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A direct numerical simulation study of interface
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A 3D direct numerical simulation (DNS) study of the evolution of a self-propagating
interface in forced constant-density statistically stationary homogeneous isotropic
turbulence was performed by solving Navier–Stokes and level-set equations under
a wide range of conditions that cover various (from 0.1 to 2.0) ratios of the
interface speed SL to the r.m.s. turbulent velocity U′ and various (50, 100 and 200)
turbulent Reynolds numbers Re. By analysing computed data, the following issues
were addressed: (i) dependence of the speed and thickness of the fully developed
statistically planar mean front that envelops the interface on U′/SL and Re, (ii)
dependence of the fully developed mean turbulent flux of a scalar c that characterizes
the state of the fluid (c = 0 and 1 ahead and behind the interface respectively) on
U′/SL and Re, (iii) evolution of the mean front speed, its thickness, and the mean
scalar flux during the front development after embedding a planar interface into the
forced turbulence and (iv) relation between canonical and conditioned moments of
the velocity, velocity gradient and pressure gradient fields.

Key words: flames, intermittency, turbulent reacting flows

1. Introduction
While premixed turbulent combustion has been utilized widely over the past

century, the physics of this multiscale and highly nonlinear phenomenon requires a
substantially deeper understanding, and the predictive capabilities of available models
are still limited (Bilger et al. 2005; Poinsot & Veynante 2005; Lipatnikov 2012).
Although various approaches to theoretical, phenomenological, Reynolds-averaged
Navier–Stokes (RANS) or large eddy simulation (LES) research into turbulent flames
have been developed, they either address a hypothetical problem that cannot be
investigated experimentally, e.g. many models deal with an unbounded statistically
stationary planar 1D flame that propagates in homogeneous, isotropic and statistically
stationary turbulence, or invoke closure relations obtained by considering such a
hypothetical problem. Even if results yielded by a combustion model can be used
in RANS or LES study of a laboratory flame, it is very difficult to judge what
particular simplifications are responsible for eventual disagreement between measured
and computed data when testing the model against experiments. For instance, a model

† Email address for correspondence: lipatn@chalmers.se

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

21
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:lipatn@chalmers.se
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.211&domain=pdf
https://doi.org/10.1017/jfm.2015.211


128 R. Yu, X.-S. Bai and A. N. Lipatnikov

that is rigorous under invoked simplifications could fail in predicting experimental
data, because a single simplification is wrong, whereas a model that invokes the same
simplifications plus a wrong one could match the same measured data if two wrong
simplifications counterbalance one another.

From this perspective, direct numerical simulation (DNS) of a turbulent reacting
flow appears to be a unique tool for basic research, because, in contrast to an
experiment, a DNS study can deal with a problem that is addressed by a model to
be investigated. For instance, 3D DNS of premixed turbulent burning in the case
of a single global reaction can be used straightforwardly to test and rank models
that do not allow for complex combustion chemistry, but take into account density
variations and a finite thickness of the instantaneous heat-release zone. In order
to straightforwardly assess models developed by neglecting the thickness of the
heat-release zone, DNS can address self-propagation of an infinitely thin interface.
Direct numerical simulations performed in a constant-density case allow one to
investigate models that neglect the influence of heat release on the flow. Thus, while
the leading research groups have succeeded already in 3D DNS of highly turbulent
premixed flames by allowing for density variations and complex combustion chemistry
(Chen 2011; Aspden, Day & Bell 2015; Carlsson, Yu & Bai 2015; Yenerdag et al.
2015) and advanced towards DNS of laboratory flames (Day et al. 2012), DNS
studies of substantially simplified problems appear to be of great basic interest and
importance in order to straightforwardly assess various theories or models used,
e.g., in RANS or LES applications.

Even if we consider the simplest case of self-propagation of an interface in a
constant-density turbulent flow, the problem is still of basic interest for a number of
reasons. First, models developed under such simplifications are still cornerstones for
many phenomenological, RANS or LES studies of premixed turbulent combustion,
with different models yielding different results. For instance, starting from the
pioneering work by Damköhler (1940) and Shchelkin (1947), many papers have
aimed at modelling the speed ST,∞ of a statistically stationary planar 1D premixed
turbulent flame in the limit case of a constant density and infinitely thin instantaneous
flame front, e.g. see a study by Zimont & Pagnini (2011) as a recent example. Such
models result typically in

ST,∞ = SL f (U′/SL), (1.1)

where SL is the laminar flame speed and U′ is the r.m.s. turbulent velocity. This
expression is often substantiated with dimensional reasoning, because SL is the sole
mixture characteristic that can affect ST,∞ in this hypothetical case (the laminar flame
thickness δL → 0 and the density ratio σ = ρu/ρb = 1, where subscripts u and b
designate unburned and burned mixture respectively). Even if such a substantiation
can be disputed by highlighting the primary contribution of small-scale eddies to an
increase in a surface area in the Kolmogorov turbulence (Batchelor 1952), the present
authors are not aware of another type of expression for ST,∞ obtained in the case of
δL→ 0 and σ = 1.

Almost all known versions of (1.1) are subsumed by the following expression
(Damköhler 1940; Shchelkin 1947; Pocheau 1994; Zimont & Pagnini 2011):

ST,∞ = (aSq
L + bU′q)1/q, (1.2)

while Yakhot (1988) has derived another expression,

ST,∞
SL
= exp

(
U′2

S2
T,∞

)
, (1.3)
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Interface in turbulence 129

using renormalization group technique. Various models yield various values of the
constant b and power exponent q in (1.2), whereas the constant a is typically equal
to unity in order for ST,∞(U′→ 0)→ SL. While neither (1.2) nor (1.3) holds at SL= 0,
e.g. (1.2) yields ST,∞=O(U′) > 0 at SL = 0, a constraint that the dependence of ST,∞
on SL is continuous at SL = 0 does not seem to be necessary. As pointed out by a
reviewer, such a ‘propagation’ anomaly ‘is somewhat but not entirely analogous to
the energy dissipation anomaly of turbulence’.

A DNS study of self-propagation of an interface in a constant-density turbulent flow
offers a unique opportunity to straightforwardly assess models that result in (1.2) with
various q or (1.3), as well as RANS and/or LES approaches based on these models.

For completeness, it is worth noting the following basic issue, which is relevant to
weakly turbulent (U′� SL) flows and, therefore, is beyond the scope of the present
study restricted to 0.5 6 U′/SL 6 10. On the one hand, Clavin & Williams (1979),
Aldredge & Williams (1991) and Aldredge (2006) analysed the limit case of U′� SL
and arrived at

ST,∞
SL
= 1+C

(
U′

SL

)q

, (1.4)

with q = 2. The same asymptotic relation results from (1.3) at U′� SL. It was also
supported in numerical simulations (Ashurst & Sivashinsky 1991; Cambray & Joulin
1992; Akkerman & Bychkov 2003; Creta & Matalon 2011; Fogla, Creta & Matalon
2013) that dealt with velocity fields that reproduced certain features of turbulent
flows. On the other hand, Kerstein & Ashurst (1992) argued that this scaling held
during a limited time interval, whereas the steady state q = 4/3 in random velocity
fields. This result was also supported in numerical simulations (Kerstein & Ashurst
1994) and was not disputed in a later analysis by Aldredge (2006). Recently, Mayo
& Kerstein (2007) reduced the problem of front propagation in a weakly turbulent
isotropic medium to the inviscid Burgers equation subject to white-in-time noise and
arrived at the steady state q = 4/3 using rigorous mathematical results obtained for
white noise that was ‘periodic in space with any given smooth correlation function’.
This analysis was further supported by Mayo & Kerstein (2008). Moreover, Mayo
& Kerstein (2007) argued that q could be equal to 2 either during a short time
interval before cusp formation or in a sufficiently anisotropic medium. As already
noted above, this issue is beyond the scope of the present DNS study restricted to
0.5 6 U′/SL 6 10.

Second, while the aforementioned models and the vast majority of other models
place the focus of consideration on fully developed turbulent burning, flame
development requires a long time and premixed turbulent combustion is typically
the developing wave, as reviewed elsewhere (Prudnikov 1967; Lipatnikov & Chomiak
2002; Lipatnikov 2012). While the terms ‘statistically stationary’ and ‘fully developed’
flames are equivalent in the case of a statistically 1D turbulent flow, we will use
the latter term in the rest of the paper, because a statistically stationary flame can
develop if the flow is statistically 2D or 3D. For instance, if we consider statistically
stationary combustion behind a stabilizer, turbulent flame development manifests
itself in an increase in the mean flame brush thickness δT with the distance from
the stabilizer, and this well-documented phenomenon is basically similar to the
growth of a turbulent mixing layer (decay of grid-generated turbulence is another
well-known example of a flow that develops in the statistically stationary case). In
spite of the practical importance of turbulent flame development, only a few analytical
expressions have so far been obtained to describe the dependence of the turbulent
flame speed ST or mean flame brush thickness δT on the flame-development time
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(Scurlock & Grover 1953; Prudnikov 1967; Kuznetsov 1975; Peters 2000; Lipatnikov
& Chomiak 2002; Lipatnikov 2012), with all these models ignoring effects associated
with density variations. Therefore, a DNS study of self-propagation of an interface
in a constant-density turbulent flow offers an opportunity to investigate these models
and to gain further insight into premixed turbulent flame development. It is worth
noting that the terms ‘fully developed flame’ and ‘flame development’ should solely
be considered in the statistical sense. For instance, a spatially or ensemble-averaged
characteristic q̄ of turbulent burning can vary with time t in both developing and fully
developed flames, but q̄(t) shows a clear trend in the former case, e.g. growth of
turbulent flame speed or mean thickness, and exhibits oscillations in the latter case,
even if the oscillation magnitude can be large (Poludnenko & Oran 2011; Lipatnikov
et al. 2015; Poludnenko 2015).

Third, in a premixed turbulent flame, the mean transport of a scalar quantity
q can occur not only in the direction opposite to ∇q̄, as in many non-reacting
flows, but also in the same direction, i.e. u′q′ · ∇q̄> 0. Here, u is the flow velocity
vector, overlines and overbars designate the Reynolds average with q′ = q − q̄. This
phenomenon, known as countergradient transport, was theoretically predicted by
Clavin & Williams (1979) and Libby & Bray (1981), was experimentally discovered
by Moss (1980) and Yanagi & Mimura (1981), and was documented in a number
of subsequent measurements and DNS studies reviewed elsewhere (Bray 1995;
Lipatnikov & Chomiak 2010; Robin, Mura & Champion 2011). Countergradient
transport is often attributed to a faster (slower) acceleration of hot and light products
(cold and heavy fresh gas) by a combustion-induced pressure gradient (Libby & Bray
1981), i.e. the difference between turbulent transport in premixed flames and mixing
layers is commonly associated with density variations in flames. However, as argued
by Corrsin (1974), chemical reactions can also affect turbulent transport independently
of density variations, e.g. if σ = 1. The present authors are aware of a single model
aimed at allowing straightforwardly for such effects in premixed turbulent flames
(Borghi & Dutoya 1978), and the issue definitely requires further study. Moreover,
it is unclear whether or not chemical reactions can substantially affect turbulent
transport if they are localized to a zone of vanishing thickness, i.e. δL→ 0. A DNS
study of self-propagation of an interface in a constant-density turbulent flow offers an
opportunity to gain an insight into these issues, because neither density variations nor
combustion-induced pressure gradient affect turbulent transport in that simple case.

