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With more satellite systems becoming available there is currently a need for Receiver
Autonomous Integrity Monitoring (RAIM) to exclude multiple outliers. While the single
outlier test can be applied iteratively, in the field of statistics robust methods are preferred

when multiple outliers exist. This study compares the outlier test and numerous robust
methods with simulated GPS measurements to identify which methods have the greatest
ability to correctly exclude outliers. It was found that no method could correctly exclude

outliers 100% of the time. However, for a single outlier the outlier test achieved the highest
rates of correct exclusion followed by the MM-estimator and the L1-norm. As the number
of outliers increased MM-estimators and the L1-norm obtained the highest rates of normal
exclusion, which were up to ten percent higher than the outlier test.
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1. INTRODUCTION. There is currently a need for Receiver Autonomous
Integrity Monitoring (RAIM) to identify multiple outliers. This is due to the fact
that two or more simultaneous satellite failures are likely. Particularly, in less than
ideal environments, multiple outliers are more frequent due to the additional affects
of non line of sight multipath.

There are two different strategies to mitigate the presence of outliers in RAIM. The
first is to identify outliers using outlier tests, and then reject the largest observation
(Sturza, 1988; Lee, 1986; Brenner, 1990; Pervan et al., 1996; Parkinson and Axelrad,
1988). If multiple outliers exist then the single outlier test is applied iteratively until all
outliers have been removed (Kelly, 1998, Hewitson and Wang, 2006). The second
method is to use robust methods that retain all observations but either down-weight
suspect observations or minimise alternatives to the sum of the squared residuals
(Wang and Wang, 2007).

When multiple outliers exist, statisticians frequently use robust methods since
ordinary least squares are non-robust (Andersen, 2008). It is for this reason that
outlier diagnostics are required to identify outliers that have substantially influenced
the estimated parameters. However, robust methods are designed so that the esti-
mators are resistant to the influence of outliers.
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It is also claimed that robust methods are good for automated processing (Kuter
et al., 2005) as required for RAIM. This is due to the ease of application of robust
methods, requiring no outlier diagnostics that can be very complex and time con-
suming for multiple outliers.

Another desirable characteristic of many robust methods is the bounded influence
of leverage observations (Rousseeuw and Leroy, 1987). Leverage observations are
pseudoranges that have a high potential to influence the estimated parameters. In
RAIM, due to the method of least squares having an unbounded influence, leverage
observations are controlled by monitoring protection levels to ensure that they are
within the requirements of the application. This means that monitoring protection
levels may be unnecessary for robust methods.

There are currently a large number of robust methods to choose from including
the Danish Method (Krarup et al., 1980), least absolute values method (Edgeworth,
1887), Least Median Squares (Rousseeuw, 1984), Least Trimmed Squares
(Rousseeuw, 1984), R-estimators (Jaeckel, 1972), M-estimators (Huber, 1964),
Generalised M-estimators (Hampel et al., 1986), IGGIII estimators (Yang 1999),
S-estimators (Yohai and Rousseeuw, 1984), and MM-estimators (Yohai, 1987).

As this is the case then should a robust method be used for RAIM? Ideally, the
RAIM method chosen should be capable of handling multiple outliers. It should be
resistant to the influence of leverage observations. The method should also be resili-
ent to the effects of incorrect exclusion where only some of the outliers are identified
and wrong exclusion where a correct observation is identified. If neither incorrect
exclusion nor wrong exclusion occurs then it is a correct exclusion as all of the outliers
and only the outliers have been excluded.

The ability of an estimator to resist multiple outliers is given by the breakdown
point. This is a global measure of the percentage of outliers that can be tolerated
without producing an arbitrary result. However, the breakdown points as given by
Hampel (1971) and Donoho and Huber (1983) are asymptotic and do not give any
information on the reliability of the methods to correctly exclude outliers. In ad-
dition, the breakdown point does not take into account outlier tests that effectively
increase the breakdown point.

