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Abstract
Background: Hereditary sensorineural hearing loss is the most frequently occurring birth defect. It has profound
effects for the individual and is a substantial burden on society. Insight into disease mechanisms can help to
broaden therapeutic options and considerably lower lifetime social costs. In the past few decades, the
identification of genes that can cause this type of hearing loss has developed rapidly.

Objective: This paper provides a concise overview of the currently known genes involved in non-syndromic
hereditary hearing loss and their function in the inner ear.
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Introduction
Congenital hearing impairment affects approximately 3 in
every 1000 live births and is themost frequent birth defect
in developed countries.1 Children born with hearing
impairment encounter challenges in speech development,
education and language acquisition. This results in
decreased opportunities for the individual and a potential
burden on society. It has been estimated that the lifetime
social costs of untreated hearing loss can reach up to US
$1.1million per individual. Treatment and early interven-
tion could decrease these costs by 75 per cent.2

More than 50 per cent of congenital sensorineural
hearing impairment is hereditary and caused by
genetic mutations.3 Hearing loss can either be syndro-
mic, as part of multiple anomalies throughout the body,
or non-syndromic, being restricted to the inner ear.
Non-syndromic hearing loss can be further categorised
by mode of inheritance. In the largest fraction of cases
(80 per cent), inheritance is autosomal recessive (often
labelled ‘DFNB’). This type of hearing loss is generally
congenital, although some forms may present later in
life. In the other 20 per cent of cases, inheritance of
hearing loss is autosomal dominant (‘DFNA’). In this
type there is usually a delayed onset of hearing loss.
The rest of non-syndromic hearing loss is either
X-linked or mitochondrial (less than 1 per cent).4

Insight into the genes involved in congenital hearing
loss and the underlying mechanisms may enable

targeted genetic counselling and treatment. Screens
for specific genetic mutations can be performed
based on clinical features such as mode of inheritance,
morphological appearance, and onset and progression
of hearing loss. Genes that are a common cause of
hearing loss, such as GJB2, SLC26A4 and OTOF, are
frequently included in diagnostic tests.5 The results
can be used to counsel parents about the prognosis of
hearing loss in their child, the chance of recurrence
in future offspring and the predicted outcomes of thera-
peutic options like cochlear implantation. For example,
the outcome of cochlear implantation in syndromic
hearing loss is less predictable than in non-syndromic
hearing loss. Patients with isolated mutations in the
gene GJB2 have speech outcomes that are better than
average, whereas patients with cochleovestibular
dysplasia fare worse than average.6,7 The presence of
auditory nerve malformation or neuropathy also pre-
dicts inferior results.8,9 A better understanding of
underlying pathophysiology will enable us to better
assess cochlear implant candidacy.
More importantly, there is the potential to exploit

knowledge of underlying genetic mutations to prevent
or ameliorate hereditary hearing loss. Gene therapy uti-
lises viral vectors delivered to the inner ear to replace
the defective gene with a normal copy of the gene.
There are promising early results from animal studies:
adenovirus-delivered SLC17A8 (VGLUT3, vesicular
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glutamate transporter 3) restores hearing in mice
lacking this gene.10 It may also be possible to use
gene therapy to recover hair cell degeneration: delivery
of the ATOH1 gene product has been found to induce
hair cell development and regeneration.11

This review provides an overview of the currently
known genes involved in non-syndromic hereditary
hearing loss (Table I).

Hearing mechanism
We begin with a brief review of the mechanism of
human hearing. The cochlea is the auditory portion
of the inner ear and is a spiral structure containing
three compartments: the scala vestibuli and scala
tympani, which are filled with perilymph, and the
scala media which is filled with endolymph
(Figure 1c). The organ of Corti is located within the
middle compartment, the scala media, and includes
the inner hair cells, which detect sound (Figure 1d).
Airborne sound waves are transmitted through the
external and middle ear to the oval window of the
cochlea (Figure 1a). Displacement of the oval
window causes a wave in the fluids of the cochlea
(Figure 1b), leading to displacement of the basilar
membrane. Inner hair cells attached to the basilar mem-
brane carry on their apical surface numerous finger-like
projections called stereocilia, which will deflect upon
physical vibration and move relative to one another.
This movement is thought to cause the opening of
specific ion channels, a mechanism called mechano-
transduction.12 Opening of these channels initiates an
influx of potassium and calcium ions which depolarises
the hair cell. This leads to calcium-dependent exocyto-
sis of neurotransmitter vesicles at the cell’s basolateral
surface in an area called the synaptic ribbon.13 The
release of neurotransmitters excites adjacent auditory
neurons which signal to auditory centres in the brain,
contributing to the perception of sound.
The organ of Corti also contains outer hair cells; the