Fourth, various models developed to evaluate turbulent flame speed or mean rate W
of product creation within the premixed turbulent flame brush (Williams 1985; Peters
2000; Lipatnikov & Chomiak 2002; Veynante & Vervisch 2002; Poinsot & Veynante
2005; Lipatnikov 2012) consider U′ to be the primary characteristic of turbulence,
e.g. see (1.1)–(1.4). Accordingly, variations in U′ within turbulent flames should be
taken into account in order for an RANS or LES approach to be able to predict
key characteristics of premixed turbulent combustion. However, as argued elsewhere
(Lipatnikov 2009a; Lipatnikov & Chomiak 2010), a consistent definition of U′ in a
premixed turbulent flame is an issue. It can be revealed, e.g., by considering the case
of fresh reactants and burned products separated by an infinitely thin self-propagating
front (flamelet). In this case (Bray, Libby & Moss 1985),

ρu′′k u′′k
ρ̄
= (1− c̃)(u′ku

′
k)u + c̃(u′ku

′
k)b + c̃(1− c̃)(ūk,b − ūk,u)(ūk,b − ūk,u)

= (1− c̃)(u′ku
′
k)u + c̃(u′ku

′
k)b +

ρu′′k c′′ ρu′′k c′′

ρ̄2c̃(1− c̃)
, (1.5)
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i.e. the r.m.s. velocity U′ = (ρu′′k u′′k/3ρ̄)1/2 defined in a standard (for non-reacting
constant-density flows) manner is straightforwardly affected by the magnitude of the
slip velocity vector 1u= ūb − ūu and, therefore, depends not only on the turbulence,
but also on the velocity jump across the flamelet. Here, ρ is the density, c is the
combustion progress variable, (u′ku′k)u and (u′ku′k)b are the traces of the Reynolds-stress
tensors (u′iu′j)u= (uiuj)u− ūi,uūj,u and (u′iu′j)b= (uiuj)b− ūi,būj,b conditioned on unburned
and burned gas respectively, q̃= ρq/ρ̄ designates the Favre (mass-weighted) average
of any quantity q with q′′ = q − q̃, and the summation convention applies for the
repeated index k.

Alternatively, the conditioned r.m.s. velocity U′u = (u′ku′k)u/3 or U′b = (u′ku′k)b/3 has
often been considered to be the true turbulence characteristic. However, substantial
basic differences between the conditioned and the true r.m.s. turbulent velocities were
recently highlighted by studying a set of very simple model problems (Lipatnikov
2009a). For instance, application of (1.5) to the case of equal densities of products and
fresh mixture shows that (u′ku′k)u or (u′ku′k)b differs from u′ku

′
k due to the positive last

term on the right-hand side, but it is u′ku
′
k that is the true turbulence characteristic in

this case, because a self-propagating interface does not affect the velocity field when
the density and viscosity are constants.

The basic difference between conditioned and canonical mean turbulence characteri-
stics stems from the fact that conditional averaging is performed over a spatial domain
whose boundary is wrinkled and randomly moves, with this motion being anisotropic.
Due to the motion of the boundary, first, conditional averaging commutes neither
with time nor with spatial derivatives, e.g. the divergence of the conditioned velocity
vector does not vanish in a constant-density flow in a general case (Libby 1975).
Second, due to the flux of a fluid through the boundary, e.g. conversion of reactants
to products in flamelets, conditioned balance equations involve source or sink terms
that do not appear in the counterpart Reynolds-averaged equations. This point was
clearly shown in the pioneering papers by Libby (1975) and Dopazo (1977), who
introduced conditioned balance equations into fluid mechanics in order to address
external intermittency in constant-density turbulent flows. As far as the propagation
of a flamelet of a finite thickness in a turbulent flow is concerned, proper conditioned
balance equations were straightforwardly derived, e.g., by Lipatnikov (2008), see also
equations (215)–(220) in a recent review paper by Lipatnikov & Chomiak (2010). One
can easily show that these equations involve source or sink terms that do not vanish
even in the constant-density case, e.g. see equations (2)–(4), (12) and (13) analysed by
Lipatnikov (2011). These source/sink terms substantially change conditioned quantities
when compared with the counterpart canonical Reynolds-averaged quantities.

Target-directed research into differences between the mean and conditioned r.m.s.
velocities due to differences between the conventional and conditional averaging
techniques has been scarce in the combustion literature to date. Recently, Lipatnikov
(2011) stressed these differences by applying conditioned balance equations to
numerical simulations of a statistically planar 1D premixed turbulent constant-density
‘flame’. However, the obtained results cannot be considered to be decisive proof
due to a number of closure assumptions invoked. Experimental research into the
discussed problem requires the knowledge of the true turbulence characteristics
within a premixed flame brush, but such characteristics have not yet been defined
in a consistent manner in a general case. While they are confidently known in
a constant-density case, it cannot be studied in a combustion experiment. On the
contrary, DNS of propagation of an interface in a constant-density turbulent flow is
well suited for gaining further insight into the relation between conditioned and true
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turbulence characteristics. Indeed, first, conditioned quantities are best defined in the
case of an infinitely thin front. Second, turbulence characteristics are well defined in
the constant-density flow and can be used as reference quantities.

Thus, a DNS study of self-propagation of an interface in constant-density
turbulence offers an opportunity to investigate a number of basic issues relevant
to an understanding of and modelling of premixed turbulent combustion, such as
(i) global characteristics of the fully developed mean front, (ii) development of
the global front characteristics, (iii) influence of interface propagation on turbulent
transport of a scalar that characterizes the state of the fluid (before or behind the
interface) and (iv) differences between conditioned and true turbulence characteristics.
The present work aims at addressing these issues. It continues a recent DNS study
(Yu, Lipatnikov & Bai 2014), whose focus was mainly placed on issues (iii), (iv)
and, in part, (i), with them being solely addressed in the case of fully developed
mean fronts. In addition to investigating turbulent front development and much more
detailed discussion of issue (i), the present work covers wider ranges of both U′/SL
and turbulent Reynolds numbers.

In the premixed turbulent combustion literature, the vast majority of DNS papers
deal with a front of a finite thickness, while self-propagation of an interface in
constant-density homogeneous isotropic turbulence is also addressed (Kerstein, Ashurst
& Williams 1988; Yeung, Girimaji & Pope 1990; Girimaji & Pope 1992; Wenzel
& Peters 2000, 2005; Treurniet, Nieuwstadt & Boersma 2006; Creta & Matalon
2011; Fogla et al. 2013; Shin & Lieuwen 2013). In some of these simulations, the
influence of thermal expansion on the flow and/or the influence of turbulent stretch
rates on the front speed was taken into account. For instance, Wenzel & Peters
(2005) allowed for variations in SL due to local front curvature in intense turbulence
(U′/SL = 2.1–17.1, but Re= 78). Moreover, Wenzel & Peters (2000) investigated the
influence of the density ratio on the mean front characteristics at a low Re= 34 and a
high U′/SL= 15.9. When those simulations were run in the case of a constant density
and a constant SL, the ratio of U′/SL was lower, i.e. 0.53 < U′/SL 6 2.1 (Wenzel &
Peters 2000, 2005). Treurniet et al. (2006) used a constant SL, but varied the density
ratio at U′/SL=O(1). In the 2D simulations of weakly turbulent combustion by Creta
& Matalon (2011) and Fogla et al. (2013), thermal expansion effects were taken into
account and SL depended linearly on the local stretch rate, with the Markstein number
being positive. However, the aforementioned issues (ii)–(iv) were beyond the scope
of the cited papers.

It is also worth noting that while consideration of burning in a statistically
planar 1D flow is typical for DNS research into premixed turbulent combustion,
some important physical mechanisms cannot be investigated under such conditions,
e.g. effects associated with the mean flow tangential to the flame brush (Philips 1972;
Hemchandra & Lieuwen 2010; Amato & Lieuwen 2014), the mean curvature of the
flame brush (Lipatnikov & Chomiak 2007; Shin & Lieuwen 2013) or the interaction
between two mutually inclined mean flames (Troiani, Battista & Picano 2013).

The present paper is organized as follows. In the next section, the governing
equations are briefly summarized. Direct numerical simulation attributes are reported
in § 3. The obtained results are discussed in § 4 followed by conclusions.

In order to stress the difference between constant-density turbulent flow and
turbulent burning accompanied by significant density variations, we will avoid the
terms flame and flamelet when discussing self-propagating interfaces in the rest of the
paper. The statistically planar spatial region that envelops all wrinkled interfaces at a
single instant will be called the mean front. However, because the present study aims
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at clarifying basic issues associated with premixed turbulent combustion, the terms
‘turbulent flame speed’ ST , ‘mean flame brush thickness’ δT and ‘flame development’
will be applied to the speed and thickness of the mean front and to its development
respectively. Moreover, fluid before and behind the interface will be called ‘unburned’
and ‘burned’ mixture and will be designated using subscripts u and b respectively.
Furthermore, the speed of the self-propagation of the interface will be designated with
the symbol SL, which is associated with the laminar flame speed in the combustion
literature. Finally, we will use the word ‘flame’ when comparing the present DNS
data with various models of premixed turbulent combustion. All of these reservations
are worth bearing in mind when reading ‘flame’ in the rest of the paper.

2. Governing equations
Constant-density turbulent flow is governed by the Navier–Stokes equations

∂uk

∂xk
= 0, (2.1)

∂ui

∂t
+ uk

∂ui

∂xk
=− ∂p

∂xi
+ ν ∂

2ui

∂x2
k
+ fi, (2.2)

where ν and p are the kinematic viscosity and pressure respectively, and the term
fi(x, t) is added in order to maintain constant turbulence intensity by using energy
forcing at low wavenumbers. Under such forcing, the injected energy cascades down
to balance the dissipation at small scales, with the turbulence statistics at smaller
scales being hardly affected (Siggia 1981). The forcing scheme is discussed further
in the next section.

Self-propagation of an interface is simulated by numerically solving the level-set
equation (Williams 1985; Kerstein et al. 1988; Peters 2000)

∂G
∂t
+ u · ∇G= SL|∇G|, (2.3)

where G is a signed distance function to the closest interface associated with
G(x, t) = 0. The combustion progress variable c(x, t) = H[G(x, t)] is defined using
the Heaviside function H(z). The interface speed SL is kept constant. As far as the
relevance of such an assumption to premixed combustion is concerned, the case of
SL = const. is associated with a laminar flame characterized by a zero Markstein
number Ma with respect to unburned gas, e.g. a near-stoichiometric methane–air
flame. It is worth also noting that theories of weakly perturbed laminar flames predict
that variously defined Markstein numbers depend on the density ratio and Lewis
number Le, with Ma vanishing in the constant-density equidiffusive (Le = 1) case
(Clavin 1985). Because these theories yield SL = const. for an infinitely thin flame,
the present study of an interface that propagates at a constant speed is consistent
with them.

