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Quantum Reference Frames in the
Context of EPR

Michael Dickson†‡

Taking a cue from Bohr’s use of the notion of a reference frame in his reply to EPR’s
argument against the completeness (and consistency) of standard quantum theory, this
paper presents an analysis ofthe role of reference frames in the situation considered
by EPR, using a quantum-theoretical account of physical reference frames based on
the work of Mackey, and Aharonov and Kaufherr. That analysis appears to justify at
least some crucial aspects of a Bohrian reply to EPR.

1. Taking a Cue from Bohr. In his 1935 reply to Einstein, Podolsky, and
Rosen (1935), henceforth ‘EPR’, Bohr makes use of the notion of a ‘ref-
erence frame’, echoing his frequent discussions of the notion elsewhere.
This aspect of Bohr’s language rarely makes it into the official account
of his reply, but it is there nonetheless, and its presence prompts me, in
this paper, to attempt to understand EPR’s argument in terms of a quan-
tum theory of reference frames and see what emerges.

Bohr never provided a formal analysis of the notion of a reference
frame in quantum-theoretic terms, but he did discuss it informally. Indeed,
careful formal discussions are hard to find. I shall attempt here to explicate
a quantum-theoretic account of physically-specified Galilean reference
frames as I understand it from combining the work ofAharonov and
Kaufherr (1988) and Mackey (1978), and to apply that account to the
case considered by EPR. By a ‘physically-specified’ reference frame I mean
one that is given by some physical body (e.g., a ‘laboratory with clocks
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656 MICHAEL DICKSON

and rods rigidly attached’). I shall often use the term ‘reference body’ to
highlight this point.

This paper is not an attempt to defend Bohr’s reply to EPR, but it is
an attempt to justify what might be certain crucial parts of the reply, by
making use of a quantum theory of reference bodies. With that justifi-
cation in hand, one can then consider how reasonable it might be to
endorse Bohr’s reply.

In section one, I shall consider this last issue, albeit briefly. After de-
scribing the points on which Bohr and EPR agree, I shall make it clear
what logical space remains for Bohr’s reply. I shall not give much attention
to the question whether one ought to occupy that space. However, in
section three, I shall analyze EPR’s argument in terms of a quantum
theory of reference frames, described in section two. This analysis im-
plicitly provides some motivation for Bohr’s reply.

I emphasize that I do not pretend to be giving an historically accurate
account of Bohr’s own thoughts. I am only taking a cue from his use of
the language of reference frames. Others have pondered—much more
carefully and deeply than I—Bohr’s own thinking on these and related
matters, and I enthusiastically refer the reader to their work.1 My invo-
cation of the name ‘Bohr’ should not be taken too seriously.

2. EPR versus Bohr.

2.1. The EPR Argument. Purely as a notational convenience,let nMO

denote ‘the observable O is measured on particle n’; let denote ‘thenDO

observable O is has a definite value for particle n’; and let p denote�r q
the counterfactual conditional ‘if it had been that p, then it would have
been that q. For now, or (position or momentum), andO p Q P n p

or 2 (particle 1 or particle 2).1
By ‘the EPR argument’2 I mean the argument that for some quantum-

mechanical state (the ‘EPR state’), where or P, or 2,O p Q n p 1
, and is the modal ‘possibility’ operator:′O ( O �

Measurability. & �1 1�M MQ P

Reality. 1 1 2M ⇒ (D & D )O O O

Epistemic Uncertainty. n nM ⇒ ¬M ′O O

1. I have been strongly influenced by Tanona (2002), as well as Folse (1985) and
Howard (1999), among others.

2. One can find much more careful accounts of the EPR argument in other places,
for example, Fine (1986), and the uninitiated reader is encouraged to consult such
sources.
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and yet,

Strong Non-Disturbance. 2 1 2D ⇒ (M �r D )′O O O

and therefore, .2 2�(D & D )Q P

The existence (not to mention persistence in time) of the EPR state, as
well as the measurability of Q and P, are problematic at best. However,
we can learn something useful by ignoring these problems (as the original
interlocutors did), and I shall, for now. However, ultimately we must
consider the EPR argument properly, and doing so requires either a sat-
isfactory account of the EPR state and of position and momentum mea-
surements in quantum theory, or a consideration of other observables—
I shall briefly consider Bohm’s version of the argument in terms of spin
later. ‘Reality’ is essentially EPR’s well-known ‘criterion for physical re-
ality’ as applied to the EPR state. ‘Epistemic Uncertainty’ is just the
recognition that position and momentum cannot be measured
simultaneously.