stereocilia of these hair cells are connected to the over-
lying tectorial membrane.14 Whereas the inner hair
cells function as sensory players, capturing information
about the frequency, intensity and timing of sound, the
outer hair cells function as cochlear amplifiers, chan-
ging the sensitivity and selectivity to sound.15

The structure and physiology of the inner ear is in
many ways unique and unmatched at other anatomical
locations. This explains why so many genes are
thought to be involved in inner-ear function and why
the ear is so sensitive to mutation at these loci.
Mutations in genes that control the cytoskeleton of
hair cells, the adhesion of hair cells, intracellular trans-
port, neurotransmitter release or ionic homeostasis can
all lead to malfunction of the cochlea (Figure 2).

Cytoskeleton
As described in the introduction, hair cells have a
characteristic shape, with linear, microvilli-like projec-
tions called stereocilia arising from their apical surface.

The bundles are aligned in a ‘V’ shape and ranked in
increasing height. A number of the genes involved in
the organisation of the cytoskeleton can cause non-syn-
dromic hearing loss. These include ACTG1 (γ-actin),
DIAPH1 (diaphanous 1), TRIOBP (trio-binding protein),
TPRN (taperin), SMPX (small muscle protein, X-linked),
ESPN (espin) and RDX (radixin).
It is known that γ-actin functions as the building

block of hair cell stereocilia. These stereocilia are con-
stantly undergoing actin polymerisation at the tip and
depolymerisation at the base.16 Mutations in ACTG1
can interfere with this process and cause autosomal
dominant hearing loss, DFNA20/26.17,18 Other pro-
teins are important in this constant remodelling
process. For instance, diaphanous 1 regulates the poly-
merisation and reorganisation of actin monomers into
polymers, and has been associated with autosomal
dominant hearing loss (DFNA1).19 The organisation
and binding of γ-actin at the base (the so-called ‘taper
region’) of hair cell stereocilia is regulated by two
alternative splice isoforms of the TRIOBP gene.20

Mutations in these isoforms, TRIOBP4 and TRIOBP5,
form the origin of DFNB28.21,22 Another protein loca-
lised at this taper region is the regulating protein taperin,
which is associated with DFNB79.23 The X-linked gene
SMPX (DFN4) encodes a protein suggested to have a
function in stereocilial development and maintenance
in response to the repetitive mechanical stress that
these stereocilia are subjected to.24,25

The protein espin acts as a bundling protein, provid-
ing stability to the stereocilial cytoskeleton.26 In ‘jerker’
mice that lack espin, stereocilia shorten and merge from
postnatal day 11, which is simultaneous with the onset
of hearing. The hair cells further degenerate over time,
and after three months the whole organ of Corti is
degraded, indicating the importance of a well-organised
cytoskeleton.27 In humans, mutations in ESPN cause
DFNB3628,29 and autosomal dominant hearing loss.30

More stability is provided by radixin, which is present
along the length of the stereocilia and links actin fila-
ments to the plasma membrane.31 Mutations in RDX
cause recessive deafness, DFNB24.32

Adhesion proteins
Throughout their existence, stereocilia are intercon-
nected and linked to the tectorial membrane by a set
of different adhesion proteins. During maturation of
the hair bundle in the mouse embryo, a set of temporary
links maintain stability. These include transient lateral
links (or shaft connectors) and ankle links. These links
probably function to provide hair bundle integrity
during maturation and/or induce signalling complexes
needed for growth regulation and arrangement.33 In the
mature hair bundle, stereocilia are connected by tip
links, horizontal top connectors and tectorial mem-
brane attachment crowns (Figure 2). To date, several
genes crucial for the linking apparatus have been ident-
ified. These include: DFNB31 (WHRN (whirlin)),34