3. Numerical method and running conditions
Simulations were performed using a simplified in-house DNS solver (Yu, Yu & Bai

2012) developed for low Mach number reacting flows with detailed chemistry and
already applied to various reacting flow systems (Zhang, Yu & Bai 2012; Yu & Bai
2013a; Yu et al. 2013; Carlsson, Yu & Bai 2014). The temporal integration of the
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governing equations is based on a second-order symmetrical Strang splitting algorithm,
originally designed to accommodate a standalone chemistry solver. With one global
time step, the integration of viscous terms is split into multiple sub-time steps of
explicit integrations, with the substep size given by the diffusion stability limit. The
spatial discretization and interpolations are based on sixth-order centre schemes. The
Poisson equation for pressure is solved with an efficient multigrid method (Yu & Bai
2013b). The DNS code is implemented in a vector form enabling 1D, 2D and 3D
simulations.

The computational domain is a rectangular box of size Lx × Ly × Lz, with Lx =
4Ly = 4Lz = 4L, discretized on a uniform grid of Nx ×Ny ×Nz cells, with Nx = 4Ny =
4Nz. The initial turbulence field is generated by synthesizing prescribed Fourier waves
(Yu & Bai 2014) with an initial r.m.s. velocity U′0 and integral length scale Λ0= L/4.
Following Ghosal et al. (1995), the forcing function f (x, t)=∑κ f̂ κ(t) exp(−iκ · x),
with

f̂ κ(t)= 〈ε〉
ûκ(t)1κ−κt(t)

ûκ(t) · û∗κ(t)
, (3.1)

is invoked in order to maintain statically stationary turbulence. Here, f̂ κ is the Fourier
mode of f in the wavenumber κ-space,

ε= 2νSijSij = ν2
(
∂ui

∂xj
+ ∂uj

∂xi

)(
∂ui

∂xj
+ ∂uj

∂xi

)
(3.2)

is the dissipation rate, the bracket 〈·〉 designates averaging over entire domain. The
caret operator designates the complex Fourier mode q̂κ(t)= 〈q(x, t) exp(−iκ · x)〉 for
any q, 1κ−κr = 1 when κ = κr, otherwise 0, and κr = mk0 is a randomly selected (at
each time step) non-zero wavenumber vector within a lower wavenumber band, i.e.
|κr| 6 κf = 3k0 = 6π/L, where m is a random integer vector. Figure 1(a) validates
the above forcing strategy by showing that the r.m.s. velocity U′ is maintained
as the initial value, i.e. U′ = U′0, while the normalized averaged dissipation rate
〈ε〉Λ0/U′0

3 fluctuates slightly above 3/2 after a short period (t < τ 0
t , where the

initial turbulence eddy turnover time τ 0
t =Λ0/U′) of rapid transition from the initial

artificially synthesized flow to the fully developed turbulence. It was also shown in
figure 2 in our previous work (Yu et al. 2014), where the same forcing method was
applied, that the forced turbulence achieved good statistical homogeneity and isotropy
over the entire domain, i.e. u2 =w2 =U′2, uw= 0 and u3 = 0.

Fifteen 3D-DNS cases were simulated by varying the normalized interface speed
SL/U′ (0.1, 0.2, 0.5, 1.0, 1.5 and 2.0) and the Reynolds number Re=U′Λ0/ν (50, 100
and 200), see table 1. In order to change the two parameters independently from one
another, SL/U′ and Re were varied by varying SL and Λ0= L/4 respectively. At Re=
200, only three cases with SL/U′= 0.1, 1.0 and 2.0 were addressed. When comparing
these conditions with the characteristics of typical premixed turbulent flames, a low
ratio of SL/U′ = 0.1 appears to be inconsistent with reduction of combustion to the
propagation of an interface. However, from the purely theoretical viewpoint, there
is no inconsistency if Λ/δL � (U′/SL)

3 and, therefore, the Karlovitz number Ka ∝
(U′/SL)

3/2(Λ/δL)
−1/2� 1. At the Reynolds numbers reached in the present DNS study,

the constraint of Ka� 1 does not hold if SL/U′= 0.1 or 0.2, but, because the results
reported in the following depend weakly on Re, we could expect that they will be
valid even at Reynolds numbers sufficiently high in order for Ka� 1.
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FIGURE 1. (Colour online) (a) Temporal evolution of the r.m.s. velocity U′ (dashed line)
and the domain-averaged normalized dissipation rate (solid line) in the case of Re= 200.
(b) Turbulent energy spectrum E(k) computed in cases of Re= 50, 100 and 200; k is the
wavenumber.

Re Lx × Ly × Lz Nx ×Ny ×Nz SL/U′

50 2L× L/2× L/2 512× 128× 128 0.1; 0.2; 0.5; 1.0; 1.5; 2.0
100 4L× L× L 512× 128× 128 0.1; 0.2; 0.5; 1.0; 1.5; 2.0
200 8L× 2L× 2L 1024× 256× 256 0.1; 1.0; 2.0

TABLE 1. Fifteen DNS cases.

The Reynolds number was varied by adjusting the domain size L while keeping
the domain aspect ratio fixed. The largest grid was used in the case of Re = 200.
In all cases, the grid cell size 1x = Lx/Nx = Ly/Ny = Lz/Nz was uniform and the
computational time step was set as 1t = 0.0291x/U′. Because interface propagation
does not influence the flow in the case of constant ρ and ν, the flow statistics were the
same in all cases that had different SL but the same Re. Table 2 shows the turbulence
characteristics computed at various Re. These characteristics were calculated after the
forced turbulence reached statistical stationarity, i.e. at t > 5τ 0

t . The integral length
scale Λ of the forced turbulence drifted away from the initially imposed value Λ0 =
L/4, with the ratio of Λ/L being decreased when increasing Re. A similar trend was
reported by Eswaran & Pope (1988). The fully developed forced turbulence can be
characterized by Ret = U′Λ/ν. Table 2 shows that Ret differed from, but remained
close to, the initial Re, which will be used for case references in the rest of the
paper. The Kolmogorov scale η = (ν3/〈ε〉)1/4 was of the order of the grid cell size
1x, indicating sufficient grid resolution. Here, 〈ε〉 is the dissipation rate averaged over
both the computational domain and time. The eddy turnover time τt =Λ/U′ for the
forced turbulence differed slightly from its initial value τ 0

t . Turbulence energy spectra
E(k), computed by assuming the homogeneity and isotropy of the flow from DNS
velocity fields picked randomly at t > 5τ 0

t , are shown in figure 1(b) for all three Re.
The −5/3 spectrum is approached with an increase in Re.

After the forced turbulence reached statistical stationarity, transient simulations of
interface propagation were started by simultaneously releasing M independent fields
of GT

m (m= 1, . . . ,M= 30; superscript T means transient, as will be discussed later),
with each interface GT

m = 0 being released as a y–z plane at x = Lx(2m − 1)/(2M).
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Re Λ/L Ret η/1x τt/τ
0
t

50 0.256 51 1.34 1.02
100 0.228 91 0.86 0.91
200 0.210 168 1.07 0.84

TABLE 2. Mean flow characteristics of forcing maintained turbulence.

Accordingly, GT
m[x= Lx(2m− 1)/(2M), y, z, t= 0] = 0 and GT

m(x, y, z, 0)= x− Lx(2m−
1)/(2M) within a narrow (six-cell) band that covered the GT

m = 0 interface.
Subsequently, the evolution of each GT

m field was simulated by numerically solving
(2.3) within the narrow band (Wang 2005), followed by reinitialization (|∇G| = 1)
in order for the surrounding GT

m to be a signed distance function. A third-order
weighted essential non-oscillating scheme (Jiang & Peng 2000) and a third-order total
variation diminishing type Runge–Kutta scheme (Gottlieb & Shu 1998) were used for
discretizing (2.3) spatially and temporally respectively.

In order for the zero level set obtained after the reinitialization to coincide with
the original one, an improved sub-cell-fix reinitialization algorithm (Sun, Wang & Bai
2010) was used in this work. The method is largely based on the sub-cell-fix scheme
by Russo & Smereka (2000), in which the signed distance function is first calculated
using a ‘fixing’ algorithm for a subset of cells adjacent to the zero level set, while
the redistancing algorithm by Sussman, Smereka & Osher (1994) is applied to other
cells inside the narrow band.

The adopted level-set solver was described in detail by Sun et al. (2010). In
particular, the grid dependence of the numerical solution was investigated and the
adopted sub-cell-fix reinitialization method was shown to maintain spatial accuracy
of the second order, e.g. see figure 12 in the cited paper. Moreover, the overall
performance of the level-set solver was demonstrated in several challenging test cases,
e.g. (i) a rotating slot disk, (ii) a circle that self-propagated at a speed that varied in
space and time, and (iii) coalescing and segregating spheres. Furthermore, the adopted
level-set scheme was shown to be capable of handling large local curvature of the
surface.

The transient simulations were run over 2τ 0
t before being reset. Then, the process

was repeated. At the reset instants, the GT
m fields in the vicinity of each planar

interface xm = Lx(2m − 1)/(2M) were set equal to x − xm. Tracking of M interfaces
increased the sampling counts for computing the transient statistics.

Moreover, an additional long-living GS field was simulated to provide statistics
for the fully developed turbulent front propagation. The GS = 0 planar interface was
initially (t = 0) released at x= Lx/2 and propagated freely with no reset, in contrast
to the transient interfaces. The long-living interface was covered by its own narrow
band, which was independent of the 30 transient narrow bands. Calculations of fully
developed front statistics began at t = 5τ 0

t , with sampling every 1001t. In all DNS
cases, the total sampling duration was larger than 50τ 0

t .
To enable periodic interface propagation along the x direction for any (either

transient or long-living) G = 0 interface, a mean position ξ(t) of the interface was
calculated as follows:

ξ̄ (tn+1)= ξ̄ (tn)+ 3Lx

8
+ 1

LyLz

∫ ξ(tn)+3Lx/8,Ly,Lz

ξ(tn)−3Lx/8,0,0
c(x, tn+1) dx. (3.3)
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FIGURE 2. (Colour online) Temporal evolution of the mean front position ξ̄ for the long-
living statistically stationary interface (GS= 0) and three transient interfaces (GT

m= 0, with
m= 5, 15 and 25) in the case of Re= 200 and SL/U′= 1. Each transient interface is reset
as a flat y–z plane at x = Lx(2m − 1)/60 every two eddy turnover times. The stationary
front propagates freely. The x periodicity is shown as the modulo ((ξ/Lx)%1) rewinds to
1 on reaching 0.