The conclusion is a problem not only for Bohr, but also for standard
quantum theory, which apparently has no way to represent this possibility.
It is obtained from the preceding premises roughly as follows.3 Imagine
that (for example), and therefore , by Reality. Strong Non-Dis-1 2M DQ Q

turbance implies that if (counterfactually) then still , and yet in1 2M DP Q

this case (where ) Reality implies that . In other words, Strong Non-1 2M DP P

Disturbance allows one to say that the definiteness of particle 2’s position
inferred from the result of measuring particle 1’s position is not ‘coun-
terfactually undone’ by a counterfactual case in which we measure particle
1’s momentum; but in that case, particle 2 must also have a definite
momentum. Of course, ‘counterfactual measurements’ are not possible
for us to do, which is why nothing in EPR’s argument violates Epistemic
Uncertainty. Indeed, their acknowledgement of Epistemic Uncertainty re-
quires that they consider such counterfactual situations—the counterfac-
tual nature of their argument is thus inescapable.

2.2. The Disputed Premise. Bohr does not dispute anything in the EPR
argument except Strong Non-Disturbance. Instead, he admits only ‘Weak
Non-Disturbance’: . This condition is weaker than2 1 2D ⇒ (¬M �r D )O O O

Strong Non-Disturbance (because its consequent is weaker), which is nor-
mally (and not unreasonably) conceived as a condition of locality. Indeed,
Weak Non-Disturbance is sufficiently weaker than Strong Non-Distur-
bance to block the inference to the conclusion.

3. There are, of course, many more detailed accounts of EPR’s argument. See, for
example, Fine (1986) and a variety of comments about the limitations of the argument
in Dickson (2002).
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But is it plausible to substitute Weak Non-Disturbance for Strong Non-
Disturbance? Apart from whatever justification flows from the discussion
later, I shall not consider this question in much detail, but a few comments
are in order.

The EPR state is a state of perfect correlation in position and mo-
mentum precisely because it is a simultaneous eigenstate4 of the two (com-
patible) observables and (where is the position ob-Q � Q P � P Q1 2 1 2 1

servable for particle 1, and so on). Adding either or to this pairQ P1 1

results in a non-commuting set, because and[Q , (P � P )] ( 0 [P,1 1 2 1

(with the obvious tensor products left implicit). In other(Q � Q )] ( 01 2

words, measuring (for example) actually destroys the perfect correlationP1

in position.
So suppose that , in virtue of and Reality. Now consider the2 1D MQ Q

(counterfactual) possibility that . In this situation, there is not a perfect1MP

correlation between and . But we originally inferred that precisely2Q Q D1 2 Q

on the basis of this correlation, a correlation that does not exist in this
other (counterfactually) possible situation. So what do we say, then, about
the definiteness of , which, in the context of the argument, dependedQ 2

on the existence of this correlation? At the very least, it is not clear. Weak
Non-Disturbance does not make a claim about this case. Strong Non-
Disturbance does. Resolving this question ultimately turns (unavoidably,
because of the counterfactual nature of the EPR argument itself) on subtle
issues surrounding the evaluation of counterfactuals, and I shall not con-
sider them further here.

