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Suspended particles migrate towards inertial focusing positions close to walls and
align into trains in finite inertia conduit flow. The relative contribution of inertial and
viscous forces at the particle length scale, defined by the particle Reynolds number
(Rep), is a key parameter, where Rep = 〈γ̇ 〉D2/ν depends on the mean shear rate
〈γ̇ 〉, particle diameter D and fluid kinematic viscosity ν. Controlling the location of
inertial focusing positions and the interparticle distance is critical in applications such
as flow cytometry, imaging and cell entrapment in droplets. By using experimental
observations in rectangular microchannels and lattice Boltzmann numerical simulations
of dilute suspension flow, the spacing between particles aligned in trains is measured.
From the modes of the probability density function of interparticle spacing, preferred
spacings at 5D and 2.5D are observed. At lower Rep, the preferred spacing forms
around 5D, and with increasing Rep the spacing at 2.5D becomes more pronounced.
With increasing concentration of the suspension the spacing is influenced by particle
crowding effects until stable trains are no longer observed.

Key words: microfluidics, micro-/nano-fluid dynamics, suspensions

1. Introduction

Migration of particles towards inertial focusing positions and formation of particle
trains are prominent examples of inertial effects in flow of dilute suspensions in
conduits (Segre & Silberberg 1961; Matas et al. 2004). Using a characteristic velocity
U, length scale L and fluid kinematic viscosity ν, flow inertia is characterized
by Reynolds number defined as Re = UL/ν. In confined geometries, such as
microchannels, the inertial flow of dilute suspensions has been utilized to self-
assemble particles into trains at inertial focusing positions (Di Carlo et al. 2007, 2009;
Hur, Tse & Di Carlo 2010; Lee et al. 2010). Although the number of trains and the
location of focusing positions can be engineered by changing channel dimensions
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and flow inertia (Chun & Ladd 2006; Amini, Lee & Di Carlo 2014), controlling
the interparticle spacing necessitates understanding hydrodynamic interaction between
particles. Controlling the distance between particles is crucial for applications such as
high-speed imaging, flow cytometry and entrapment of live cells in droplets for tissue
printing applications, where knowing the arrival time of particles aids in adjusting
the imaging or cell entrapment sequence (Edd et al. 2008).

The inertial ordering of particles in trains and interparticle spacings have been
experimentally observed in tubular conduits and rectangular microchannels (Matas
et al. 2004; Hur et al. 2010). While the underlying mechanism for inertial migration
of particles towards focusing positions can be explained by analytical solution of the
lateral force on isolated particles (Ho & Leal 1976; Asmolov 1999; Hood, Lee &
Roper 2015), quantitative and predictive models for the spacing between particles
self-assembled in trains are more difficult to ascertain due to the complexity of
hydrodynamic interactions between multiple moving particles at finite Re (Martel &
Toner 2014). By studying inertial flow of a dilute suspension in tubes of O(10 mm)
diameter, the underlying mechanism for train formation was attributed to the presence
of reversing streamline regions, where fluid parcels approach the particle surface and
reverse their paths (Matas et al. 2004). Numerical studies of suspensions of hard
spheres at dilute to intermediate concentrations under finite inertia shear flow show
that the reversing motion also exists in relative trajectories of particles with respect
to one another (Haddadi & Morris 2014, 2015). By increasing Re, the size of the
reversing flow region increases, which leads to a shorter distance between particles
and a monotonic reduction of the average interparticle spacing in trains (Matas et al.
2004). Through experimental study of the reversing streamlines in microchannels, it
has been demonstrated that, due to an interplay between viscous disturbance flow,
which deviates the particles from inertial focusing points, and inertial lift force, which
tends to restore particle location, the average spacing between particles changes until
it reaches an equilibrium value in the channel downstream (Lee et al. 2010). Although
explained in a phenomenological manner, there remains no general predictive model
for interparticle spacing. The lateral and axial ordering of particles in microchannels
has been studied by changing the concentration of the suspension and the dimensions
of the channel cross-section. Increasing the concentration of the suspension leads to
formation of multiple trains for certain channel dimensions. A preferred interparticle
spacing also forms around 2.2D (Humphry et al. 2010).

