
unchanged. Hence, in this case the first maximum of the T-S mode amplitude
is closer to A= 0, and in fact on the log scale the amplitude appears almost
constant at the flat-plate value A=0 up to A= 0.015. There is still another maximum
around A=0.05, but the relative size of this maximum compared to the first one
is much smaller than for the ε =0.05 case, and is only a factor of 1.8 times larger.
Figure 8(c) shows the same plot again except with ε = 0.2. For this value of ε, the
T-S mode amplitude is seen to decay away from A= 0, and the second maximum
which occurs around A= 0.04 has a lower magnitude than the one at A= 0. Therefore
as ε increases, the growth of the eigenmode with respect to A decreases, and hence
for the ε = 0.05 case, we find the two maxima are larger than the flat-plate value,
whereas for ε = 0.2, the first maximum now corresponds to the flat-plate value, and
the second maximum has a value lower than the flat-plate value. Thus, we expect that
experimental studies on a Rankine body will not produce a maximum value greater
than the flat-plate value for any nose radius, because typical Reynolds numbers in
experiments give ε > 0.2. However, the experiment should still give a second increase
in the T-S mode amplitude at a larger nose radii.
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Figure 8. Amplitude plot on a log scale for the eigenmode |C−1
1 ψI

1 | and the unstable T-S
mode |ψI

1 | for a Rankine body at the lower branch neutral stability point as a function of A
for (a) ε = 0.05, (b) ε =0.1 and (c) ε =0.2.

4. Discussion and conclusions
We have formulated a method which uses the PSE to match the asymptotic

eigenmodes at the leading edge, formed from the interaction of the free stream with
the boundary layer, through the Orr–Sommerfeld region of the body. This method
is valid on bodies with a rounded leading edge, where the steady-slip velocity at the
edge of the boundary layer has the form

Uf = 1 +
γ1

xR

+
γ2

x2
R

+ O
(
x−3

R

)
,

in the large xR asymptotic limit, where xR is a streamwise variable along the surface
of the body. We presented lower branch neutral stability point calculations and
amplitudes of the unstable T-S mode at this point for a parabolic body and the
Rankine body which both satisfy the above property. For the parabolic body, which
has a favourable pressure gradient along its surface, we found that the lower branch
point was positioned downstream of the flat-plate value as the nose radius of curvature
was increased, and the T-S mode amplitude at this point decreased with increasing
nose radius. The Rankine body on the other hand has an adverse pressure gradient
over most of the body which produces a neutral stability point positioned closer to
the nose of the body when compared to the flat-plate value. The unstable T-S mode
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amplitude at this point has a double-maximum structure for sufficiently large values
of the Reynolds number with both maxima greater than the flat-plate value. However,
for smaller Reynolds numbers the T-S mode amplitude decreased from the flat-plate
value for increasing nose radius, but still with a second maximum value for larger
nose radii.

The present work has revealed how the amplitude of the unstable T-S mode at
the lower branch neutral stability point is sensitive to leading edge geometry. This
sensitivity is important when determining the position of boundary layer transition.
In this paper comparisons with the numerical study of Haddad & Corke (1998)
were not possible because the only non-zero nose radius considered by Haddad &
Corke corresponds to a Strouhal number S = 2.3 × 10−3, which gives results almost
indistinguishable from the flat-plate case (cf. figure 16(a) from Haddad & Corke 1998
for a parabola with S = 2.3×10−3 with figure 14 from Turner & Hammerton 2006 for
a flat plate). A selection of results with larger nose radii using the methods of Haddad
& Corke would make an excellent comparison with the parabola results presented
in this paper. Although general trends in behaviour have been identified in this
paper, the results presented here do not allow a direct comparison with experiments
which are typically conducted using modified super ellipses. While the methods of the
current paper can be extended to cover analysis of such bodies, a separate receptivity
analysis of the leading edge region for the new geometry must be completed in order
to describe the transition process.

The writing up of this work took place when the leading author was supported by
the EPSRC grant EP/D032202/1. The authors would also like to thank the referees
for their comments and suggestions which have improved this paper.

REFERENCES

Andersson, P., Henningson, D. S. & Hanifi, A. 1998 On a stabilization procedure for the parabolic
stability equations. J. Engng Math. 33 (3), 311–332.

Bertolotti, F. P., Herbert, Th. & Spalart, P. R. 1992 Linear and nonlinear stability of the Blasius
boundary layer. J. Fluid Mech. 242, 441–474.

Brown, S. N. & Stewartson, K. 1973 On the propagation of disturbances in a laminar boundary
layer. Proc. Camb. Phil. Soc. 73, 493–514.

Chang, C. L. 2003 The Langley stability and transition analysis code (LASTRAC): LST, linear &
nonlinear PSE for 2-D, axisymmetric, and infinite swept wing boundary layers. AIAA Paper
974, 2003.

Erturk, E. & Corke, T. C. 2001 Boundary layer receptivity to sound at incident angles. J. Fluid
Mech. 444, 383–407.