As a result of this, it is the intention of this study to compare the abilities of the
outlier test and robust methods to correctly exclude outliers in single point posi-
tioning. The comparison is based on the number of outliers present and the size of the
outliers. An analysis is made of what has occurred in the times that the methods do
not correctly exclude the outliers.

2. THE OUTLIER TEST. The linear model used to find the positioning sol-
ution is given by:

v=Ax̂xx‘ (1)

where v is the matrix of residuals, A is the design matrix, x̂x is the matrix of parameters
solved for and ‘ is the measurement matrix. The variance covariance matrix, S of the
pseudoranges is given by:

S=s0
2Q=s0

2Px1 (2)

where s0
2 is the a priori variance factor, Q is the cofactor matrix, and P is the weight

matrix.
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The studentised outlier test is given by (Baarda, 1968; Hewitson et al., 2004):

wi=
jhiTPvj

s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hiTPQvPhi

p (3)

where h is [0…1…0]T with the ith element equal to one, and Qv is the cofactor matrix
of the estimated residuals given by:

Qv=Px1xA(ATPA)x1AT (4)

The pseudorange with the largest test statistic greater than the threshold is
considered an outlier. In this study, it is assumed that the measurements are un-
correlated and their weights are defined by the squared sine of the satellite elevation
angles.

3. ROBUST METHODS.
3.1. The Danish Method. The Danish method was proposed by Krarup (Krarup

et al., 1980) and is purely heuristic with no rigorous statistical theory. The method
works by carrying out a least squares adjustment using the a priori weight matrix.
Then the process is repeated iteratively altering the weight matrix according to
(Caspary, 1987) :

(Pii)k+1=
(Pii)k j(vi)kjfcs0

ffiffiffiffiffiffi
Qii

p

(Pii)ke

�
x j(vi)k j

cs0
ffiffiffiffi
Qii

p
�

j(vi)kj>cs0
ffiffiffiffiffiffi
Qii

p

(
(5)

where k is the number of iterations, and c is a constant usually set between two and
three. The process is continued until convergence is achieved. The outliers then have
zero weights and the size of the residuals represents the magnitude of the outlier. The
estimated parameters are either left as is or the outliers are discarded and a new least
squares solution is obtained using the a priori weights.

3.2. Least Absolute Values. The least absolute values method, otherwise
known as the L1-norm was proposed by Edgeworth (1887). The L1-norm is found by
minimising the sum of the absolute weighted residuals.

Min
Xn
i=1

viffiffiffiffiffiffi
Qii

p
����

���� (6)

By not squaring the residuals, there is less emphasis on the outliers than would be
the case with the least squares.

3.3. Least Median Squares. The Least Median Squares (LMS) was developed by
Rousseeuw (1984). It is characterised by solving the linear model by minimising the
median of the weighted residuals squared.

Min Median
vi

2

Qii

� �� �
(7)

3.4. Least Trimmed Squares. The Least Trimmed Squares (LTS) method was
also developed by Rousseeuw (1984). It is close to ordinary least squares except
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that the largest weighted squared residuals are excluded from the summation to be
minimised,

Min
Xu
i=1

vi
2

Qii
(8)

where u is the number of residuals included in the summation. It has been
suggested to set u=n(1xa)+1 where a is the percentage of residuals to be
trimmed from the summation. However to achieve maximum robustness u should be
set to n/2.

3.5. R-Estimators. Jaeckel (1972) proposed the R-estimators that are based on
the rank of the residuals. The linear equation is solved by minimising the sum of the
scored ranked weighted residuals :

Min
Xn
i=1

a(Ri)
viffiffiffiffiffiffi
Qii

p (9)

where Ri is the rank of the weighted residuals, and a(i) is the score function given by:

a(i)=Min cR,Max Wx1 i

n+1

� �
,xcR

� �� �
(10)

where Wx1 is the inverse of the normal probability density function, and cR is a
constant.