In the present work, experiments and numerical simulations have been employed
to study the effect of inertia and concentration on the spacing between particles
dynamically self-assembled into trains in microchannels. The axial distance between
two consecutive particles, denoted as dx, depends on the conduit Reynolds number Rec,
which is defined using the hydraulic diameter as the characteristic length scale. Inertia
can also be defined at the particle length scale by Rep, determined by the shear rate
and diameter of the particle. For a pressure-driven flow in a channel with rectangular
cross-section (channel schematic displayed in figure 1), a parabolic velocity profile
along with the difference between channel dimensions in Y and Z directions leads to
a varying shear rate on the particle. For a channel with aspect ratio of 0.58, which is
defined as λ= ly/lz, particles are expected to equilibrate near the longer walls in the Y
direction (Amini et al. 2014). Therefore, Rep can be defined using the mean shear rate,
particle diameter D and the channel length in the Y direction (ly) as Rep= (D/ly)

2Rey,
where Rey = 〈u〉ly/ν. Matas et al. (2004) examined the spacing between particles
within trains in O(10 mm) tube flow and reported a monotonic reduction of the
average interparticle spacing. Here, the discussion is focused on the most probable
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FIGURE 1. Schematic of the channel with two inlets utilized for self-assembly of particles
into one train. A particle suspension is pumped from one inlet and fluid without particles
is infused from the opposite inlet. Dimensions of the channel in the X (flow), Y (lateral)
and Z (transverse) directions are 3 cm, 35 µm and 60 µm respectively, which leads to
the formation of two inertial focusing positions near the walls in the Y direction.

spacing between consecutive particles in trains inside a rectangular microchannel,
which is important for microchannel imaging and cell sorting applications. In order
to measure the location of the most probable spacing, the probability density function
of the interparticle distance has been computed for particles self-assembled into trains,
and the modes, which distinctly form in curves of the probability density function, are
chosen as a metric of the preferred spacing. The effect of Rep on the axial spacing
between consecutive particles (dx) has been studied for suspensions of concentration
φ ∼O(0.001). It will be shown that the preferred spacing between particles switches
from 5D for low Rep to 2.5D at higher Rep, without the presence of intermediate
values. The results also demonstrate that increasing the concentration of suspensions
to O(0.01) results in the reduction of the distance between particles in trains, and
the preferred spacings measured for φ ∼ O(0.001) suspensions will no longer form.
Further increase of φ leads to unsteadiness in the spacing and prevents self-assembly
of particles into ordered trains.

2. Experimental procedure

The experimental observations have been made in a dual-inlet polydimethylsiloxane
(PDMS) microchannel bonded to a glass slide produced according to standard soft
lithography protocols (Duffy et al. 1998). The dual-inlet channel is utilized in order
to self-assemble particles predominantly into one train in order to limit hydrodynamic
interactions between particles to a single train. Dimensions of the channel in the
axial (X or flow direction), lateral (Y) and transverse (Z) directions are 3 cm, 35 µm
and 60 µm respectively. A dilute suspension of polystyrene spherical particles with
diameter 12 µm (ρp = 1.05 g cm−3) dispersed in a suspending fluid composed of
deionized water, 0.002 weight per volume (w/v) triton X-100 and 0.1 v/v glycerol
is pumped into the channel with a controlled flow rate utilizing a syringe pump from
one inlet, accompanied by pumping fluid without particles at an equal flow rate from
the second inlet. The volume fraction of particles in the suspension is φ = 0.004.
More concentrated suspensions of φ = 0.011–0.025 are used to study disruption of
trains. The flow rate ranges from 85.5 to 342 µl min−1, leading to finite inertia at
Rec = 30–120 inside the channel. Lowering the flow rate below 85.5 µl min−1 does
not generate sufficient inertia for a steady-state interparticle spacing. Increasing the
flow rate above 342 µl min−1 leads to experimental errors such as delamination of
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the PDMS from the glass slide, leakage at inlets and alteration of the channel size
due to high flow-induced deformation in PDMS microchannels (Dendukuri et al.
2007). The channel configuration allows formation of particle trains at two inertial
equilibrium points close to the walls in the Y direction for D= 12 µm particles such
that infusing the suspension from one inlet mainly generates a single train close to
one wall. The schematics of the channel are displayed in figure 1. The axial distance
between two adjacent particles (dx) has been computed from recorded snapshots
captured using high-speed imaging (Phantom V710). The interparticle spacing in
multiple sections along the channel has been measured and the values corresponding
to the farthest region from the entrance, spanning the last 500 µm section of the
channel, have been reported in order to achieve a steady-state spacing.