I have no idea whether Bohr’s refusal to accept Strong Non-Disturbance
implies an endorsement of ‘non-locality’ in any sense that should cause
concern, nor whether a denial of Strong Non-Disturbance is ‘anti-realist’,
whatever that term may mean. It is fairly clear, on the other hand, that
a mere denial of Strong Non-Disturbance as presented here does not lead
to a solution to the problem of measurement in quantum theory; nor does
it constitute an ‘interpretation of quantum theory’, in the contemporary
sense of that phrase. Nonetheless, Bohr’s reply to EPR does have value,
and its value lies primarily in the explanation that it offers for the non-
commutativity of with (and of with ). Bohr’s accountQ P � P P Q � Q1 1 2 1 1 2

is supposed to give us some physical insight into, perhaps even explanation
of, these failures of commutativity, and I believe it does. The next two
sections are my attempt to explicate the explanation.

4. I have alluded once to the fact that strictly speaking this claim is false, because the
EPR state does not exist in the Hilbert space—as a function on the configuration space
of the pair of particles, its support has measure zero. I shall not continue to do so.
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3. Quantum Reference Frames.

3.1. Informal Discussion. Bohr argued that one must stipulate a phys-
ical object as defining a frame of reference. Given this conception of a
quantum-theoretic frame of reference, Bohr attempted to explain in a
physically natural way the uncertainty relation between position and mo-
mentum. For consider a measurement of the position of a particle relative
to the reference frame. If the apparatus that makes the measurement is
allowed to move with respect to the body that defines the frame of ref-
erence, then any exchange of momentum between the particle and the
apparatus will set the apparatus in motion relative to the frame, so that
even if we knew its position relative to the frame prior to measurement,
we do not know it after the measurement.

Assuming (as Bohr did) that the exchange of momentum is necessary
and ‘uncontrollable’ (a term of art for Bohr), one cannot, at the time of
measurement, account for this change in the position of the apparatus
(relative to the frame), and so we must not allow the apparatus to move
with respect to the frame of reference. In order words, it must be rigidly
fixed to the body that defines the frame of reference, so that the (‘un-
controllable’) exchange of momentum in the act of a measurement of the
position of the particle is between the particle and the frame of reference
itself. But the frame of reference is by definition always ‘at rest’ (for it
determines the meaning of ‘at rest’). In other words, so long as we take
the stipulated body to define our frame of reference, we are compelled to
ignore any exchange of momentum between it and the measured particle.
But then, while we are now able to determine the particle’s position relative
to the frame (because the indications on the apparatus always bear a
known and fixed relation to the frame itself), we are necessarily uncertain
about the momentum of the particle when we measure its position, because
any momentum exchanged between the particle and the apparatus is ‘ab-
sorbed’ into the frame, and subsequently ‘lost’ because of our continued
assumption that the body defining the frame has zero momentum.

So argues Bohr. The next few subsections provide a more formal ac-
count (and one that I am more willing to endorse).

Before we turn to that account, however, it is important to realize what
it will what it will not establish. For Bohr, the essentially new feature of
quantum mechanics appears to have been the ‘uncontrollability’ of the
exchange between the measuring apparatus and the measured system. I
am far from clear what ‘uncontrollable’ means in this context5, but the
notion plays a crucial role in the argument, and its presence indicates that

5. Here again I refer the interested reader to the experts.
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Bohr’s argument cannot be taken to establish uncertainty from the very
notion of a physically specified frame of reference. Rather, the argument
can at best suggest a physically satisfying way to understand uncertainty
within a quantum-theoretic context. The trick, of course, is to work in a
quantum-theoretic context without assuming the uncertainty relations in
a way that makes the argument viciously circular. I shall proceed in a
similar manner. While I will certainly be working within a quantum-
theoretic context, my aim is to do so in a way that will still shed light on
the uncertainty relations, rather than taking them as a starting-point.

3.2. Observables as Invariant and Covariant Quantities. One usually
considers observables in quantum theory to be self-adjoint operators on
a Hilbert space. One notes that such an operator, F, uniquely determines
and is determined by a spectral measure, given by a family of projection
operators, , where D is a set of real numbers from the spectrum of F.PD

The probability that a measurement of F yields a result in D is ,Tr[PW ]D

where W is the state of the system.
It makes no difference whether we think of observables as self-adjoint

operators, or as spectral measures. Indeed, one can generalize the usual
scheme by allowing positive-operator-valued (POV) measures without
changing much apart from increasing the expressive power of the theory.
In general, the approach to observables that I shall describe (albeit briefly)
in this subsection requires such generalizations, though the examples that
I consider do not.