DFNB18 (USH1C (harmonin)),35,36 DFNB66/67
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TABLE I

GENES ASSOCIATED WITH NON-SYNDROMIC HEARING LOSS

Locus Gene Protein Function

Cytoskeleton
– DFNA20/26 ACTG1 γ-actin Building block of cytoskeleton
– DFNA1 DIAPH1 Diaphanous 1 Actin polymerisation
– DFNB36 ESPN Espin Actin cross linking & bundling
– DFNB24 RDX Radixin Actin binding to plasma membrane
– DFNB28 TRIOBP Trio-binding protein Actin binding & organisation in taper region
– DFNB79 TPRN Taperin Actin regulation in taper region
– DFN4 SMPX Small muscle protein X-linked Stereocilial development & maintenance
Adhesion
– DFNB31 WHRN Whirlin Scaffolding protein
– DFNB18 USH1C Harmonin Scaffolding protein
– Usher syndrome SANS/USH1G SANS Scaffolding protein
– Usher syndrome USH2A Usherin Ankle link
– Usher syndrome VLGR1B Very large G protein-coupled receptor 1 Ankle link
– DFNB66/67 TMHS/LHFPL5 Tetraspan membrane protein Transient link
– DFNB84 PTPRQ Protein tyrosine phosphatase receptor Q Transient link (shaft connector)
– DFNB16 STRC Stereocilin Horizontal top connector, TM attachment links
– DFNA4 CAECAM16 Carcinogenic antigen-related cell adhesion

molecule 16
TM attachment crown

– DFNB22 OTOA Otoancorin TM attachment to non-sensory cells
– DFNB23 PCDH15 Protocadherin 15 Lateral link, tip link
– DFNB12 CDH23 Cadherin 23 Lateral link, tip link
Transport
– DFNA48 MYO1A Myosin Ia Transport
– DFNB30 MYO3A Myosin IIIa Transport
– DFNA22/
DFNB37

MYO6 Myosin VI Anchoring stereocilia, regulation of exocytosis

– DFNA11/DFNB2 MYO7A Myosin VIIa Transport
– DFNA17 MYH9 Non-muscle myosin heavy chain IX Transport
– DFNA4 MYH14 Non-muscle myosin heavy chain XIV Transport
– DFNB3 MYO15A Myosin XVa Transport
Synapse
– DFNB9 OTOF Otoferlin Ca2+ dependent fusion of synaptic vesicles
– DFNA25 SLC17A8 VGLUT-3 Regulation of glutamate endocytosis &

exocytosis
Ion Haemostasis
– DFNB29 CLDN14 Claudin 14 Tight junction
– DFNB49 MARVELD2/

TRIC
Tricellulin Tight junction

– DFNA51 TJP2 Tight junction protein 2 Binding tight junctions to membrane, cell cycle
signalling

– DFNA3A/
DFNB1A

GJB2 Connexin 26 Gap junction

– DFNA2B/
DFNB91

GJB3 Connexin 31 Gap junction

– DFNA3B/
DFNB1B

GJB6 Connexin 30 Gap junction

– DFNA2A KCNQ4 KCNQ4 Voltage-gated K+ channel
– Modifier of
DFNB12

ATP2b2/PMCA2 ATP2b2 ATP dependent Ca2+ pump

– DFNB73 BSND Barttin ClC-K channel maturation & trafficking
– DFNB4 SLC26A4 Pendrin Acid–base balance of endolymph
Electromotility
– DFNB61 SLC26A5 Prestin Electromotility
Others
Extracellular matrix
– DFNA8/12
DFNB21