3. Computational method

In this section, a brief explanation of the governing equations, computational
parameters and the lattice Boltzmann method (LBM) that is used to compute
particle trajectories in inertial conduit flow is presented. More details about the
fundamentals of the LBM are presented in Ladd (1994a,b) and Nguyen & Ladd
(2002), a review article by Aidun & Clausen (2010) and a complete description of
Galilean invariance errors due to the presence of particles in Clausen & Aidun (2009).
The non-dimensional forms of the equations governing the fluid phase are

∇ · u= 0, (3.1)

Re
(
∂u
∂t
+ u · ∇u

)
=−∇p+∇2u, (3.2)

where length has been non-dimensionalized using the hydraulic diameter hd, velocity
by the average fluid velocity at the channel inlet Ū and the pressure by ρŪ2. The
LBM algorithm for suspensions of hard spheres, which has been developed by
Ladd (1994a,b) with further improvement for moving particles by Aidun, Lu &
Ding (1998), is based on the Boltzmann equation for the fluid phase coupled with
Newtonian dynamics for solid particles. By computing the force Fi and torque T i
exerted by the fluid on a particle of mass mi and moment of inertia Ii, the translational
velocity V i and rotational velocity Ωi of the particle are calculated as

mi
dV i

dt
= Fi, (3.3)

Ii
dΩi

dt
= T i. (3.4)

In order to calculate particle trajectories in a confined conduit, a rectangular
computational box with 128 × 36 × 65 lattice units in X, Y and Z directions is
chosen, where X indicates the direction of the flow. The rectangular box is periodic
in the flow direction and is confined by solid walls in the Y and Z directions.
The specified dimensions of the computational box are chosen in accordance with the
dimensions of the microchannel, which leads to observation of two equilibrium points
close to the walls in the Y direction. The resolution of the particles was set at 12.9
lattice units (lu) per diameter. The results of the numerical trajectory analysis were
found to be independent of further increase in the resolution by simulating particles
with a larger size of D = 16.5 lu in a 256 × 72 × 130 lu3 channel. In addition, the
results have been examined to be independent of the periodicity in the flow direction
by iterating some sample trajectories for a 256× 36× 65 lu3 box.
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FIGURE 2. The probability density functions (p.d.f.) of axial spacing between particles,
dx, for Rep= 2.8, 5.6 and 8.3 (corresponding to Rec= 30, 60 and 90). The aspect ratio of
the channel cross-section is λ= ly/lz= 0.58 and the particle diameter is D= 12 µm. With
a slight deviation (<0.4D), the formation of most probable spacings is observed around
2.5D and 5D, the modes (highest peaks) in the p.d.f.