If the integration variable x was outside (0, Lx], then the progress variable was
set using x periodicity, i.e. c(x, y, z, t) = c(x + nL, y, z, t) for any integer n. In
other words, as soon as an interface reached the left boundary of the computational
domain at a point (0, y, z), an identical interface entered the right boundary at the
counterpart point (Lx, y, z). When a GT

m field was reset, GT
m was set equal to zero

at xm = Lx(2m − 1)/(2M), and the mean position ξ̄ T
m of this interface was equal to

Lx(2m−1)/(2M). Figure 2 shows the evolution of the long-living interface GS(x, t)=0
and three transient interfaces, i.e. GT

5 (x, t)= 0, GT
15(x, t)= 0 and GT

25(x, t)= 0.
For temporal advancement of a G field (and, consequentially, the counterpart c field)

from right to left, (2.3) was solely solved within the region of x ∈ [ξ − 3Lx/8, ξ +
3Lx/8], which was wide enough to contain the entire six-cell-wide narrow band
covering any instantaneous G = 0 interface in all DNS cases. The G values of the
remaining two regions, x ∈ [ξ − Lx/2, ξ − 3Lx/8] and x ∈ [ξ + 3Lx/8, ξ + Lx/2], were
directly set to a large negative constant and a large positive constant respectively,
thus representing the upstream unburned and downstream burned regions far away
from the narrow band that covered the G= 0 interface.

The statistics were sampled using a new x coordinate that mapped (ξ − Lx/2, ξ +
Lx/2] to (0, Lx]. Five forms of averaging were applied to the DNS data, with the
results of four of them being designated using overbars. First, in order to characterize
the developing mean front with quantities q̄(x, t), the fields of cm(x, t)=H[GT

m(x, t)]
and the relevant velocity and pressure fields were averaged over the ensemble of all
interfaces GT

m(x, t)= 0 in all reset intervals in the simulation and over y and z. Second,
in order to characterize oscillations of the characteristics of the statistically stationary
mean front with quantities q̄(x, t) or q̄S(x, t) the field of c(x, t)=H[GS(x, t)] and the
relevant velocity and pressure fields were averaged over y and z at t > 5τ 0

t . Third,
in order to characterize the statistically stationary mean front with quantities q̄(x),
the field of c(x, t) = H[GS(x, t)] and the relevant velocity and pressure fields were
averaged not only over y and z but also over time at t > 5τ 0

t . Fourth, the unsteady
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Re 50 100 200
Equation (1.2) (1.4) (1.2) (1.4) (1.2) (1.4)

a 0.820 1 — 0.830 1 — 0.790 1 —
b or C 1.390 1.47 1.59 1.500 1.63 1.67 1.570 1.77 1.77
q 0.800 0.90 1.00 0.850 0.97 1.00 0.830 1.00 1.00
Scatter 0.006 0.03 0.06 0.006 0.02 0.02 0.002 0.02 0.02

TABLE 3. Parameters of the approximations given by (1.2) and (1.4).

position ξ̄ S(t) of the statistically stationary mean front was evaluated by applying (3.3)
to the field c(x, t)=H[GS(x, t)] at t>5τ 0

t . Fifth, the unsteady speed of that mean front
ST(t)= dξ̄ S/dt was averaged over time at t> 5τ 0

t . Such time-averaged quantities will
be designated using angle brackets, e.g. 〈ST〉, in the following.

4. Results and discussion
Figure 3 shows the evolution of five transient interfaces and the background

turbulent flow structure visualized using the λ2-vortex technique (Jeong & Hussain
1995). Such a structure is typical for homogeneous isotropic turbulence. Comparison
of (a,c,e,g,i) with (b,d,f,h,j) in figure 3 shows that a larger self-propagation speed SL
results in a less wrinkled interface and a less thickened mean turbulent flame brush
that propagates at a higher speed, cf. interfaces GT

7 (x, t) = 0 that are close to the
left (SL/U′ = 0.1) and right (SL/U′ = 1.0) boundaries of the computational domain
at t/τ 0

t = 2.0 (i,j). While the five instantaneous interfaces are different, they have a
qualitatively similar appearance, thus supporting the use of multiple G= 0 interfaces
to achieve more sampling for computing converged transient statistics.

4.1. Fully developed turbulent flame speed
Normalized fully developed turbulent flame speeds ST,∞/SL, which were evaluated by
averaging the raw DNS data on dξ̄ S/dt over a long time interval of 5τ 0

t < t < 50τ 0
t ,

associated with statistical stationarity of ST(t) = dξ̄ S/dt, are plotted with triangles,
circles and squares in figure 4, with error bars indicating s′t={〈S2

T(t)〉− 〈ST(t)〉2}1/2/SL.
Here, the superscript S refers to the long-living interface GS(x, t) = 0. Stars show
earlier DNS data by Wenzel & Peters (2000), which agree very well with the present
data. Lines show results of fitting the present DNS data using (1.2), with the fitting
parameters being specified in table 3. These results were obtained by applying a
least-square fit to Sq

T,∞ as a function of Sq
L and by varying q with step 0.01 in order

to minimize the scatter of the DNS data, evaluated as follows:

1ST,∞ =
6∑

j=1

{ST,∞,j − [a(q)Sq
L,j + b(q)U′q]1/q}1/2. (4.1)

Figure 4 indicates that (1.2) approximates the DNS data very well in both the cases
of fitted a (solid lines) and a = 1 (dashed lines), and similar results were obtained
using (1.4). While the minimum scatter 1ST,∞ was obtained using (1.2) with fitted
a, because there was an extra fitting parameter in this case, results obtained using
(1.2) with either fitted a or a= 1 are indistinguishable with the naked eye in figure 4,
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FIGURE 3. (Colour online) Five independent GT
m = 0 interfaces obtained in the DNS at

t/τ 0
t = 0.4 (a,b), 0.8 (c,d), 1.2 (e,f ), 1.6 (g,h) and 2.0 (i,j), Re = 200 and SL/U′ = 0.1

(a,c,e,g,i) or 1.0 (b,d,f,h,j). Interfaces associated with m= 1, 7, 13, 19, and 25 are shown
in blue, red, purple, green and cyan respectively. All interfaces start as perfectly flat planes
and propagate to the left until the interface points rewind to the right due to periodicity.
Yellow vortex tubes visualize the turbulence field using the λ2-vortex technique (Jeong &
Hussain 1995).

and a similar level of approximation was obtained using (1.4), see table 3. When
using (1.2), the fitted q was close to unity and it was equal to unity when invoking
(1.4), with the difference between these approximations being much less than the r.m.s.
normalized turbulent flame speed s′t. We also tried another fitting equation, i.e. ST,∞=
SL + bSq

LU′1−q, because such a type of expression can also be found in the literature,
e.g. see Appendix B in the review paper by Lipatnikov & Chomiak (2002), and the
DNS data were best fitted using 0< q� 1. Thus, the present DNS study supports the
simplest linear combination of SL and U′, i.e. (1.4) with q= 1.

It is worth noting, first, that while the present DNS data support neither the
theoretical (1.4) with q= 2 nor the theoretical (1.4) with q= 4/3, this result should
not be considered to disprove any of these theories (Clavin & Williams 1979;
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FIGURE 4. (Colour online) Fully developed normalized turbulent flame (i.e. mean front)
speed ST,∞/SL versus normalized r.m.s. velocity U′/SL. Triangles, circles and squares show
DNS data averaged by tracking the long-living interface GS(x, t) = 0 over a long time
interval of 5τ 0

t < t < 50τ 0
t , associated with statistical stationarity of ST(t) = dξ̄ S/dt, with

error bars indicating their normalized r.m.s. values, i.e. {〈S2
T(t)〉 − 〈ST(t)〉2}1/2/SL, in the

case of Re = 100. Solid and dashed lines approximate the DNS data using (1.2) with
fitted a and a = 1 respectively. Other parameters of (1.2) are reported in table 3. Stars
show DNS data by Wenzel & Peters (2000).

Aldredge & Williams 1991; Kerstein & Ashurst 1992, 1994; Aldredge 2006; Mayo &
Kerstein 2007, 2008), because the theoretical constraint of U′� SL was not reached
in the present simulations. As discussed in detail elsewhere (Lipatnikov & Chomiak
2002; Lipatnikov 2012), the functional form of the dependence of the turbulent flame
speed on the r.m.s. velocity can change with an increase in U′ due to a change of
the governing physical mechanisms. In particular, for this reason, we allowed a 6= 1
in (1.2) in the above discussion.

Second, the mean normalized speed ST,∞/SL, see figure 4, and the fitted values of
the constant b in (1.2) with a= 1 or the constant C in (1.4), see table 3, show a very
weak increase with the Reynolds number, but the intervals ST,∞/SL± s′t computed for
three different Re overlap well, see figure 4. Therefore, the present DNS data should
not be considered to show that the fully developed turbulent flame speed ST,∞ depends
on the Reynolds number.

Third, because ST,∞ depends on the spatial correlation structure of the flow (Mayo
& Kerstein 2008), the values of the parameters a, b and C should not be considered
to be universal. They can be sensitive to the forcing scheme similarly to other
characteristics of turbulent flows evaluated in various DNS studies.

Fourth, figure 5 indicates that (1.2) with q = 2, which was highlighted by many
researchers over six decades (Shchelkin 1947; Zimont & Pagnini 2011), is poorly
supported by the present DNS data in the range of 0.5 6 U′/SL 6 10. Although (1.2)
with q= 2 and a= 1 approximates the DNS data obtained at U′/SL > 5, cf. the dashed
lines and symbols, it substantially underestimates the data computed at U′/SL 6 1, see
figure 5(b). On the contrary, (1.2) with q= 2 and fitted a approximates the latter DNS
data well, cf. the solid lines and symbols in figure 5(b), but overestimates the former
ones, see figure 5(a). Nevertheless, it is worth noting that, at U′/SL = 10, the results
yielded by (1.2) with q= 2 and fitted a are very close to the ST,∞/SL + s′t obtained
by processing the DNS data at all three Reynolds numbers.

Fifth, figure 5(a) shows that the present DNS data definitely contradict (1.3), cf. the
symbols with the dot-dashed line.
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FIGURE 5. (Colour online) Fully developed normalized turbulent flame speed versus
normalized r.m.s. velocity. Triangles, circles and squares show DNS data averaged
over a long time interval of 5τ 0

t < t < 50τ 0
t , associated with statistical stationarity of

ST(t) = dξ̄ S/dt, with error bars indicating their normalized r.m.s. values, i.e. {〈S2
T(t)〉 −〈ST(t)〉2}1/2/SL, in the case of Re = 100. Solid and dashed lines approximate the DNS

data using (1.2) with q= 2 and fitted a and a= 1 respectively. The dot-dashed line was
calculated using (1.3).

While the present and earlier (Wenzel & Peters 2000) DNS data obtained by
tracking an interface in a constant-density 3D turbulent flow support the linear
dependence of the turbulent flame speed on both SL and U′, i.e. (1.2) with q= 1, it is
worth noting certain effects that are well documented in the combustion literature but
cannot be modelled within the framework of a paradigm of an infinitely thin front
that self-propagates at a constant speed SL. First, bending of the ST(U′/SL) curves,
which is commonly associated with local flamelet quenching by turbulent stretching
and/or finite thickness of flamelets, as reviewed elsewhere (Lipatnikov & Chomiak
2002; Lipatnikov 2012), is one example of such an effect. It was not simulated here,
because the local burning rate was constant and the front thickness was infinitesimal.
The bending effect was obtained in DNS by Wenzel & Peters (2000), who invoked a
linear dependence of the front speed on its local curvature.