3.6. M-Estimators. The M-estimators were first proposed by Huber (1964) and
are based on minimising a function of the residuals :

Min
Xn
i=1

r(vi) (11)

where r is a symmetric function with a unique minimum at zero. By differentiating
Equation (11) with respect to the parameters yields:

Xn
i=1

’
vi
ŝs0

� �
Ai=0 (12)

where Q is the derivative of r and the residuals have been scaled. The Q is replaced by
an appropriate weight function that increases as the size of the residuals increases :

(Pii)k+1=
1

j(vi)kj
ŝs0

f1�345
1�345

j(vi)k=ŝs0j
j(vi)kj
ŝs0

>1�345

8>><
>>: (13)

where ŝs0 is the a posteriori scale factor given by the robust estimator:

ŝs0=
1

0�6745Median(jvixMedian(vi)j) (14)

Due to the difficulty in solving Equation (12) initiative re-weighted least squares is
used. An initial adjustment is carried out with the least squares using the a priori
weight matrix. Then the weight matrix is altered in the following iterations by
Equation (13) until convergence.
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3.7. Generalised M-Estimators. Since M-estimates fail to account for leverage
observations, Mallows proposed Generalised M-estimators (Hampel et al., 1986).
The Generalised M-estimators are given by:

Xn
i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(QvP)ii

p
’

vi
ŝs0

� �
Ai=0 (15)

where leverage observations are down weighted according to their redundancy
number. However, this is only valid when the measurements are uncorrelated,
otherwise the redundancy number may become negative values (Wang and Chen,
1994a, b). To solve Equation (15) an initial adjustment is carried out with the least
squares using the a priori weight matrix. Then the weight matrix is updated in the
following iterations by:

(Pii)k+1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(QvP)ii

p j(vi)kj
ŝs0

f1�345

1�345
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(QvP)ii

p
j(vi)k=ŝs0j

j(vi)kj
ŝs0

>1�345

8>><
>>: (16)

until convergence is achieved.
3.8. IGGIII. The IGGIII is similar to M-estimation except that the weight

function is given by (Yang 1999):

(Pii)k+1=

Pii j�vvijf1�345

Pii
1�345
j�vvij

3xj�vvij
3x1�345

� �2

1�345<j�vvijf3

0 j�vvij>3

8>><
>>: (17)

where the studentised residuals, �vvi are used to adjust the weights.
3.9. S-Estimators. The least median squares and the least trimmed squares are

defined by minimising a robust measure of the scatter of the residuals. Yohai and
Rousseeuw (1984) generalised this to the S-estimators that minimise the dispersion of
the residuals :

Min ŝs0(v1, v2, . . . vn) (18)

Rather than minimise the variance of the residuals, robust S-estimators minimise a
robust M-estimate,

1

n

Xn
i=1

’
vi
ŝs0

� �
=b (19)

where Q is replaced by an appropriate weight function.
3.10. MM-Estimators. Yohai (1987) proposed the MM-estimator, which com-

bines the S-estimator and the M-estimator. The procedure is to obtain initial esti-
mators using the S-estimator. Then the residuals from the S-estimator are used to
determine the scale factor, ŝs0. The scale factor is then held constant during con-
secutive iterations of the M-estimator, starting with the final S-estimation par-
ameters. The MM-estimator can also be found using the method of least median
squares in place of the S-estimator.
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4. THE METHOD OF COMPARISON. To compare the outlier test and
robust estimation methods 24-hours of GPS data was simulated with the number of
satellites and PDOP as displayed in Figure 1. Outliers were injected into the
pseudoranges and the success rates of the outlier test and robust methods were re-
corded.

4.1. Outlier Definition. An outlier is a piece of data that is suspected to be in-
correct due to the remote probability that it is in fact correct (Ferguson, 1961). In this
study, the point at which a pseudorange becomes an outlier is considered to be at
three standard deviations. This corresponds to a 0.27% chance of a pseudorange
being incorrectly identified as an outlier.

The three standard deviation definition of an outlier was also primarily chosen
since there is no pre-defined point at which robust estimators start to reduce the
influence of outliers on the estimated parameters. However, outlier tests only start to
reject outliers once the pre-defined threshold of an outlier has been breached. Since it
is generally considered that a residual greater than three standard deviations is an
outlier, and it is most likely that the robust methods would have significantly reduced
the influence of residuals of this magnitude, then the three standard deviation defi-
nition was chosen.