4. Results and discussion

In figure 2, the probability density functions (p.d.f.) of dx for Rep = 2.8, 5.6 and
8.3 are presented. The highest peak in the p.d.f. corresponds to the most probable
spacing between two consecutive particles at a certain Rep. Although the adverse
effect of particle sedimentation was minimized by matching the density of particles
and the fluid, fluctuation in the number of particles observed in each imaging
snapshot is inevitable. Considering that the concentration of suspensions used for
inertial self-assembly applications is small (φ <O(0.01)), the average length fraction
defined as 〈Lf 〉 = 〈N〉D/L, where 〈N〉 is the average number of particles per frame
monitored throughout the experiment and L is the frame length ('500 µm in the
present study), can be used as a replacement for volume fraction φ (Di Carlo
2009). The average length fraction 〈Lf 〉 is a direct measure for proximity between
particles, which affects hydrodynamic interactions. In the experimental measurements
discussed here, dx is compared in trains with identical 〈Lf 〉. This approach assists in
differentiating the influence of Rep on spacing from possible effects of fluctuations
in the number of particles in trains. In the probability density functions of figure 2
the value of 〈Lf 〉 is 0.1. It is observed in figure 2 that for Rep = 2.8 the preferred
spacing, which corresponds to the peak in the p.d.f. curves, forms around '5D, and
for high Rep of 8.3, the preferred spacing is located around 2.5D. When varying Rep,
no intermediate preferred spacing is observed and peaks of the p.d.f. are consistently
observed around 2.5D and 5D.

Although infusing the suspension from a separate inlet increases the probability
of forming one train with axial alignment of particles, i.e. axial ordering, a small
number of particles may migrate towards the opposite wall. Sporadic migration of
particles towards the opposite wall can start at the channel inlet and during merging.
Two consecutive particles that are located on opposite sides of the channel form
a lateral ordered pair. The peaks observed in the p.d.f. curves correspond to the
spacing between consecutive particles, without distinguishing between axial and
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FIGURE 3. The spatial probability distribution of finding the adjacent particle in the
vicinity of a reference particle p(r) at (a) Rep = 2.8 and (b) Rep = 8.3. A streak of
low probability that is observed at 1X ≈ 2.5D and 1Y ≈ 1.2D corresponds to laterally
ordered pairs of particles. Snapshots taken from experiments are included to exhibit the
self-assembled trains (the scale bar shows a length of 60 µm).

lateral ordered pairs. To make a distinction between axial and lateral orientations,
the spatial probability distribution of neighbouring particles is presented in figure 3.
The spatial probability distribution, p(r), is obtained by constructing a histogram
around each particle which is populated by the location of adjacent particles. The
histogram is normalized by the total number of samplings. Considering that the pair
orientation vector is used to construct the histograms, the distributions span the entire
space around the reference particle, including negative X and Y values, although
the probability of occupying negative locations is not significant. It is observed in
figure 3 that at Rep = 2.8, particle pairs with axial ordering (1Y = 0) equilibrate
close to dx ' 5D. With increasing inertia to Rep = 8.3, the preferred spacing between
particles forms around 2.5D. In the spatial representation of p(r) at Rep = 2.8,
a secondary zone at dx ' 2.5D is also seen due to the lateral pair configuration
(1Y 6= 0), which results in the formation of a secondary peak around 2.5D in the
probability density functions of figure 2. The spacing between particles with lateral
ordering has been predominantly observed around 2.5D for all Rep studied.

Humphry et al. (2010) measured the axial spacing between particles in single-inlet
channels and reported dx ' 2.2D, mainly for suspensions flowing at Rep ∼ O(1) in
microchannels. Considering that inertial flow of a dilute suspension in a single-inlet
channel leads to the formation of particle trains close to both walls, the probability
of observing lateral ordering increases. Therefore, an axial spacing of 2.2D between
particles agrees well with our results.