TECTA A-tectorin Structure & stability of TM

– DFNA13/
DFNB53

COL11A2 Type XI collagen α2 Structure & stability of TM

– DFNA9 COCH Cochlin Structure spiral limbus
Transcription factors
– DFNA15 POU4F3 Class 4 POU Regulation of transcription
– DFN3 POU3F4 Class 3 POU Regulation of transcription
– DFNA10 EYA4 Eyes absent 4 Regulation of transcription
– DFNA50 MIR96 MicroRNA96 Regulation of transcription
– DFNB35 ESRRB Oestrogen-related receptor β Regulation of transcription
– DFNA28 GRHL2/

TFCP2L3
Transcription factor CP2-like 3 Regulation of transcription

DFNA= non-syndromic deafness, autosomal dominant; DFNB= non-syndromic deafness, autosomal recessive; TM= tectorial membrane;
Ca2+ calcium ion; K+= potassium ion
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(TMHS (tetraspan membrane protein)),37 DFNB84
(PTPRQ (tyrosine phosphate receptor Q)),38 DFNB16
(STRC (stereocilin)),39 DFNA4 (CEACAM16 (carcino-
genic antigen-related cell adhesion molecule 16)),40

DFNB22 (OTOA (otoancorin)),41 DFNB23 (PCDH15
(protocadherin 15))36 and DFNB12 (CDH23 (cadherin
23)).42

Whirlin and harmonin are scaffolding proteins that
regulate the formation of the link complexes.
Through their PDZ domain binding sites (i.e. binding
sites for other proteins), scaffolding proteins fulfil
their role in organising multi-protein aggregates and
assembling signalling complexes.43 Mutations in
whirlin and harmonin cause autosomal recessive
hearing loss. A third scaffolding protein is Sans,
which is associated with the complex syndromic
hearing loss of Usher syndrome. USH2a and
VLGR1b, two other genes associated with Usher syn-
drome, are part of the stereocilial ankle link.44

Cadherin 23 and protocadherin 15, as well as PTPRQ
and TMHS, are presumably part of the transient lateral
link. They prevent fusion of stereocilia by keeping them
at a fixed distance from each other during develop-
ment.45–47 In the mature hair cell, cadherin 23 and

protocadherin 15 become the main components of the
tip link. These provide stability and gate the mechano-
transduction channel; these tip links provide stability
and gate the mechanotransduction channel, which
plays a central role in auditory function.48 TMHS co-
localises with protocadherin 15 and is a proposed
subunit of the mechanotransduction channel.37,49

Stereocilin is an extracellular protein that is thought
to make up both horizontal top connectors and tectorial
membrane attachment links. The latter, combined with
the so-called attachment crown, attach the tallest stereo-
cilia of the outer hair cell stereocilia bundle to the tec-
torial membrane.50 This tectorial membrane attachment
crown is probably formed by CEACAM16. In a similar
way, otoancorin is thought to attach non-sensory cells
to the tectorial membrane.41

Transport proteins
Motor proteins can be used to transport different
proteins to target sites in the cell. In the inner ear, the
proteins used for transport are all part of the un-
conventional myosin family. These proteins can bind
to the actin cytoskeleton and move forward along
actin filaments by using energy derived from ATP.

FIG. 1

Anatomical diagrams of the human ear, showing: (a) the outer ear, middle ear and inner ear; (b) a cross section of the cochlea; (c) the three
compartments of the cochlea; and (d) the organ of Corti. OHC= outer hair cell
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The carboxyl-terminal tails of the transport protein
contain binding sites for the proteins they will
carry.51 Seven unconventional myosins have been
associated with hereditary hearing loss: myosin Ia
(DNFA48),52 myosin IIIa (DFNB30),53 myosin VI
(DFNA22/DFNB37),54,55 myosin VIIa (DFNA11/
DFNB2),56,57 non-muscle myosin heavy chain IX
(DFNA17)58 and XIV (DFNA4),59 and myosin
XVa (DFNB3).60 These proteins all have their own
unique transport function in the inner-ear hair cells.