In some cases, merely by considering the covariances and invariances
of the observables, we can determine (up to unitary equivalence) which
POV measures correspond to a given observable. By covariance, we mean
simply that, given a group (such as the Galilean group), the action of the
group on the space of values of the observable, and the action of the
group on the Hilbert space, whenever some D is changed by the action
of some element of the group, changes accordingly. By invariance, wePD

mean just that and are the same if D and D′ are related by the actionP P ′D D

of some element of the group.
Consider, for example, the position operator and the group of spatial

translations. Let a be a specific spatial translation on and let be3� Ua

the corresponding unitary transformation on the Hilbert space. Then the
position operator is covariant under spatial translations just in case, for
any , , where is the spectral projection of Q,3 Q �1 Q QD � � U P U p P Pa D a a(D) D

the position operator, corresponding to the set D of spectral values. Thus
we can characterize position as invariant under boosts and covariant
under translations, while momentum should be invariant under transla-
tions and covariant under boosts.

It turns out that, as a simple corrollary of the imprimitivity theorem
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plus a few reasonable assumptions, we need say no more in order to
characterize the position and momentum operators uniquely, up to unitary
equivalence.6 In addition, it is an immediate consequence of what we have
said thus far that position is the generator of translations in momentum,
and vice versa, and from this fact we can almost immediately obtain the
Weyl form of the commutation relations.

So the covariances and invariances of position and momentum are
apparently closely connected—at least mathematically—to the uncertainty
relations. What do we make of this connection? If we wished only to
derive the mathematical expression of the uncertainty relations, then the
discussion would be over. The point here, however, is not merely to derive
the uncertainty relations mathematically, but to understand why the der-
ivation works from a physical point of view. The initial physical demand
of invariance and covariance with respect to (certain parts of) the Galilean
group strongly suggests that we try to understand this final piece of math-
ematics in the same terms. Towards that end, I turn now to an account
of Galilean reference frames in quantum theory. The connection between
the Galilean group and reference frames will emerge in that discussion.

3.3. The ‘Absolute’ in Quantum Theory. In order to keep the situation
clear, notice that in general, in non-relativistic quantum theory, we work
with absolute coordinates of some background reference frame, presumed
to be inertial. This fact is implicit, for example, in the assumption that
the coordinates appearing in a wavefunction, , refer to ‘physicalw(x)
space’. I shall refer to this ‘absolute’ point of view as the ‘external view-
point’. My aim, here, is to describe a physically-specified reference frame,
and the measurements that take place ‘internally’ to it, from such an
external point of view. In this strategy (though not in all details), I follow
Aharonov and Kaufherr (1988).

An example will make this point clearer. In the usual approach to the
hydrogen atom in quantum theory, one begins with the observation that
the Coulomb potential depends only on the distance between the proton
and the electron, and using this symmetry, the problem is reduced to that
of a single particle in a central potential. Working in spherical coordinates,
one performs a separation of variables into the radial and angular parts,
then solves the resulting equations. It is less often observed (but true
nonetheless) that this procedure involves working in the center-of-mass
coordinates, rather than the ‘absolute’ coordinates with which one im-
plicitly began (prior to the identification of the relevant symmetry of the
problem). These absolute coordinates appear in the (usually unmentioned)

6. See Mackey (1978) and Varadarajan (1985). As Halvorson has shown, the ‘reason-
able assumptions’ are not unimpeachable.
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initial formulation of the problem in terms of a two-particle wavefunction
with six arguments (for the configuration space of the two particles). The
relational coordinates in which we solve the problem are defined in terms
of the coordinates of this background space.

One might object, asking why we could not take the relational space
parametrized by the center-of-mass and relative distance coordinates as
fundamental? The issue here—though I do not have the space to consider
it in detail7—is that the equations that we solve in the relational space
are derived from the Schrödinger equation on the configuration space,
and its validity as an equation of motion for wavefunctions on this space
is based on the assumption that the configuration space for the two par-
ticles describes an inertial system. Indeed, the separation of variables
required to solve the problem of the hydrogen atom relies on the as-
sumption that the compound system is inertial.