Experimental observation of interparticle spacing at preferred axial locations of
dx ' 2.5D and 5D can be further investigated using numerical simulations of particle
relative motions. The classes of relative motion of particles in a dilute suspension
can be assembled from trajectories of isolated pairs of particles (Haddadi & Morris
2014). Pair trajectories are obtained by calculating the trajectory of one particle with
respect to the coordinate frame located at the centre of mass of the second particle.
The LBM has been utilized for studying trajectories, and has been proven to be an
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FIGURE 4. Selected pair trajectories calculated numerically at (a) Rep = 2.8 and
(b) Rep = 8.3 projected on the XZ plane. Blue triangles correspond to the starting points
of the second particle relative to the reference particle shown at the origin, and red circles
correspond to the final steady-state separations.

efficient technique for numerical simulation of inertial suspension flow. The evolution
of sample pair trajectories until reaching a steady-state separation at Rep= 2.8 and 8.3
is demonstrated in figure 4. To identify the most probable pair separation at each
Rep, the steady-state separation of pair trajectories with various initial configurations
has been examined numerically. A large number of initial configurations, composed
of 107 pair orientations for each Rep, have been simulated to construct a thorough
representation of the relative motions. The steady-state pair separations are used to
populate a spatial histogram that is constructed around the reference particle. The
spatial probability densities of pair equilibrium separations for Rep = 2.8 and 8.3
are shown in figure 5(a,b) respectively. It is seen that at Rep = 2.8 and for all
initial configurations, the most probable spacing for an axially ordered pair is located
at 5D. For pairs with lateral orientation, the preferred spacing forms at dx = 2.5D.
At Rep = 8.3, axially ordered spacings at 2.5D and 5D are more pronounced, where
the probability of reaching an equilibrium at 2.5D is significantly higher. In addition,
pairs with lateral ordering tend to equilibrate at 2.5D from the reference particle for
all Rep values.

The match between preferred spacings observed in experiments (figures 2 and 3)
and the steady-state separations between pairs in numerical simulations (figure 5)
implies that a finite number of attractors contribute to the formation of preferred
interparticle spacings in trains. The attractor with highest probability at low Rep is
located at 5D. With increasing Rep, rather than a gradual shift in the location of the
attractors, the probability of the 5D attractor decreases and the 2.5D attractor becomes
more probable. Using numerical simulations of the disturbance streamlines around a
single force-free particle moving in a rectangular channel, the equilibrium distance
between two particles has been related to the formation of closed-streamline regions
adjacent to the particle (Humphry et al. 2010). Considering that the disturbance
streamlines around a single particle are affected by the presence of other particles,
the fundamental description of the flow leading to formation of attractors remains
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FIGURE 5. Attractors at preferred spacings and their probabilities, calculated by simulating
the motion of pairs starting from various initial configurations at (a) Rep = 2.8 and
(b) Rep = 8.3. The boundary of the reference particle is also indicated in the figure. The
figure comprises attractors forming in axial and lateral directions. Attractors form at 5D
and 2.5D, and the most probable axial attractors are located at 5D for Rep = 2.8 and
at 2.5D for Rep = 8.3. Attractors of lateral orientation are located at 2.5D for both Rep
values.

an open question. It should be noted that pair trajectory attractors are not particular
to confined inertial flows and have also been observed in the relative motion of
particles in Stokes flow of dilute suspensions in two-dimensional microchannels,
where linearity of the equations governing Stokes flow allows analytical progress
(Uspal & Doyle 2012). It should be emphasized that in the present work, the location
of the attractors in the pair trajectory space is obtained from numerical sampling of
the pair motion. Although a large number of initial pair configurations have been
simulated to calculate the location of attractors, drawing a definite conclusion about
the total number and location of pair trajectory attractors is not possible. However, the
combination of experimental observations and numerical sampling of the pair space
corroborates the existence of preferred spacings between adjacent particles at each Rep.
We also note that there is a deviation (between 0.2D and 0.4D for the location of the
preferred spacings) from the 2.5D and 5D attractors in experimental measurements.
This deviation may be due to unavoidable experimental limitations, including pixel
size accuracy in image processing, dispersion in particle size distributions and the
presence of multiple particles in a train (more than an isolated pair), which does not
exist in simulations of an isolated pair.