Synapse
Otoferlin (OTOF) acts with one of the myosins, myosin
VI, at the synaptic cleft of the inner hair cell. The
protein is thought to be involved in the (calcium-
dependent) fusion of synaptic vesicles to the plasma

membrane. As a result, the neurotransmitter glutamate
is released into the synaptic cleft with subsequent exci-
tation of the afferent neuron. In OTOF-mutant mice, a
reduction in exocytosis is detected.61 A number of allelic
variants of OTOF that cause DFNB9 in humans have
been identified.62

Another player at the inner hair cell synapse is
VGLUT3, a member of the vesicular glutamate recep-
tors. VGLUT3 is encoded by SLC17A8 and associated
with autosomal recessive hearing loss DFNA25.63 The
protein is thought to regulate the endocytosis and
exocytosis of glutamate. Both OTOF and SLC17A8
knockout mice show a reduction in the number of post-
synaptic ganglion cells, indicating that these proteins
are crucial for the development and preservation of
normal hearing.64

FIG. 2

Diagrammatic representation of important structural proteins in mature hair cell stereocilia. CEACAM16= carcinogenic antigen-related cell
adhesion molecule 16; TRIOBP= trio-binding protein; SMPX= small muscle protein, X-linked; TMC= tectorial membrane attachment

crown; TL= tip link; HT= horizontal top connector
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Ion homeostasis
The cochlea contains two types of fluids, both different
in ion composition. Perilymph is high in sodium and
low in potassium, whereas endolymph is high in
potassium and low in sodium. This contributes to a
highly positive potential (+80 mV) called the endoco-
chlear potential. A potassium influx from the endo-
lymph into the hair cell causes depolarisation of the
cell. Immediately after depolarisation, the hair cell
repolarises, shifting cations via neighbouring structures
back into the endolymph (Figure 3). This process of ion
homeastasis involves claudin 14 (CLDN14), tricellulin
(MARVELD2/TRIC), tight junction protein 2 (TJP2), a
number of connexins (GJB’s), KCNQ4 (KCNQ4),
ATP2b2 (ATP2b2/PMCA2), Barttin (BSND) and
pendrin (SLC26A4) all of which are related to heredi-
tary hearing loss.
Tight junctions guard the border between endo-

lymph and perilymph compartments. By generating a
seal between two adjacent cells, a barrier is created
that restricts the free diffusion of ions. In this way,
the apical side of the outer hair cells and supporting
cells are exposed to the endolymph, and the basolateral
surface is bathed in cortilymph, a fluid which is similar
to perilymph and fills up the so-called space of Nuel.
This space of Nuel, which surrounds the basolateral
surface of outer hair cells, might change in electric
potential when the tight junction protein claudin 14 is
absent or dysfunctional, as in DFNB29.65,66 In a
similar way, tricellulin, encoded by MARVELD2/
TRIC, is presumed to function as tight junction that
connects three cells together and causes DFNB49
when mutated.67 TJP2 acts as a scaffolding protein,
binding tight junctions to the actin cytoskeleton.
Duplication with over-expression of the protein
causes DFNA51.68 This process occurs as a result of
another role of the TJP2 protein, namely its

involvement in the nucleus’ signaling pathways that
regulate the cell cycle. Over-expression of TJP2 dis-
turbs the balance between pro-apoptotic and anti-apop-
totic genes and will induce apoptosis.69

A network of gap junctions (channels that extend
over two adjacent membranes) in the cochlea enables
the exchange of various small molecules and ions.
These gap junctions are made up of specialised proteins
called connexins, which are expressed in the support-
ing cells of the organ of Corti and the connective
tissue of the spiral ligament.70 This gap junction
network is associated with the recycling of potassium
ions needed for normal hearing. The first identified
gene and most common cause of non-syndromic
hearing loss is GJB2, which encodes connexin 26
(DFNA3a/DFNB1a).71 Mutations in the GJB2 gene
account for 30–50 per cent of all cases of childhood
deafness, and 1–4 per cent of the average human popu-
lation are estimated to be carriers.70 Other connexins
associated with non-syndromic hearing loss are con-
nexin 31 (GJB3, DFNA2b/DFNB91)72,73 and con-
nexin 30 (GJB6, DFNA3b/DFNB1b).74,75

KCNQ4 encodes a protein that forms a voltage-gated
potassium channel. This gene is expressed in the outer
hair cells of the cochlea and is mutated in a dominant
form of non-syndromic hearing loss, DFNA2a.76