Fuciarelli, D. A., Reed, H. L. & Lyttle, I. 1998 DNS of leading-edge receptivity to sound. AIAA
Paper 98-2644.

Gaster, M. 1974 On the effects of boundary-layer growth on flow stability. J. Fluid Mech. 66,
465–480.

Goldstein, M. E. 1982 Generation of Tollmien–Schlichting waves by free-stream disturbances at
low Mach numbers. NASA TM 83026 .

Goldstein, M. E. 1983 The evolution of Tollmien–Schlichting waves near a leading edge. J. Fluid
Mech. 127, 59–81.

Goldstein, M. E. 1985 Scattering of acoustic waves into Tollmien–Schlichting waves by small
streamwise variations in surface geometry. J. Fluid Mech. 154, 509–529.

Goldstein, M. E. & Hultgren, L. S. 1989 Boundary-layer receptivity to long-wave free-stream
disturbances. Annu. Rev. Fluid Mech. 21, 137–166.

Goldstein, M. E., Leib, S. J. & Cowley, S. J. 1992 Distortion of a flat-plate boundary layer by
free-stream vorticity normal to the plate. J. Fluid Mech. 237, 231–260.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

52
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008005260


Analysis of the unstable T-S mode on bodies with a rounded leading edge 185

Haddad, O. M. & Corke, T. C. 1998 Boundary layer receptivity to free-stream sound on parabolic
bodies. J. Fluid Mech. 368, 1–26.

Haddad, O. M., Erturk, E. & Corke, T. C. 2005 Acoustic receptivity of the boundary layer over
parabolic bodies at angles of attack. J. Fluid Mech. 536, 377–400.

Hammerton, P. W. 1999 Comparison of Lam–Rott and Brown–Stewartson eigensolutions of the
boundary-layer equations. Quart. J. Mech. Appl. Math. 52 (3), 373–385.

Hammerton, P. W. & Kerschen, E. J. 1996 Boundary-layer receptivity for a parabolic leading edge.
J. Fluid Mech. 310, 243–267.

Herbert, T. 1993 Parabolized stability equations. AGARD Rep., 4-1–4-34.

Kerschen, E. J., Choudhari, M. & Heinrich, R. A. 1990 Generation of boundary instability waves
by acoustic and vortical free-stream disturbances. In Laminar-Turbulent Transition, Vol. III,
pp. 477–488. Springer.

Lam, S. H. & Rott, N. 1960 Theory of linearized time-dependent boundary layers. Cornell University
GSAE Rep. AFOSR, pp. TN-60-1100.

Lam, S. H. & Rott, N. 1993 Eigen-functions of linearized unsteady boundary layer equations.
J. Fluids Engng 115, 597–602.

Langlois, M., Casalis, G. & Arnal, D. 1998 On the practical application of the PSE approach to
linear stability analysis. Aerosp. Science Technol. 2 (3), 167–176.

Libby, P. A. & Fox, H. 1963 Some perturbation solutions in laminar boundary-layer theory. Part 1.
The momentum equation. J. Fluid Mech. 17, 433–449.

Morkovin, M. V. 1985 Guide to Experiments on Instability and Laminar-Turbulent Transition in
Shear Layers . Notes for AIAA short course.

Nichols, D. E. 2001 Boundary layer receptivity of a flat plate with a rounded leading edge. PhD
thesis, University of East Anglia, Norwich.

Reed, H. L. 1994 Direct numerical simulation of transition: the spatial approach. In Progress in
Transition Modelling, AGARD Rep. 793. NATO, 6.1–46.

Rosenhead 1963 Laminar Boundary Layers. Clarendon.

Saric, W. S. & Nayfeh, A. 1975 Nonparallel stability of boundary-layer flows. Phys. Fluids 18,
945–950.

Saric, W. S., Reed, H. L. & Kerschen, E. J. 2002 Boundary-layer receptivity to freestream
disturbances. Annu. Rev. Fluid Mech. 34, 291–319.

Saric, W. S. & White, E. B. 1998 Influence of high-amplitude noise on boundary-layer transition
to turbulence. AIAA Paper 98-2645.

Smith, F. T. 1979 On the non-parallel flow stability of the Blasius boundary layer. Proc. R. Soc.
Lond. Ser. A 366, 91–109.

Turner, M. R. 2005 Numerical and asymptotic approaches to boundary-layer receptivity and
transition. PhD thesis, University of East Anglia, Norwich.

Turner, M. R. 2007 Far downstream analysis for the Blasius boundary-layer stability problem.
Quart. J. Mech. Appl. Math. 60 (3), 255–274.

Turner, M. R. & Hammerton, P. W. 2006 Asymptotic receptivity analysis and the parabolized
stability equation: a combined approach to boundary layer transition. J. Fluid Mech. 562,
355–381.

Wanderley, J. B. V. & Corke, T. C. 2001 Boundary layer receptivity to free-stream sound on
elliptic edges of flat plates. J. Fluid Mech. 429, 1–21.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

52
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008005260