So to be more precise, now, about the ‘absolute viewpoint’ presumed
by quantum theory, we can say that it is not quite the assumption that
the background configuration space for any quantum-mechanical system
is ‘absolute space’, but rather that it describes an inertial system. (Of
course, the presumption that it is absolute space would suffice.) But that
assumption is not something we know, either empirically or a priori. We
do not know which systems are inertial. Instead, we presume certain sys-
tems to be interial (or ‘close enough’), and this presumption allows us to
write down the Schrödinger equation in the coordinates describing those
systems and get to work.

A quantum theory of reference bodies must, therefore, be a theory with
this background assumption in place. For to start, we must know that,
in the coordinate system given by a body that is to serve the role of fixing
a reference frame, the Schrödinger equation is valid. In order to know
that the Schrödinger equation is valid in these coordinates, we must know
that they describe an inertial frame. In order to know that they describe
an inertial frame, we must know that they are related in the right way
(in our case, by a Galilean transformation) to some given inertial frame.
This given inertial frame is just that, given. I shall call it the ‘background
space’.

However, we can still be relationalists of a sort, and abjure the true
existence of such a background space. We can study quantum reference
bodies from an imagined ‘absolute’ frame, relative to which the bodies
are defined. Such is the strategy used here. While this study will not reveal,
for example, how to find those frames (as given by bodies) in which the
Schrödinger equation is valid, it will reveal certain qualitative features of

7. I am indebted to the Oxford Philosophy of Physics Seminar, and especially to Harvey
Brown, for forcing me to consider this issue more carefully.
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frames in which the equation is valid. One of those, I claim, is the un-
certainty relations. That is, a consideration of how (inertial) bodies de-
termine frames of reference suggests how one might come to understand
the uncertainty relations in a physically satisfying way.

3.4. Quantum Reference Bodies. So suppose that we are given some
absolute frame. From the point of view of this frame, we wish to describe,
quantum-mechanically, the physics of measurements made by an observer
‘inside a lab’, who takes the lab to define his or her frame of reference.
The absolute frame should be considered a sort of ‘crutch’, which we
shall throw away once we have studied the physics of measurements in
the lab frame. The presumption of this discussion, then, is that real-life
measurements of position are best modeled as measurements made by an
observer ‘in a lab frame’.

We further presume, as observers in a lab frame always do (and must,
as we have already mentioned) that the lab is inertial in the appropriate
sense; for us, this presumption means that the coordinate system deter-
mined by the rods and clocks of the lab is related to the given coordinate
system of the background space by a Galilean transformation. Given the
discussion above, we know how to implement these transformations as
unitary transformations on the Hilbert space, and most important, we
know how those transformations are related to the position and momen-
tum operators. The lesson of the brief discussion of the imprimitivity
theorem is that there is little room for choice, here.

This situation has been considered by Aharonov and Kaufherr (1988).
While not couching their discussion in these terms, they consider a lab
(‘system 0’) together with a collection of systems (1, 2, 3, . . .) and ask
how the description of systems 1, 2, 3, . . . given by an observer who takes
the lab to define a spatial frame of reference can be transformed into a
description in terms of the given background space normally.

To address this issue, let the position and momentum observables of
an observer inside the lab be denoted Q and P. Let the position and
momentum observables of an ‘external’ observer (who has been granted
an inertial reference frame) be and . How are these observables related?Q P
Restricting our attention to the spatial translation between the lab and
the absolute coordinates (that is, restricting our attention to contexts in
which the internal observer is using just the rods of the lab frame to define
‘position’), the answer, as they note, is given by the unitary transformation:

U p exp �i PQ . (1)�A-K n 0( )
1n 0

This answer gives the intuitively demanded result, namely,
( ). It also, upon reflection, does the right�1U Q U p Q � Q n 1 0A-K n A-K n 0
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thing to the free Hamiltonian for the compound system. To see that it
does, consider the case where the total momentum of the lab (and its
content) is zero with respect to the external frame. Then