4.2. Outlier Simulation. Outliers of varying size and number were injected into
the pseudoranges. This was done for zero, one, and two outliers. The sizes of the
outliers were randomly generated in two categories between three and six standard
deviations and between six and nine standard deviations. The simulated outliers were
then randomly added to or subtracted from the pseudoranges.

4.3. Testing Method. The outlier test and the robust methods were tested with
the simulated GPS data. To ensure that the correct solution could be obtained, only
epochs with five satellites plus at least the number of simulated outliers were used. To
correspond with the definition of an outlier at three standard deviations the threshold
for the outlier test was set at three. In addition, the constant value, c in the Danish
method was also set to three, and at the end of the adjustment the outliers with
significantly small weights (i.e. <1ex6) were discarded and a new Least Squares
adjustment using the a priori weight matrix was used. To achieve the maximum
robustness for the Least Trimmed Squares method, u was set to n/2 and for the
R-estimator, cR was set to 0.68.

4.4. Breakdown of the Results. After the outlier test and robust methods were
tested, the estimated parameters were then used to determine the residuals for all of
the pseudoranges. If a residual was greater than three standard deviations then it was
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Figure 1. Number of satellites and PDOP.
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considered that the pseudorange was excluded as a suspected outlier. Similarly, if a
residual was less than three standard deviations then it was considered that the
method had identified the pseudorange as correct.

Based on the comparison of the pseudoranges excluded and the pseudoranges that
contained simulated outliers the estimated parameters were categorised as shown in
Table 1 where g is the number of normal pesudoranges, and the scenarios are:

(a) None of the outliers were excluded
(b) Some of the outliers were excluded
(c) Some of the outliers were excluded and some normal pseudoranges were also

excluded
(d) All of the outliers were excluded and some normal pseudoranges were also

excluded
(e) Correct exclusion, where all of the outliers were excluded and none of the

normal pseudoranges were excluded

5. RESULTS. The comparisons of the methods for zero, one, and two outliers
are displayed in Tables 2, 3 and 4 respectively.

6. DISCUSSION. From Table 2 for the case of zero outliers it can be seen
that all of the results are in the (e) and (d) categories since there were no outliers
present. The Danish method was the only method to achieve 100% correct ex-
clusion, closely followed by the outlier test. For the outlier test, it is generally

Table 2. Comparison for zero outliers.

(a) (b) (c) (d) (e) (d)+(e)

Outlier Test 0% 0% 0% 2% 98% 100%

Danish Method 0% 0% 0% 0% 100% 100%

L1 – norm 0% 0% 0% 6% 94% 100%

LMS 0% 0% 0% 8% 92% 100%

LTS 0% 0% 0% 9% 91% 100%

R-estimators 0% 0% 0% 49% 51% 100%

M-estimators 0% 0% 0% 6% 94% 100%

GM-estimators 0% 0% 0% 12% 88% 100%

IGGIII 0% 0% 0% 10% 90% 100%

S-estimators 0% 0% 0% 14% 86% 100%

MM-estimators 0% 0% 0% 12% 88% 100%

Table 1. Scenarios of selected pseudoranges for two outliers.

Normal Pseudoranges Simulated Outliers

(a) (1) (2) (3) ….…. (g) (g+1) (g+2)
(b) (1) (2) (3) ….…. (g) (g+1) (g+2)

(c) (1) (2) (3) ….…. (g) (g+1) (g+2)

(d) (1) (2) (3) ….…. (g) (g+1) (g+2)

(e) (1) (2) (3) ….…. (g) (g+1) (g+2)
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undesirable to have a high amount of category (d) as it can lead to the positioning
solution being unavailable if there are only a small number of satellites (Wang and
Ober, 2009). However, this will become less of a concern as the number of satellites
increases. In comparison to the robust methods that have a correct exclusion rate of
approximately ninety percent and a category (d) rate of approximately ten percent,
this could be considered a failure of the robust methods. However, while exclusion
of normal pseudoranges is less than desired, as it does not utilise all normal pseudo-
ranges, it is still a satisfactory result as the positing solution only uses normal
pseudoranges.