Second, an increase in turbulent flame speed by pressure (Lipatnikov & Chomiak
2002; Lipatnikov 2012) is another example. If (1.2) predicts an increase in ST,∞
by SL, then the same equation yields a decrease in ST,∞ with pressure p if SL is
decreased when p is increased (the latter trend is typical for various hydrocarbon–air
flames). On the contrary, certain models of turbulent combustion that allow for the
thickness of the instantaneous flame front can predict the opposite effects of p on ST
and SL even if these models neglect the influence of combustion on the turbulence
(Lipatnikov & Chomiak 2002). However, the present authors are not aware of a
model that neglects the front thickness, but is capable of predicting the opposite
effects of p on ST and SL. If pressure similarly affects both the fully developed ST,∞
shown in figure 4 and the developing ST addressed in a typical experiment, then
the paradigm of infinitely thin fronts seems to miss some physical mechanisms that
play an important role in premixed turbulent combustion. Nevertheless, even in such
a case, the paradigm is worth studying, because it is an important building block
for various models of turbulent burning, including models that allow for the front
thickness. Moreover, a hypothesis that pressure similarly affects ST,∞ and ST requires
proving, in spite of the fact that it is widely assumed.
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FIGURE 6. (Colour online) Normalized fully developed mean flame brush thickness
δT,∞/Λ versus (a) SL/U′ and (b) U′/SL. Triangles, circles and squares show DNS data
averaged over a long time interval of 5τ 0

t < t< 50τ 0
t , associated with statistical stationarity

of δT(t)= 1/max|∇c̄|. The curves fit the DNS data. Crosses show DNS data by Wenzel
& Peters (2005).

Third, an increase in ST,∞ by the density ratio was obtained and associated with
the Darrieus–Landau (DL) instability (Darrieus 1938; Landau 1944; Williams 1985;
Lipatnikov 2012) in the previous DNS studies (Wenzel & Peters 2000; Treurniet et al.
2006; Creta & Matalon 2011; Fogla et al. 2013) that dealt with the level set (2.3).
A recent 3D-DNS study of weakly turbulent premixed flames in the case of a single
reaction with a finite rate (Lipatnikov et al. 2015) has clearly shown an important role
played by the physical mechanism that causes the DL instability of laminar premixed
flames.

4.2. Fully developed turbulent flame brush thickness
The normalized fully developed mean flame brush thickness δT,∞/Λ, evaluated by
averaging δT(t) = 1/max|∇c̄| over a long time interval of 5τ 0

t < t < 50τ 0
t , is shown

by triangles, circles and squares in figure 6. Here, δT(t) and c̄(x, t) are associated
with the long-living interface GS(x, t) = 0, i.e. c̄(x, t) was evaluated by averaging
cS(x, t) = H[GS(x, t)] over y and z. Henceforth, max q̄ and min q̄ are calculated by
varying x for a mean quantity q̄(x) or q̄(x, t).

The thickness does not depend on the Reynolds number and is decreased when SL is
increased. The latter trend, revealed also by earlier DNS data (Wenzel & Peters 2005),
see the crosses, appears to be intuitively obvious, because the statistical stationarity
of the thickness is reached due to a balance between an increase in δT by turbulent
diffusion and a decrease in δT due to the self-propagation of the interface, whereas
the thickness of a turbulent mixing layer, associated with vanishing SL, permanently
grows with time and does not reach a statistically stationary limit. Minor quantitative
differences between the present and earlier DNS data (Wenzel & Peters 2005) on
δT,∞/Λ could be attributed to the use of different methods for evaluating δT(t) in the
two studies.

Although a decrease in the fully developed mean flame brush thickness δT,∞ with an
increase in SL is expected, many models do not allow for this effect and simply imply
that or result in δT,∞∝Λ, e.g. see equation (2.156) in the book by Peters (2000). The
present authors are aware of only three studies that predicted a decrease in δT,∞ with
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an increase in the laminar flame speed. First, Klimov (1975) developed a model of
premixed turbulent combustion by highlighting the consumption of large-scale flame-
front wrinkles due to collisions of the front elements. The expressions reported by
Klimov (1975) yield δT,∞ ∝Λ(U′/SL)

q with q≈ 0.5. The dot-dashed lines in figure 6
show the best fit to the DNS data using a similar expression, i.e. δT,∞/Λ=a(U′/SL)

1/2.
Comparison of these lines with the symbols indicates that the present DNS yield a
weaker dependence of δT,∞ on SL. Indeed, when the power exponent q in the scaling
δT,∞/Λ= a(U′/SL)

q was varied, the DNS data were best fitted using q≈ 1/3, see the
solid lines.

Second, as pointed out by Sabelnikov (2014, private communication), an analysis by
Kerstein & Ashurst (1992) results in δT,∞/Λ∝ (U′/SL)

2/3, i.e. a stronger dependence
of the thickness on U′/SL when compared with the present DNS study. This difference
is not surprising, because Kerstein & Ashurst (1992) investigated the case of U′� SL,
whereas U′/SL > 0.5 in the present work.

Third, Zimont (2000) has hypothesized that (i) a statistically stationary mean flame
brush is reached when the rate dδT/dt of the growth of its thickness due to turbulent
diffusion is equal to the laminar flame speed and (ii) the growth of the thickness
during an earlier stage of the flame development is controlled by the turbulent
diffusion law, i.e. δT ∝

√
U′Λt. These two hypotheses result straightforwardly in the

scaling δT,∞/Λ∝U′/SL, but such a dependence of the thickness on the laminar flame
speed is significantly stronger than the aforementioned result by Klimov (1975) and
is not supported by the present DNS data.

In the range of U′/SL addressed in the present study, the solid lines δT,∞/Λ ∝
(U′/SL)

1/3 approximate the data well, but the widely accepted scaling of δT,∞ ∝ Λ
is not observed. The latter scaling was obtained by Wenzel & Peters (2005) by
allowing for a linear dependence of the front propagation speed on its curvature. On
the contrary, data reported in the same paper for the case of a constant SL fit the
present data, cf. the crosses with the other symbols in figure 6.

It is also worth noting that an increase in δT,∞ by the density ratio was computed
and associated with the DL instability in 2D DNS studies by Creta & Matalon (2011)
and Fogla et al. (2013) that dealt with the level set (2.3). A recent 3D-DNS study
by Lipatnikov et al. (2015) has also shown an increase in δT,∞ due to the physical
mechanism that causes the DL instability of laminar premixed flames.

4.3. Self-propagating interface and turbulent scalar transport
Figure 7 shows the evolution of the normal (to the mean flame brush) profiles of
the normal turbulent scalar flux u′c′(x, t), see the broken lines. At any instant, the
direction of the flux is consistent with the gradient diffusion paradigm, i.e. u′c′ 6 0
and, therefore, u′c′ ·∇c̄6 0, with the peak value of |u′c′| being reduced with t/τt. The
latter trend, associated with the growth of the mean flame brush thickness, as will
be discussed later, is also shown in figure 8, where the minimum (over x) negative
values min{u′c′}(t)/U′ of the normalized flux u′c′(x, t)/U′ are plotted versus the
normalized flame-development time t/τt. It should be noted that the results reported
at finite t/τt were computed by analysing transient interfaces GT

m during time intervals
of 0< t′/τ 0

t 6 2 after the reset of GT
m(xm, t′= 0)= 0, whereas the DNS data attributed

to t′/τt =∞ were obtained by analysing the long-living GS field at 5 6 t/τ 0
t 6 50.

Comparison of figures 8(a) and 8(b) indicates that the evolution of the integrated
flux

∫ 1
0 u′c′ dc̄ closely follows the evolution of the flux magnitude min{u′c′}, thus

implying that the ratio of u′c′(x, t)/min{u′c′}(t) depends weakly on time, i.e.

u′c′(x, t)≈min{u′c′}(t)f1(x), (4.2)
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FIGURE 7. (Colour online) Dependences of the normal scalar flux u′c′ on the mean
combustion progress variable, computed at various flame-development times specified in
the legend and Re= 200, for (a) SL/U′ = 0.1 and (b) SL/U′ = 1.0.
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FIGURE 8. (Colour online) (a) Minimum (over x) values min{u′c′}(t)/U′ of the normalized
flux u′c′(x, t)/U′ and (b) the integrated normalized flux

∫ 1
0 u′c′ dc̄/U′, computed at various

normalized flame-development times t/τt in six DNS cases characterized by SL/U′ = 0.1,
1.0 or 2.0 and Re= 50 or 200.

where f1(x) is a function. This observation is further supported in figure 9, which
shows results already plotted in figure 7, but renormalized using min{u′c′}(t).

It should be noted that (4.2) is fully consistent with the gradient diffusion paradigm,
which yields f1(x) = ∇xc̄/max|∇xc̄|, where ∇x designates the partial derivative ∂/∂x
along the direction x, which is normal to the mean front. Such a relation roughly
holds under the conditions of the present DNS study. Indeed, figure 10 indicates that
the turbulent diffusivity Dt = −u′c′/∇xc̄ normalized using U′Λ varies weakly within
the mean flame brush, and the same trend was obtained in all other simulated cases.
Accordingly, (4.2) can be reduced further to

u′c′(x, t)≈ δT min{u′c′}(t)∇xc̄. (4.3)

Here, min{u′c′} depends not only on the flame-development time, but also on the
normalized interface speed SL/U′, see figure 8(a), and δT(t)= 1/max|∇xc̄| is the mean
flame brush thickness evaluated by applying the maximum gradient method to c̄(x, t).
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FIGURE 9. (Colour online) Dependences of the renormalized scalar flux u′c′(x, t)/
min{u′c′}(t) on the mean combustion progress variable, computed at various flame-
development times specified in the legend and Re = 200, for (a) SL/U′ = 0.1 and
(b) SL/U′ = 1.0.
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FIGURE 10. (Colour online) Dependences of the turbulent diffusivity Dt = −u′c′/∇xc̄
normalized using U′Λ on the mean combustion progress variable, computed at various
flame-development times specified in the legend and Re = 200, for (a) SL/U′ = 0.1 and
(b) SL/U′ = 1.0.

Using (4.3), we obtain

Dt ≡− u′c′

∇xc̄
=−δTmin{u′c′}(t), (4.4)

with (4.4) and figure 8(a) implying the development of Dt. Indeed, figure 11(a) shows
that the diffusivity averaged over the mean flame brush, i.e.

D∗t ≡
∫ 1

0
Dt dc̄=−

∫ 1

0

u′c′

∇xc̄
dc̄=−

∫ Lx

0
u′c′ dx, (4.5)

grows as the flame develops, with (i) the DNS data being weakly sensitive to the
Reynolds number under the conditions of the present study and (ii) almost the same
D∗t being evaluated at t/τt < 0.2 in all cases. At larger t/τt, a higher D∗t and a longer
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FIGURE 11. (Colour online) Evolution of the flame-averaged diffusivity D∗t defined by
(4.5): (a) D∗t /(U

′Λ) versus t/τt and (b) D∗t /D
∗
t,∞ versus t/τ ′, where τ ′ = D∗t,∞/U

′2. The
solid line was calculated using (4.6) with τL = τ ′.

development phase were obtained for a lower SL/U′. It should be noted that figure 10
implies that Dt(c̄)≈D∗t for any c̄.