2
2Pn P

�1U H U p � , (2)�( )A-K free A-K 2m 2m1n 0 n 0

where . The first term in (2) is just the expected term for theP p � P
1 nn 0

free particles inside the lab. The second term represents, as Aharaonov
and Kaufherr term it, the ‘drift’ of the lab with respect to the absolute
coordinates. (The assumption that the total momentum is zero is purely
for convenience, to make it easier to see that does the right thing inUA-K

a case where it is clear what the right thing is. Note also that the as-
sumption that the total momentum of the lab and its contents is zero in
no way precludes the internal observer from assigning definite values to
the positions of the particles in the lab, for from the external viewpoint,
these positions are relative positions, which can be definite simultaneously
with the definiteness of the total momentum. Indeed, this point is at the
heart of Aharonov and Kaufherr’s motivation.)

3.5. Position Measurements. Position measurements are much easier to
consider than momentum measurements, and so I shall focus exclusively
on them. So let us consider, first, how the lab observer thinks about these
measurements. That observer measures position relative to the rods given
by the lab (instead of relative to some presumed absolute background
space), but otherwise proceeds just as one normally does in standard
quantum theory, representing the interaction by some interaction Ham-
iltonian, and solving the Schrödinger equation with that Hamiltonian.
This procedure should be familiar. As an extremely simple case, let the
interaction Hamiltonian be:

H p g(t)Q P , (3)int 1 2

letting the measured system be labeled by ‘1’ and the apparatus (or its
pointer degree of freedom) by ‘2’. The function determines the strengthg(t)
of the interaction, and if it is sharply peaked about some time, then
standard techniques of approximation yield the familiar result, namely,
that after the interaction is (essentially) over, there is a (near) perfect
correlation between the position of system 1 and the value of the pointer
observable for system 2 (which is an observable conjugate to ).P2

How do we translate this story into the observables of the ‘absolute’
frame? We can study the physics of this measurement from the absolute
point of view by transforming the total Hamiltonian (the free part plus
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the interaction part) as written down by the internal observer. Doing so,
we note the following commutation relations:

[H, P ] p 0, (4)total

[H, P ] ( 0, (5)0

[H, P ] ( 0. (6)1

The relation (4) is comforting, because it assures us that the measurement
(which, after all, involves particles solely inside the lab) is momentum-
conserving. The relation (6) is perhaps unsurprising as well, for it merely
indicates that the measurement of particle 1’s position involves a change
in its momentum (because the commutator of and is the time-H P0

derivative of ). However, in conjunction with (5), and in light of howP0

we arrived at these commutation relations, one might be led (as I am) to
consider the following interpretation of these relations: the measurement
of particle 1’s position disturbs not only the particle’s momentum, but
also the momentum of the lab itself. (By ‘disturb’, I mean just that the
time-derivative of the momentum during the interaction is non-zero.)

This story brings together, in a somewhat more formal way, two themes
that Bohr himself seemed to have linked quite often, namely, the necessity
to refer position measurements to a physical reference body, and the
inevitability of an exchange of momentum between the measured system
and the reference body itself during a measurement of position.

In what sense, though, is the exchange ‘uncontrollable’? Bohr did not,
so far as I can tell, offer an explicit answer to this question, but here is
a suggestion.8 Remember that we have been studying the physics of a
position measurement as made by the internal observer, but from the
external point of view. In particular, the external observer has access to
two observables that are simply not available to the internal observer,
namely, the position and momentum of the lab itself. The external observer
can say that the lab’s momentum is disturbed during the measurement,
and can even, if inclined, measure the disturbance. The internal observer
can say, at best, that if an external viewpoint were available, then from
that viewpoint, the momentum of the lab would be disturbed during
measurement.