One of the reasons for the robust methods having a high rate of excluding normal
pseudoranges is believed to be due to their characteristic of bounded influence. If a
pseudorange has a high protection level, otherwise known as a leverage observation,
then it has a high potential to influence the estimated parameters. It is only when the
addition or removal of the observation causes a substantial change in the estimated
parameters that it becomes influential (Andersen, 2008). By bounding the influence
of observations, the robust methods retain leverage observations that have little

Table 4. Comparison for two outliers.

Outliers From 3s to 6s Outliers From 6s to 9s

(a) (b) (c) (d) (e) (d)+(e) (a) (b) (c) (d) (e) (d)+(e)

Outlier Test 23% 37% 22% 0% 18% 18% 4% 13% 32% 1% 51% 52%

Danish Method 50% 28% 8% 0% 14% 14% 13% 14% 25% 2% 46% 49%

L1 – norm 18% 28% 25% 2% 26% 28% 3% 7% 32% 9% 48% 58%

LMS 17% 19% 33% 5% 26% 31% 4% 3% 37% 15% 41% 56%

LTS 17% 20% 34% 5% 25% 29% 3% 3% 38% 17% 39% 56%

R-estimators 12% 7% 34% 43% 5% 48% 2% 1% 32% 59% 6% 65%

M-estimators 24% 27% 31% 2% 17% 19% 4% 8% 38% 16% 34% 50%

GM-estimators 19% 22% 40% 3% 16% 18% 3% 6% 44% 16% 30% 46%

IGGIII 23% 19% 38% 5% 15% 20% 4% 4% 40% 33% 19% 53%

S-estimators 14% 21% 35% 4% 26% 30% 3% 4% 38% 12% 44% 56%

MM-estimators 14% 26% 32% 2% 26% 28% 2% 5% 34% 9% 49% 58%

Table 3. Comparison for one outlier.

Outliers From 3s to 6s Outliers From 6s to 9s

(a) (b) (c) (d) (e) (d)+(e) (a) (b) (c) (d) (e) (d)+(e)

Outlier Test 43% 0% 10% 0% 47% 48% 7% 0% 8% 1% 84% 85%

Danish Method 74% 0% 1% 1% 24% 24% 30% 0% 4% 3% 63% 66%

L1 – norm 36% 0% 11% 4% 48% 53% 7% 0% 11% 13% 69% 82%

LMS 36% 0% 16% 9% 39% 48% 6% 0% 14% 27% 53% 80%

LTS 36% 0% 19% 9% 36% 45% 6% 0% 19% 27% 48% 75%

R-estimators 22% 0% 22% 49% 7% 56% 5% 0% 21% 65% 10% 75%

M-estimators 43% 0% 15% 4% 39% 43% 9% 0% 15% 13% 63% 76%

GM-estimators 35% 0% 23% 5% 37% 42% 6% 0% 21% 16% 57% 73%

IGGIII 43% 0% 21% 7% 29% 36% 10% 0% 17% 36% 37% 73%

S-estimators 30% 0% 19% 10% 41% 52% 5% 0% 17% 22% 57% 78%

MM-estimators 29% 0% 18% 6% 46% 53% 4% 0% 13% 14% 69% 83%
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influence but reject observations with high influence. As can be seen from Table 2 if
an observation is highly influential it does not necessarily mean that it is an outlier. It
is expected that as the number of satellites increase the frequency of highly influential
observations decreases.

For a single outlier in Table 3, category (b) is zero since for some outliers to be
excluded multiple outliers must exist.

From Tables 3 and 4 it can be seen that no method has achieved 100% correct
exclusion for a single or multiple outliers. For a single outlier the outlier test provided
the highest rates of correct exclusion followed by the L1-norm and MM-estimators.
However, as the level of contamination increases the outlier test starts to produce
average results while MM-estimators and the L1-norm start to achieve the highest
rates of correct exclusion. R-estimators have the lowest rates of correct exclusion for
all levels of contamination.