In the case of inert mixing, i.e. SL = 0, the development of turbulent diffusivity
is well known after the pioneering analysis by Taylor (1935), which has resulted in
particular in the following expressions:

Dt =Dt,∞

[
1− exp

(
− t
τL

)]
, (4.6)

Dt,∞ =U′ΛL, (4.7)

where ΛL and τL = ΛL/U′ are the Lagrangian length and time scales respectively.
Figure 11(b) shows that (4.6), see the solid line, fits the present DNS data on D∗t
well, see the symbols, provided that τL is substituted with τ ′=D∗t,∞/U

′2. Accordingly,
figures 10 and 11(b) imply that

Dt =D∗t,∞

[
1− exp

(
−U′2t

D∗t,∞

)]
. (4.8)

Using (4.3), (4.4) and (4.8), we arrive at

u′c′(x, t)=−D∗t,∞

[
1− exp

(
−U′2t

D∗t,∞

)]
∇xc̄ (4.9)

and

min{u′c′} =−D∗t,∞
δT

[
1− exp

(
−U′2t

D∗t,∞

)]
. (4.10)

Figure 12(a) shows that the fully developed flame-averaged diffusivity D∗t,∞ is
decreased when SL/U′ is increased, and the same trend is observed for Dt(c̄) at any
c̄, see figure 10. This trend appears to be mainly controlled by the decrease in the
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FIGURE 12. (Colour online) (a) Flame-averaged fully developed normalized diffusivity
D∗t,∞/(U

′Λ) and (b) the ratio of D∗t,∞/(U
′δT,∞) versus SL/U′ at various Re specified in

the legend.

fully developed mean flame brush thickness with SL/U′, as shown in figure 6. Indeed,
the definition of Dt given by (4.4) can be rewritten as follows:

D∗t,∞
U′δT,∞

=−u′c′

U′

(
∂ c̄
∂ζ

)−1

, (4.11)

where ζ = x/δT,∞ is the distance normalized using the fully developed mean flame
brush thickness. If we assume that the expression on the right-hand side of (4.11)
does not depend on SL/U′ to the leading order, then the ratio of D∗t,∞/(U

′δT,∞) on
the left-hand side should not depend on SL/U′ either. Indeed, figure 12(b) shows that
the latter ratio, evaluated using the mean diffusivity D∗t,∞, depends weakly on SL/U′
if 0.5 6 SL/U′ 6 2. The dependence of D∗t,∞/(U

′δT,∞) on the Reynolds number is not
pronounced either. At low SL/U′ 6 0.2, the ratio of D∗t,∞/(U

′δT,∞) decreases slightly
on further decreasing SL/U′.

Finally, (4.9) reads

u′c′(x, t)=−D∗t,∞
δT,∞

δT,∞
δT

[
1− exp

(
−U′2t

D∗t,∞

)]
∂ c̄
∂χ
, (4.12)

where χ = x/δT is the distance normalized using the developing mean flame brush
thickness δT(t), i.e. max|∇χ c̄| = 1. Figure 13 validates (4.12) using all DNS data
computed by us. Thus, (4.6) derived by Taylor (1935) holds in the considered case
provided that the Lagrangian length scale is substituted with D∗t,∞/U

′= b1δT,∞, where
b1 is slightly decreased when SL/U′ < 0.5, but b1 ≈ 0.2 is independent of SL/U′ if
0.5 6 SL/U′ 6 2, see figure 12(b).

It should be noted that (4.12) shows that the decrease in the magnitude of the
flux u′c′ with flame-development time, see figure 8, is controlled by the growth
of the mean flame brush thickness δT(t), whereas the development of the turbulent
diffusivity, see the time-dependent term in square brackets, reduces the effect. As
will be shown in the next subsection, the ratio of δT,∞/δT(t) is mainly controlled by
t/τ ′ = U′2t/D∗t,∞ ∝ U′t/(δT,∞) if 0.5 6 SL/U′ 6 2. Accordingly, (4.12) indicates that,
under these conditions, the flux u′c′ depends on the interface speed, mainly because
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FIGURE 13. (Colour online) Validation of (4.12) using all available DNS data.
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FIGURE 14. (Colour online) Normalized mean flame brush thickness (a) δT(t)/Λ versus
t/τt and (b) U′δT(t)/(2

√
πD∗t,∞) versus t/τ ′ = U′2t/D∗t,∞. The symbols show DNS data

obtained at various SL/U specified in the legend. The blue, black and red symbols show
data obtained at Re = 50, 100, and 200 respectively. The black solid lines show results
computed using either (a) (4.13) at Re= 100 (τkε depends on Re) or (b) (4.15). The red
broken lines show results calculated using (4.17) and (4.18) at SL/U′ = 0.1 and 2.0.

the flux development is controlled by a time scale δT,∞/U′ that depends on SL/U′.
Moreover, the flux depends straightforwardly on this ratio at a low SL/U′, i.e. if
SL/U′ is decreased, then the magnitude |u′c′| is decreased, because both D∗t,∞/δT,∞
and δT,∞/δT(t) are decreased, see figure 12 and figure 14(b) discussed in the next
subsection. In other words, self-propagation of an interface in intense turbulence
(U′� SL) promotes the transport of a scalar that characterizes fluid before/behind the
interface.

For completeness, it is worth noting that turbulent scalar transport within a premixed
turbulent flame brush is significantly affected not only by the propagation of the
instantaneous flame front, but also by thermal expansion, with the latter effects being
able to reverse the direction of the flux if U′/SL is substantially less than the density
ratio. This phenomenon, known as countergradient transport, is beyond the scope
of the present work, but is discussed in detail elsewhere (Bray 1995; Lipatnikov &
Chomiak 2010; Robin et al. 2011; Lipatnikov 2012).
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4.4. Development of mean flame brush thickness and turbulent flame speed
Figure 14(a) shows that the development of the normalized flame brush thickness
persists for a long time interval, which is increased when SL/U′ is decreased and
is longer than 2τt if, e.g., SL/U′ = 0.1. Although this phenomenon is well known,
it has not yet been incorporated into mainstream research into premixed turbulent
combustion, and a model capable of predicting the development of δT(t) has not yet
been elaborated.

A model developed by Peters (2000) yields

δT = b2Λ

[
1− exp

(
− cst
τkε

)]1/2

, (4.13)

where b2 = 1.78, cs = 2.0 and τkε = k̄/ε̄ ∝ τt. The black solid curve in figure 14(a)
indicates that (4.13) with τkε evaluated at Re= 200 is contradicted by the DNS data,
which clearly show that both δT and the time scale of its growth depend substantially
on SL/U′. Moreover, at t� τt, (4.13) yields δT ∝Λ√t/τt, whereas the present DNS
results plotted in figure 14(b) show a linear dependence of the mean flame brush
thickness on time during the early stage of the flame development.

By reviewing experimental data obtained from various laboratory premixed turbulent
flames, it was argued that the growth of the thickness is controlled by the turbulent
diffusion law (Prudnikov 1967; Lipatnikov & Chomiak 2002; Lipatnikov 2012),
i.e. δT(t) satisfies the following equation:

dδ2
T

dt
∝Dt. (4.14)

By substituting (4.8) into the right-hand side of (4.14) we arrive at

δ2
T = 4πD∗t,∞t

{
1− D∗t,∞

U′2t

[
1− exp

(
−U′2t

D∗t,∞

)]}
, (4.15)

where a factor of 4π is used in order for the Gaussian distribution of ∇xc̄ to be
consistent with the definition of δT = 1/max|∇xc̄| (Lipatnikov & Chomiak 2002).

At t � τ ′, (4.15) reads δT ∝ U′t, i.e. the thickness grows linearly with time and
is independent of SL and Re. Figure 14(b) validates (4.15) at t/τ ′ 6 2, including the
linear scaling of δT ∝U′t at t� τ ′. It is also worth noting that substitution of (4.15)
into (4.12) followed by expansion of the obtained expression into a Taylor series at
U′2t/D∗t,∞� 1 results in

min{u′c′} =− U′√
2π

[
1− U′2t

3D∗t,∞

]
, (4.16)

i.e. the magnitude of the flux decreases from 0.4U′ linearly with time, in line with
figure 8(a). However, (4.15) is not applicable to the late stage of flame development.

Figure 14(b) indicates also that the normalized thickness U′δT/(2
√

πD∗t,∞) depends
neither on the Reynolds number nor on SL/U′ provided that 0.5 6 SL/U′ 6 2, but is
increased when SL/U′ is further reduced, i.e. SL/U′ < 0.5.

Scurlock & Grover (1953) argued that in order to apply the theory of turbulent
diffusion by Taylor (1935) to the development of mean flame brush thickness, the
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FIGURE 15. (Colour online) Normalized increase (ST − SL)/(ST,∞ − SL) in flame speed
ST(t) due to turbulence versus normalized flame-development time (a) t/τt or (b) t/τ ′ =
U′2t/D∗t,∞. The various symbols show DNS data computed at various SL specified in the
legend. The blue, black and red symbols show data obtained at Re = 50, 100 and 200
respectively.

Lagrangian length ΛL and time τL scales should be substituted with the following
scales:

Λf = ΛL

1+ SL/(2U′)
; τf = τL

1+ SL/(2U′)
= Λf

U′
(4.17a,b)

and

δ2
T = 4πΛ2

f
t
τf

{
1− τf

t

[
1− exp

(
− t
τf

)]}
. (4.18)

Comparison of the broken lines with the triangles and pluses in figure 14(a) shows
that (4.17) and (4.18) predict (i) a decrease in the thickness when SL/U′ is increased
and (ii) the development of δT at SL/U′ = 0.1 and t 6 τt, cf. the dashed line with
the triangles. However, (4.17) and (4.18) underpredict or overpredict the influence of
SL/U′ on the thickness at t/τt =O(1) or low t/τt respectively, cf. the dot-dashed line
with the pluses.

Thus, although (4.15) describes the increase in the mean flame brush thickness
during the early stage of premixed turbulent flame development well, we are not
aware of a model that predicts δT(t) during the late stage of its growth.

Figure 15(a) shows that the development of the normalized turbulent flame speed
persists also for a long time interval, which is increased when SL/U′ is decreased
and is substantially longer than 2τt if, e.g., SL/U′ = 0.1. Figure 15(b) indicates
that, similarly to U′δT/(2

√
πD∗t,∞), the development of the normalized contribution

(ST − SL)/(ST,∞ − SL) of the turbulence to the flame speed as a function of the
normalized time t/τ ′ = U′2t/D∗t,∞ depends neither on the Reynolds number nor on
SL/U′ provided that 0.5 6 SL/U′ 6 2, but is delayed when SL/U′ is further reduced,
i.e. SL/U′ < 0.5.