This interpretation explains two things, one which Bohr would surely
endorse, the other perhaps not. First, it explains the indefiniteness of

8. I am unclear whether Bohr would endorse this view, and even less so the conse-
quences that seem to follow, but again, I refer the reader to the work of those more
qualified than me to assess Bohr’s attitude.

https://doi.org/10.1086/425939 Published online by Cambridge University Press

https://doi.org/10.1086/425939


666 MICHAEL DICKSON

momentum during a measurement of position. When the internal observer
asks ‘is momentum well-defined’ the question must be addressed, it seems,
by asking whether the lab is the appropriate sort of object to serve the
purpose of defining momenta. While the internal observer has no direct
access to the observables describing the lab, he can still go through the
exercise that we have gone through here, considering what an imagined
external observer would say about the lab, and on that basis decide
whether the lab can be taken to define momenta. But we know what the
external observer says—she says that lab accelerates during the measure-
ment. An accelerating lab is not appropriately taken to define momenta
(because it does not have a constant momentum itself, relative to which
we could define the momenta of other particles), and so the internal
observer must conclude that momentum (relative to the lab!) is undefined
during the measurement.

Second, the interpretation explains the well-known fact that while one
can never know, at a time t, the position and momentum of a particle at
t, one can retrodict them. Here we have a quick explanation why: the
internal observer can always step outside of the lab and measure the affect
of the measurement on the lab, using this information to retrodict.

In any case, while I have had to move rather quickly past some quite
subtle points, I hope to have indicated that a quantum theory of reference
bodies is suggestive of an interpretation of the uncertainty relations (at
least in their qualitative, if not quantitative form) as the result of the
(supposed) necessity to refer measurements of position and momentum
to a reference body. Let us turn, finally, to consider the application of
this view to our original issue, the EPR argument.

3.6. A Bohrian Reply to the EPR Argument. Given the above, we can
say fairly quickly how one might reply to EPR, at least in the sense of
explaining, from a quantum-theoretic point of view (but in manner that
is not too viciously circular), the incompatibility of, for example, withQ1

(where the indices 1 and 2 now refer to the two entangled particles,P � P1 2

and we label the measuring apparatus system ‘3’.) So we grant, to begin,
that these observables are necessarily referred to some reference body,
‘the lab’. The discussion of position measurements, above, can be re-
peated, mutatis mutandis for the measurement of in this situation, andQ1

the result is (unsurprisingly) the same. We can interpret the result the
same as well: the conditions required for the definiteness of the total
momentum, and indeed of , are not satisfied during the measurement,P2

because the time-derivatives of the momenta of both the compound system
and the lab itself are non-zero. Again, I leave it to the reader to decide
whether these observations form the basis of a satisfying reply (indepen-
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dently of the fact, as I see it, that Bohr does not supply us with an
interpretation of quantum theory itself).

But what about entanglement in observables other than position and
momentum? Can they be handled in the same way? Here I can only
indicate the nature of an answer by sketching what one would say in the
case of two directions of spin. The point is that reference frames play an
essential role here as well. Indeed, in order to know what ‘spin-x’ and
‘spin-y’ mean at the two measurement-stations in the EPR-Bohm exper-
iment, experimenters at the two sides must share a direction in space,
which they arbitrarily call ‘x’, and one of the experimenters must be able
to determine an angle of 90 degrees (in this example) from this direction.
The corresponding ‘direction’ and ‘angle’ observables are incompatible.
One can arrive at their incompatibility in a way that is more or less
analogous to the route, discussed above, to the Weyl relations via the
imprimitivity theorem. One begins by requiring that the angle and direc-
tion observables have the obvious invariances and covariances with re-
spect to various rotations, then derives, via the imprimitivity theorem and
the presumption of a continuous unitary representation of these rotations
on the appropriate Hilbert space, a Weyl (uncertainty) relation for these
observables.9

What is missing, however, is any indication of a physically satisfying
account of these relations analogous to the account for position and
momentum, above. It was part of Bohr’s genius to couch the experiments
involving position and momentum in terms that are more or less im-
mediately amenable to understanding the essential role that reference
frames play. Though it may be clear how, in broad outline, one would
attempt to do so for the case of spin (for example, by allowing a large
number of spin- particles prepared identically to determine a direction1

2
in space), I am unaware of any detailed account, for which, in any case,
there is no room here.
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