The question arises of whether the locations of the attractors depend strongly on
the channel and particle size or are more generally observed. The generality has been
examined for selected particle sizes and dimensions of the channel cross-section. The
locations of the attractors are measured for Rep = 2.8 and 8.3, where the preferred
spacing for D = 12 µm in λ = 0.58 channels has been previously explained to be
respectively around 5D and 2.5D. Similarly, for D = 4.8 and 20 µm particles in
λ = 0.58 channels the location of the attractors remained unchanged. Identically, for
D= 12 and 20 µm in a λ= 1 channel (ly = lz = 60 µm), the attractors at Rep = 2.8
and 8.3 form around 5D and 2.5D.
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FIGURE 6. Variation of average spacing between particles versus time for larger
concentrations of particles: (a) average axial separation 〈dx〉 at Rep = 2.8 and (b) average
transverse separation 〈dz〉 at Rep = 2.8. Dimensionless time is defined as t∗ = t〈U〉/D.

For inertial self-assembly of particles in trains, the average length fraction of
particles 〈Lf 〉 in trains is an important parameter in addition to Rep. Attaining a
tangible increase in length fraction is achieved by increasing the volume fraction φ
to O(0.01). It has been shown that increasing φ leads to formation of multiple trains
in microchannels with large aspect ratios of the channel cross-section (Humphry
et al. 2010). In order to study the spacing between particles for a more concentrated
suspension, experiments have been conducted at φ = 0.011–0.025, which results
in 〈Lf 〉 ' 0.3–0.6. (It should be noted that 〈Lf 〉 = 0.1 is achieved at φ = 0.004.)
The volume fraction of suspensions is still considered to be in a dilute rheological
regime; however, increasing φ to O(0.01) leads to a pronounced increase of 〈Lf 〉
to 0.6, which can alter the dynamic self-assembly of particles into trains. Numerical
simulations have also been conducted and the average distance between pairs of
consecutive particles versus time has been monitored. Figure 6(a) shows numerical
values of 〈dx〉 versus dimensionless time t∗ = t〈U〉/D (〈U〉 is the average inlet
velocity) at Rep = 2.8 and includes snapshots taken from experimental measurements.
For numerical simulations of larger 〈Lf 〉, the number of particles in the computational
box has been increased without changing the box size. The average distances between
particles in X and Z directions, denoted as 〈dx〉 and 〈dz〉 respectively, are computed
as the average centre-of-mass separations of particle pairs in each time step. It is
observed that with increasing 〈Lf 〉 to 0.3 (three times higher than previous results)
the preferred axial spacing decreases to '3.2D from the previously observed 5D for
〈Lf 〉 ' 0.1. Although at 〈Lf 〉 ' 0.3 particles are still self-assembled into ordered
trains and the final 〈dx〉 reaches a steady value, with further increase of 〈Lf 〉
to 0.6 interparticle distance starts to fluctuate, which prevents the formation of a
self-assembled train, as can be seen in experimental snapshots. The disruption of
trains can be viewed as fluctuations of spacing in either y or z direction computed
numerically. Figure 6(b) exhibits 〈dz〉 for 〈Lf 〉 = 0.3 and 0.6, where apparent temporal
fluctuations in spacing and disruption of particle ordering are seen at 〈Lf 〉 = 0.6.

5. Conclusion

The experimental measurements of the distance between consecutive particles
self-assembled in trains, which have been validated by numerical simulations, can
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be used as a predictive model for dynamic self-assembly of particles with precise
separations from one another. Depending on the Rep, the most probable spacings in
a dilute regime of φ = O(0.001), corresponding to ‘trajectory attractors’, are located
around 2.5D and 5D. The attractors appear to be generally observed for varying
ratios of particle size to channel dimensions and channel aspect ratios, although a
more exhaustive investigation of the space would be required to confirm this result.
By increasing the concentration of suspensions to φ = O(0.01), the spacing between
particles decreases until it reaches an unsteady state spacing where focusing of the
particles into trains is no longer possible. The results could be helpful in practical
applications, suggesting the ability to make use of either of the two attractors if flow
conditions are controlled precisely.
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