The present authors are not aware of a model that yields an expression for
growing ST(t) in the case of an infinitely thin flame front. However, in the case
of a finite flame-front thickness, such an expression was derived (Lipatnikov &
Chomiak 1997, 2002) by combining the Taylor theory and a model (Zimont 1979)
of the burning velocity in intense (SL � U′) Kolmogorov turbulence. Because the
area of a material surface (SL = 0) in Kolmogorov turbulence is mainly produced by
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FIGURE 16. (Colour online) Development of (ST − SL)/(ST,∞ − SL), see the filled red
symbols, and δT/δT,∞, see the open black symbols, computed at various SL specified in
the legend and Re= 100.

small-scale eddies (Batchelor 1952), the turbulent burning velocity was hypothesized
(Lipatnikov & Chomiak 1997, 2002) to initially grow much faster when compared
with the mean flame brush thickness, whose development is controlled by large-scale
eddies characterized by a significantly larger time scale. Accordingly, the discussed
model yields a larger (ST − SL)/(ST,∞ − SL)≈ ST/ST,∞ when compared with δT/δT,∞.
Subsequently, an ability to predict faster development of ST(t) when compared with
δT(t) was proposed (Lipatnikov 2009b) to be a simple unified test for ranking various
models of premixed turbulent combustion.

However, the present DNS data support neither this trend nor the aforementioned
model. Figure 16 shows that (ST − SL)/(ST,∞ − SL) grows faster than δT/δT,∞ only if
SL/U′> 1, but the difference is sufficiently small, cf. the open and filled diamonds or
left-triangles and note that almost the same results were obtained at Re= 50 and 200.
At SL/U′= 1, the normalized flame speed and thickness develop similarly, cf. the open
and filled squares, but δT/δT,∞ grows substantially faster than (ST − SL)/(ST,∞− SL) if
SL/U′ < 1, with the difference being increased with a decrease in SL/U′, e.g. cf. the
open and filled up-triangles.

4.5. Conditioned statistics of the turbulent flow field
The primary goal of this subsection is to investigate whether or not a conditioned
moment of the velocity (or velocity gradient) field can be used to properly characterize
the turbulence within a premixed flame brush. To answer this question, the true
turbulence characteristics should be known and considered to be reference quantities
for assessment of the conditioned ones. In the present study of constant-density
and constant-viscosity flows, such reference turbulence characteristics are known,
because self-propagation of an interface does not affect the flow. On the contrary,
such reference turbulence characteristics have not yet been defined in a consistent
manner in the case of combustion with heat release and density drop.

In the following, we will restrict ourselves to reporting results obtained in two
representative cases, i.e. Re = 200 and SL/U′ = 0.1 or 1.0, because the DNS data
computed in other cases were qualitatively similar.
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FIGURE 17. (Colour online) Axial velocities normalized using U′ and conditioned on
unburned (ūu, top) or burned (ūb, bottom) mixture versus the mean combustion progress
variable. The curves show DNS data obtained at various flame-development times specified
in the legend and Re= 200, for (a) SL/U′ = 0.1 and (b) SL/U′ = 1.0.

Figure 17 shows the evolution of the normal profiles of the normal velocity
conditioned on unburned or burned mixture. In the case of two fluids separated by
an infinitely thin interface, the moments of the u and c fields can be evaluated by
invoking the following bimodal joint probability density function (PDF) (Libby &
Bray 1981; Bray et al. 1985; Bray 1995):

P(u, c, x, t)= [1− c̄(x, t)]δ(c)Pu(u, x, t)+ c̄(x, t)δ(1− c)Pb(u, x, t), (4.19)

where Pu(u, x, t) and Pb(u, x, t) are velocity PDFs determined in unburned (c= 0) and
burned (c = 1) fluids respectively, and δ(c) is the Dirac delta function. For brevity,
the dependence of the PDFs and their moments on x and t will not be specified
in the following expressions. Using (4.19) and the standard Bray–Moss–Libby
(BML) technique (Libby & Bray 1981; Bray et al. 1985; Bray 1995), one can easily
arrive at

ū= (1− c̄)ūu + c̄ūb (4.20)

and
u′c′ = c̄(1− c̄)(ūb − ūu). (4.21)

Because ū= 0 in the coordinate framework used here, we have

u′c′ =−(1− c̄)ūu = c̄ūb, (4.22)

i.e. the behaviour of the conditioned velocities is closely linked with the behaviour
of the flux u′c′. In particular, (i) the magnitude of the slip velocity 1u= ūb − ūu is
slightly increased by SL/U′, in line with figures 7 and 8(a), and (ii) the magnitudes
of the conditioned and slip velocities reduce as the flame develops.

Figure 18 indicates that conditioned r.m.s. velocities should not be used to
characterize the turbulence within a flame brush, because they differ substantially
from the true r.m.s. turbulent velocity

√
u′2, which is well defined in the considered

case. Indeed, within the framework of the BML approach (Libby & Bray 1981; Bray
et al. 1985; Bray 1995), which holds under conditions of the present DNS, we have

u′2 = u2 = (1− c̄)(u2)u + c̄(u2)b = (1− c̄)[ū2
u + (u′2)u] + c̄[ū2

b + (u′2)b]. (4.23)
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FIGURE 18. (Colour online) Second moments normalized using U′2= u′2 and conditioned
on unburned ((u′2)u, top) or burned ((u′2)b, bottom) mixture versus the mean combustion
progress variable. The curves show DNS data obtained at various flame-development times
specified in the legend and Re= 200, for (a) SL/U′ = 0.1 and (b) SL/U′ = 1.0.

This equation clearly shows that not only conditioned r.m.s. velocities
√
(u′2)u

and
√
(u′2)b, but also conditioned velocities ūu and ūb contribute to the true r.m.s.

turbulent velocity. Accordingly, we could expect that (u′2)u < u′2 and (u′2)b < u′2,
with the differences between the conventional and conditioned r.m.s. velocities being
increased when ū2

u and ū2
b are increased. Indeed, in figure 18, these differences are

most pronounced during an earlier stage of flame development, i.e. at a low ratio of
t/τt, and the magnitudes of the conditioned velocities ūu and ūb are largest at low
t/τt in figure 17. This significant difference should not be disregarded, because a
large part of the volume of a typical laboratory flame is associated with t/τt < 1.

Self-propagation of the interface increases the difference between the conventional
and conditioned r.m.s. velocities evaluated at a late stage of flame development,
i.e. the difference is increased by SL/U′, cf. the solid curves in figures 18(a) and
18(b). However, the opposite trend can be observed at a low t/τt, e.g. cf. (u′2)b
computed at t/τt = 0.1 and shown by dotted lines. It is worth also noting that (u′2)b
is closer to u′2, whereas the difference in u′2 and (u′2)u is larger.

Figure 19 shows that the conditioned third moments (u′3)u and (u′3)b are not proper
turbulence characteristics, because they do not vanish in spite of the fact that the
turbulence is isotropic and u′3 = 0 in the present DNS, as verified in figure 7 in our
previous paper (Yu et al. 2014). It is worth also noting that while the difference in
(u′2)u or (u′2)b and u′2 is reduced as the flame develops, see figure 18, the maximum
(for various c̄) difference in (u′3)u or (u′3)b and u′3 = 0 depends weakly on t/τt. For
instance, |(u′3)b| evaluated at c̄= 0.9 and t/τt = 0.1 is approximately 0.2, but almost
vanishes at large t/τt, whereas |(u′3)b| evaluated at c̄ = 0.1 and t/τt = 0.1 almost
vanishes, but is approximately 0.2 at large t/τt.

As briefly summarized in § 1 and discussed in detail elsewhere (Lipatnikov
2009a; Lipatnikov & Chomiak 2010; Lipatnikov 2012), the basic difference between
conditioned and canonical mean turbulence characteristics stems from the fact that
conditional averaging is performed over a spatial domain whose boundary is wrinkled
and randomly moves, with this motion being anisotropic. Moreover, due to the flux
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FIGURE 19. (Colour online) Third moments normalized using U′3 and conditioned on
unburned ((u′3)u, top) or burned ((u′3)b, bottom) mixture versus the mean combustion
progress variable. The curves show DNS data obtained at various flame-development times
specified in the legend and Re= 200, for (a) SL/U′ = 0.1 and (b) SL/U′ = 1.0.

of a fluid through the boundary, e.g. conversion of reactants to products in flamelets,
conditioned balance equations involve source or sink terms that do not appear in the
counterpart Reynolds-averaged equations, e.g. see (4.25) and (4.26) below, with these
source/sink terms substantially changing conditioned quantities when compared with
the counterpart canonical Reynolds-averaged quantities. Because these source and sink
terms are proportional to the front speed, variations in SL due to local curvature and
straining of the front in the case of its finite thickness could also affect conditioned
velocities. However, figure 17 indicates moderate sensitivity of ūu and ūb to variations
in SL/U′, thus implying that the aforementioned curvature and straining effects do
not play a major role.

Recently, Yu et al. (2014) hypothesized that small-scale turbulence characteristics
such as the total strain S2 = 0.25(Sij + Sji)(Sij + Sji) or enstrophy ω2 = ω · ω =
(∇× u) · (∇× u) are less sensitive to the method of taking an average (conventional
or conditional) and, therefore, are better suited for characterizing turbulence within a
flame brush. In the cited paper, this hypothesis was supported by DNS data averaged
over a long time interval. Figure 20 further validates this hypothesis and shows
that the differences between (i) conventional S2 and conditioned (S2)u or (S2)b and,
especially, (ii) conventional ω2 and conditioned (ω2)u or (ω2)b are sufficiently small
at various stages of turbulent flame development, with (ω2)b being very close to ω2

not only at various t/τt but also at various c̄ > 0.1, provided that SL/U′ = 1.0, see
figure 20(b).

The suitability of the conditioned enstrophy for characterizing turbulence within
a developing mean front is further evidenced in figure 21. While the difference
between the true and conditioned r.m.s. turbulent velocities, see figure 21(a), is
significant during the early stage of flame development, the difference between the
conventional and conditioned enstrophies does not exceed 5 % in the middle of the
flame brush (c̄= 0.5) at various Re and various SL/U′, see figure 21(b).

It is worth remembering that, because a self-propagating interface does not affect
the turbulent flow in the case of a constant density and a constant viscosity, the
conventional moments of the velocity (or velocity gradient) fields are the true
turbulence characteristics under the conditions of the present study. Accordingly,
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FIGURE 20. (Colour online) Normalized conditioned enstrophy (ω2)u/ω2 or (ω2)b/ω2

(bottom) and normalized conditioned strain (S2)u/S2 or (S2)b/S2 (top) versus the
mean combustion progress variable. The curves show DNS data obtained at various
flame-development times specified in the legend and Re = 200, for (a) SL/U′ = 0.1 and
(b) SL/U′ = 1.0.
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FIGURE 21. (Colour online) Evolution of (a) the normalized conditioned r.m.s. velocity
(u′2)u/u′2 or (u′2)b/u′2 and (b) the normalized conditioned enstrophy (ω2)u/ω2 or (ω2)b/ω2,
computed at c̄= 0.5, for various Re and SL/U′ specified in the legends.

even if (i) the conditioned enstrophy is affected by density variations in the case
of combustion with heat release and (ii) a study of such effects is beyond the
scope of the present paper, the DNS data reported in figures 20 and 21 imply that
variations in the conditioned enstrophy due to the heat release could consistently
capture the influence of the heat release on the turbulence, whereas the conventional
r.m.s. turbulent velocity is controlled not only by the turbulence, but also by the slip
velocity induced due to the heat release, see (1.5).