KCNQ4 is thought to aid repolarisation of the outer
hair cells. Furthermore, KCNQ4 is proposed to regulate
sensitivity to sound by changing the resting membrane
potential of the outer hair cells.77

On their apical surface, in the stereocilial membrane,
hair cells express ATP2b2/PMCA2, which is a modi-
fier of DFNB12.78 The protein product PMCA2 is a
calcium pump that uses energy from ATP to function.
Calcium, which is used (in addition to potassium) to
excite the cell, is constantly pumped back into the
endolymph by PMCA2, thereby ensuring a stable con-
centration of this ion.79 PMCA2 fulfils a similar func-
tion in the synaptic region on the basolateral surface of
the hair cell.
BSND and SLC26A4, which encode barttin and

pendrin respectively, are genes involved in both syn-
dromic and non-syndromic hearing loss. Barttin is a
chloride channel subunit. Most mutations in BSND
cause Bartter syndrome, which comprises hearing
loss and renal abnormalities. The molecular basis of
DFNB73 has been attributed to a mutation in BSND,
which causes non-syndromic deafness.80 The anion
exchanger pendrin plays a major role in maintaining
a constant acid–base balance. Both syndromic
hearing loss (Pendred’s syndrome, associated with
goitre) and non-syndromic hearing loss (DFNB4)
have been described in relation to this, the occurrence
of which depends on the extent of the mutation in
SLC16A4.81,82

Electromotility
The outer hair cells have a unique feature of altering
sensitivity and selectivity to sound. The protein

FIG. 3

Diagrammatic representation of potassium circulation within the
cochlea: the opening of ion channels in the hair cell apical mem-
brane allows a potassium influx from the endolymph into the hair
cell; potassium is then moved to supporting cells and pumped
back into the endolymph via spiral ligament and stria vascularis
gap junction networks. K+= potassium ion; IHC= inner hair

cells; OHC= outer hair cells
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Prestin is thought to be responsible for this by introdu-
cing a process called electromotility. Prestin changes its
configuration in reaction to changes in membrane
potential, enabling the outer hair cell length to be
altered. In this way, the cylindrical outer hair cell
becomes shorter on depolarisation and longer on hyper-
polarisation, thereby amplifying its sensitivity to
sound.15 Prestin, encoded by SLC26A5, was first ident-
ified by Zheng et al. in 2000.83 In homozygous Prestin
null mice, cochlear thresholds were found to be
40–60 dB higher than in wild-type mice.84 In
humans, mutations in SLC26A5 are the cause of
DFNB61 hearing loss.85

Others
Other important groups of genes involved in hereditary
hearing loss that will not be discussed further are extra-
cellular matrix proteins, including TECTA (α-tectorin),
COL11A2 (type XI collagen α2) and COCH (cochlin),
and a number of transcription factors, including
POU4f3 (class 4 POU), POU3f4 (class 3 POU),
EYA4 (eyes absent 4), MIR96 (microRNA96), ESRRB
(oestrogen-related receptor β) and GRHL2 (grainy-
head-like 2).

Conclusion
In the last two decades, our understanding of the basis
of hereditary hearing loss has advanced significantly.
This has been powered by major developments in
human and mouse genetics. Improved genotyping
and mapping has enabled the study of human families
with multi-generational hereditary hearing loss. This
has led to the identification of many genetic mutations
that can cause syndromic or non-syndromic deafness.
The mouse has proven to be an excellent genetic
model for human hearing loss and deafness because
of its structural, physiological and genetic similarities.
Programmes for the systematic mutation86 and pheno-
typing87 of mice have enabled the discovery of many
new genes involved in cochlear embryology or func-
tion, and many genetic loci have subsequently been
found to underlie human deafness.
In this article, we have given an overview of the cur-

rently known genes involved in hereditary hearing loss
(Table I). The function of these genes will become
better understood with time, and no doubt many
more genes that can lead to hearing loss will be discov-
ered. With continued examination, we will build a
better understanding of the function of the cochlea,
and hopefully develop novel molecular therapies for
human sensorineural hearing loss.
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