When the less than desirable, but acceptable result of scenario (d) is taken into
account in addition to correct exclusion (i.e. (d)+(e)) a 100% success rate is still
not achieved. The R-estimator now has the highest rates of success followed by
MM-estimators, and the L1-norm. The Danish method now has the poorest rates of
success. The R-estimator on this measure has remarkable results particularly for high
levels of contamination due to the very high levels of successfully selecting a subset of
normal pseudoranges.

In comparison to the robust methods, the outlier test has higher levels of category
(b) and reasonable levels of category (a). In addition, the outlier test has lower levels
of category (d). This appears to be due to the outlier tests’ reluctance to reject ob-
servations compared to the robust methods.

All the methods tested are prone to the five different scenarios. It can be stated that
generally clear relationships between the five categories and the number and magni-
tude of outliers exist. As the number of outliers increases the amount of (b) and (c)
increases, while (a), (d) and correct exclusion decreases. When the magnitudes of the
outliers increase the percentages of (c), (d) and correct exclusion increases, whereas
(a) and (b) decreases.

From the breakdown of the results it can also be seen how the conventional outlier
test results would have changed if additional methods were employed. If observations
with high leverage were removed then it would have resulted in a slight decrease in the
amount of correct exclusion and a corresponding increase in (d). This is because the
majority of pseudoranges that have been rejected are normal. Another strategy to
improve the results of outlier tests is to replace pseudoranges one at a time in the
order of rejection and retest in case a normal pseudorange has been incorrectly ex-
cluded. However, this strategy only has the potential to reduce category (d), which in
this paper has a maximum value of one percent and hence results in a very minor
improvement.

It was also found that the robust methods are easier to apply than the outlier
tests that require complex diagnostics. However since the robust methods cannot be
uniquely solved for, time consuming search methods must be employed.

7. CONCLUSION. There is an increasing requirement of RAIM to identify
and exclude multiple outliers. To meet this requirement there are numerous
options including the outlier test and robust methods consisting of the Danish
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method, Least Absolute Values method, Least Median Squares, Least Trimmed
Squares, R-estimators, M-estimators, Generalised M-estimators, IGGIII esti-
mators, S-estimators, and MM-estimators.

However, despite this it has been found that no method correctly identifies all
outliers in all situations even for a single outlier, let alone if multiple outliers exist.
This demonstrates that the mitigation of outliers for a 100% success rate is a very
challenging task. From the results, the outlier test achieves the highest rates of correct
exclusion for a single outlier. However, as the level of contamination increases the
robust methods of the MM-estimators and the L1-norm achieved the highest rates of
correct exclusion. If the rejection of normal observations in addition to the outliers is
considered acceptable then the R-estimator has the highest rates of success followed
by the MM-estimators and the L1-norm. However the difference between the success
rates of the outlier test and the robust methods are at most of the order of 10%. The
exception to this is the R-estimator, which produces significantly higher success rates
at increased levels of contamination and hence warrants further investigation.

It can be stated generally that as the number of outliers increases, the percentages
of correct exclusion decreases. When the magnitudes of the outliers increase, the
percentages of correct exclusion increase.

It was also found that all the methods tested are prone to the five different
scenarios. In comparison to the robust methods, the outlier test has higher levels
of partially excluding some outliers and lower levels of excluding some normal
pseudoranges in addition to the outliers.

Some of the differences between the robust methods and the conventional outlier
tests are believed to be due to the robust methods’ property of bounded influence.
Hence, the conventional outlier test results may be improved if the influences of
pseudoranges are bounded.

Even though the robust methods obtain higher rates of success when multiple
outliers exist, the computational intensity of the methods is an issue to be addressed
for the real time application of RAIM. One way of increasing the reliability of outlier
identification that is practical is through a dynamic model as demonstrated by
Hewitson and Wang (2007).
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