Figure 22 shows that, contrary to the mean pressure gradient ∇p̄, the conditioned
pressure gradients (∇p)u and (∇p)b do not vanish within the mean front and have
opposite signs, in line with the following BML equation (Bray et al. 1985):

0=∇p̄= (1− c̄)(∇p)u + c̄(∇p)b. (4.24)

It should be noted that, contrary to combustion with heat release and density
variations, associated with a finite pressure drop across an infinitely thin flame
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FIGURE 22. (Colour online) The normal components (∇xp)u and (∇xp)b of the
conditioned pressure gradients normalized using the fluid density and U′2/Λ versus the
mean combustion progress variable. The curves show DNS data obtained at various
flame-development times specified in the legend and Re = 200, for (a) SL/U′ = 0.1 and
(b) SL/U′ = 1.0.

front, the pressure gradient conditioned to the interface vanishes in (4.24) in the
case of a constant density. Figure 22 indicates also that the time dependence of
the magnitude of |(∇p)u| or |(∇p)b| is non-monotonic and is more pronounced at
SL/U′ = 0.1 when compared with SL/U′ = 1.

The fact that (∇xp)b < 0< (∇xp)u under the conditions of the present DNS implies
that the conditioned pressure gradients reduce the magnitude of the slip velocity 1u=
ūb − ūu. Indeed, in the case studied by us, the balance equations for the conditioned
velocities ūu and ūb read (Im et al. 2004; Lipatnikov 2008)

∂

∂t
[(1− c̄)ūu] + ∂

∂x
[(1− c̄)ū2

u]

=− ∂
∂x
[(1− c̄)(u′2)u] − 1− c̄

ρ

(
∂p
∂x

)
u

+ (1− c̄)ν
(
∂2u
∂x2

k

)
u

− SLūfΣ (4.25)

and

∂

∂t
(c̄ūb)+ ∂

∂x
(c̄ū2

b)=−
∂

∂x
[c̄(u′2)b] − c̄

ρ

(
∂p
∂x

)
b

+ c̄ν
(
∂2u
∂x2

k

)
b

+ SLūfΣ, (4.26)

where Σ is the mean interface surface density and ūf is the normal (to the mean front)
velocity conditioned on the interface. Accordingly, the conditioned pressure gradient
terms are negative and positive in unburned and burned mixtures respectively, thus
reducing ūu, which is positive, see figure 17, increasing ūb, which is negative, and thus
increasing 1u, which is also negative. On the contrary, the first terms on the right-
hand sides of (4.25) and (4.26) are positive and negative respectively, see figure 18,
thus controlling the negative signs of the terms 1u and u′c′ under the conditions of
the present DNS.

It is worth noting that the conditioned pressure gradients are relevant to modelling
the following correlation c′∇p′, which plays a substantial role in the balance equation
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FIGURE 23. (Colour online) The parameter B2 evaluated using (4.30) versus the
mean combustion progress variable. The curves show DNS data obtained at various
flame-development times specified in the legend and Re = 200, for (a) SL/U′ = 0.1 and
(b) SL/U′ = 1.0.

for the turbulent flux u′c′. Indeed, in the case of an infinitely thin interface, the joint
PDF P(p, c) can be modelled as follows:

P(p, c)= (1− c̄)δ(c)Pu(p)+ c̄δ(1− c)Pb(p), (4.27)

within the framework of the BML approach. Therefore,

c′∇p′ = −(1− c̄)c̄[(∇p)u −∇p̄] + c̄(1− c̄)[(∇p)b −∇p̄]
= c̄(1− c̄)[(∇p)b − (∇p)u]. (4.28)

The following simple closure relation proposed first by Monin (1965):

c′∇p′ = B2
ε̄

k̄
u′c′, (4.29)

where B2 is a constant, is widely used in order to simulate inert turbulence mixing
(Launder 1976). Accordingly, (4.21), (4.28), and (4.29) read

(∇p)b − (∇p)u = B2
ε̄

k̄
(ūb − ūu). (4.30)

Figure 23 supports (4.30) by showing that B2 depends weakly on c̄ and the
flame-development time, with the exception of a very early (t/τt < 0.2) stage of
the flame development. However, figure 23 also indicates that B2 is not a constant,
but is increased when SL/U′ is decreased. Such a dependence of B2 on SL/U′ is
beyond the scope of a model of inert (SL = 0) turbulent mixing, but can be of
importance when modelling propagating fronts.

It is worth noting that the parameter B2 averaged over the fully developed mean
front, i.e. B∗2,∞ =

∫ 1
0 B2,∞(c̄) dc̄, correlates somehow with the normalized diffusivity

D∗t,∞/(U
′Λ) averaged over the same front, see figure 24.

Finally, (4.25) and (4.26) involve the velocity ūf conditioned on the interface.
Figure 25 shows that, at various flame-development times and SL/U′, the behaviour
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FIGURE 24. The flame-averaged fully developed constant B∗2,∞=
∫ 1

0 B2,∞(c̄) dc̄ versus the
flame-averaged fully developed normalized diffusivity D∗t,∞/(U

′Λ) obtained in all DNS
cases.
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FIGURE 25. (Colour online) Normal velocity ūf conditioned on the interface and
normalized using U′ versus the mean combustion progress variable. The symbols show
DNS data obtained at various flame-development times specified in the legend and Re=
200, for (a) SL/U′ = 0.1 and (b) SL/U′ = 1.0. The lines show results calculated using
(4.31).

of this velocity within the mean front is reasonably well fitted using the following
simple linear interpolation (Lipatnikov 2008):

ūf = c̄ūu + (1− c̄)ūb (4.31)

between limit cases of ūf = (1 − c̄)ūb and ūf = c̄ūu, associated with the leading and
trailing edges of the mean front respectively. It should be noted that ūf = ūb or ūf = ūu
at the leading or trailing edge respectively, because the interface arrives at the leading
(trailing) edge jointly with the burned (unburned) mixture.

5. Conclusions
A 3D-DNS study of the evolution of a self-propagating interface in forced

constant-density statistically stationary homogeneous isotropic turbulence was
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performed by solving Navier–Stokes and level-set equations under a wide range of
conditions that cover various (from 0.1 to 2.0) ratios of the interface speed SL to the
r.m.s. turbulent velocity U′ and various (50, 100 and 200) turbulent Reynolds numbers
Re. The following results obtained by analysing DNS data are worth emphasizing.

(i) The computed fully developed normalized speed ST,∞/U′ of the mean front
depends almost linearly on SL/U′, thus supporting the classical linear relation
between ST,∞, SL and U′ under the conditions of the present study.

(ii) The fully developed normalized mean front thickness δT,∞/Λ is reduced when the
ratio of SL/U′ is increased, with the DNS data being well fitted by the scaling
δT,∞/Λ∝ (SL/U′)−1/3.

(iii) The fully developed mean turbulent flux (u′c′)∞ of the scalar c that characterizes
the state of the fluid (c = 0 and 1 ahead and behind the interface respectively)
shows the gradient behaviour. The diffusivity associated with the flux and
averaged over the fully developed flame brush, i.e. D∗T,∞ =

∫ 1
0 DT,∞(c̄) dc̄, is

decreased when the ratio of SL/U′ is increased. The ratio of D∗T,∞/(U
′δT,∞) is

independent of 0.5 6 SL/U′ 6 2.0, but is weakly decreased when SL/U′ < 0.5.
(iv) During the development of the mean front, the evolution of the flux u′c′ is

well described by (4.12), which results from the classical Taylor theory of
turbulent diffusion, with the fully developed turbulent diffusivity DT,∞ ∝ U′Λ
being substituted with the fully developed front-averaged diffusivity D∗T,∞.

(v) The development of the mean front speed and thickness requires a longer time
when SL/U′ is reduced.

(vi) During the early stage of the mean front development, the growth of the mean
front thickness is well described by the aforementioned Taylor theory provided
that DT,∞ is substituted with D∗T,∞. The growth of δT is linear with respect to
the flame-development time t at least if t<D∗T,∞/U

′2.
(vii) Under the conditions of the present DNS study, there is no clear correlation

between the growth of δT/δT,∞ and (ST − SL)/(ST,∞ − SL) during the mean front
development. The former ratio grows faster (slower) at a lower (higher) SL/U′.

(viii) The conditioned moments of the velocity field differ substantially from the
canonical Reynolds-averaged moments, whereas the conditioned and canonical
mean enstrophies are close to one another. These results imply that, contrary to
the conditioned moments of the velocity field, the conditioned enstrophy could
be used for characterizing turbulence within a premixed flame brush.

(ix) The classical closure of the correlation c′∇p′, which is given by (4.29) and
is widely used in numerical simulations of turbulent mixing, holds under the
conditions of the present DNS study provided that the closure parameter is
increased by the diffusivity D∗T,∞.

(x) Under the conditions of the present DNS study, the velocity conditioned on the
interface is well approximated with the simplest linear equation (4.31).

(xi) All the aforementioned results are weakly sensitive to the turbulent Reynolds
numbers addressed in the present study (50 6 Re 6 200).

It is worth stressing that the simulations discussed in the present paper are the first
computations in an ongoing DNS series aimed at improving our understanding of the
governing physical mechanisms of premixed turbulent combustion by investigating a
set of basic problems starting from the simplest one addressed in the present work.
Subsequently, we plan (i) to complicate the problem step by step by allowing for
a finite thickness of the flame front, then density variations and, finally, complex
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combustion chemistry and (ii) to reveal the role played by each of these effects
by straightforwardly comparing data obtained in two subsequent sets of the DNS
series. Accordingly, while the DNS data analysed in the present paper are relevant
to premixed turbulent combustion, certain results can be substantially affected by
the simplifications invoked. In particular, a finite thickness of the instantaneous
flame front should be taken into account in order to predict the opposite effects
of pressure on laminar and turbulent flame speeds, as discussed in § 4.1. Moreover,
the influence of density variations on the flow field can play a substantial role in
premixed turbulent combustion (Karlovitz, Denniston & Wells 1951; Swaminathan &
Grout 2006; Lieuwen 2012; Lipatnikov et al. 2015). For instance, the DL instability
(Darrieus 1938; Landau 1944) was highlighted to be an important physical mechanism
of weakly turbulent premixed combustion, e.g. see the review papers by Lipatnikov
& Chomiak (2005, 2010), as well as recent theoretical (Chaudhuri, Akkerman &
Law 2011), numerical (Creta & Matalon 2011) and experimental (Troiani, Creta &
Matalon 2015) contributions.
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