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Abstract

We give a criterion for unlimited growth with positive probability for a large class of
multidimensional stochastic models. As a by-product, we recover the necessary and
sufficient conditions for recurrence and transience for critical multitype Galton–Watson
with immigration processes and also significantly improve some results on multitype
size-dependent Galton–Watson processes.
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1. Introduction

We study conditions on possible unlimited growth for sequences of random vectors Xn,
taking values in R

d+, which verify the stochastic difference equation

Xn+1 = XnM + g(Xn) + ξn, n ∈ N, (1)

where M is a nonnegative primitive d × d matrix, g : R
d+ → R

d+ is a function such that
‖g(x)‖ = o(‖x‖) when ‖x‖ tends to ∞, and (ξn) is a sequence of random vectors (taking
values in R

d ) such that almost surely (a.s.)

E(ξn | Fn) = 0,

where {Fn, n ∈ N} is the natural filtration associated to (Xn). We assume that X0 ∈ R
d+ and

that random vectors ξn are such that for all n, Xn takes values in R
d+ a.s.

The Perron–Frobenius Theorem [12, pp. 3–4] states that M has a positive Perron root ρ

(which is also the spectral radius of M). We call Xn ‘subcritical’ if ρ < 1, ‘supercritical’ if
ρ > 1, and ‘critical’ if ρ = 1. In the ‘subcritical’ case, one has P(‖Xn‖ → ∞ as n → ∞) = 0
since ‖Xn‖ is bounded in mean. In many applications, one has P(‖Xn‖ → ∞ as n → ∞) > 0
in the ‘supercritical’ case. This is well known for the multitype Galton–Watson process with
immigration, for instance. However, this is not necessarily the case in our general framework.
For example, if g(Xn) = 0 and ξn = XnMn with Mn independent and identically distributed
random matrices such that P(Mn = M) = P(Mn = −M) = 1

2 , then P(Xn → 0) = 1.
In this paper, we focus on the ‘critical’ case, henceforth ρ = 1. We define the normalized

right and left eigenvectors u and v associated to ρ in such a way that vu = u�u = 1.
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We assume that the sequence (Xn) obeys a weak form of the Markov property. More
precisely, we assume that E((ξnu)2 | Fn) is a function of Xn and will use the notation

σ 2(Xn) = E((ξnu)2 | Fn).

The process (Xn)need not be a Markov chain because the law of ξn may depend on (X1, X2, . . . ,

Xn). However, all our examples are Markov chains.
The d = 1 case is well understood. The interesting phenomenon is the fact that whether

the growth is unlimited depends on both the ‘drift’ (i.e. g(Xn)) and the ‘variance’ σ 2(Xn).
This was first noted by Lamperti [10] whose result was generalized by Kersting [6]. But,
to the best of the author’s knowledge, there is no criterion when d > 1. Only particular
examples were studied. For instance, Klebaner [8], [9] gave sufficient conditions for unlimited
growth or extinction for state-dependent multitype Galton–Watson processes. However, we
can build some simple processes which do not satisfy his conditions. Gonzalez et al. [1]
also gave conditions for unlimited growth in the supercritical case. Jagers and Sagitov [4]
investigated population-size-dependent demographic processes that are particular cases of
multidimensional growth models. Moreover in the critical case, they restricted themselves
to bounded reproduction and bounded ‘drift’.

Our aim in this paper is to obtain a criterion in any finite dimension that is analogous to the
one in dimension one, which is our main result. The strategy of the proof is the same as in
Kersting [6]. We shall illustrate our criterion with several classes of examples, notably the one
studied by Klebaner [9] for which we obtain a complete picture (except for a very special case).

Under technical assumptions on functions g and σ 2, we prove in this paper that the process
stays bounded almost surely if

lim sup
r→+∞

2rg(rv)u

σ 2(rv)
< 1, (2)

while it tends to ∞ with positive probability if

lim inf
r→+∞

2rg(rv)u

σ 2(rv)
> 1. (3)

This criterion is reminiscent of the criterion in Kersting [6] for unidimensional models. In fact,
the matrix M preserves the component of Xn along the direction v whereas it contracts along
others directions.

In Section 2 we state our main result and its proof. In Section 3 we apply it in order to
recover a recurrence-transience criterion for critical multitype Galton–Watson processes with
immigration and to improve a criterion of almost sure extinction for state-dependent multitype
Galton–Watson processes. In the last section, we prove some lemmas which are used in the
proof of Theorem 1.

2. Criterion for unlimited growth

2.1. Assumptions

For a row vector x, let y = x(I − uv). We assume that there exists a real number α such
that −1 < α < 1, some positive real numbers ci , di and some real-valued functions fi and hi

defined on R
d , i ∈ {1, 2}, such that

(A1) g(x)u = c1(xu)α + h1(y) + f1(x) and σ 2(x) = d1(xu)1+α + h2(y) + f2(x) for all
x ∈ R

d+, with h1 ≡ 0 if α ≤ 0 and
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• |h1(y)| ≤ c2‖y‖α ,

• |h2(y)| ≤ d2‖y‖1+α ,

• f1(x) = o((xu)α) when ‖x‖ → +∞, and

• f2(x) = o((xu)1+α) when ‖x‖ → +∞,

where ‘‖ · ‖’ denotes the Euclidean norm.
We assume that there exist δ > 0 and A1 > 0 such that, for all n ∈ N and for all Xn ∈ R

d+,

(A2) E((‖ξn‖)2+δ | Fn) ≤ A1σ
2+δ(Xn).

We also need the following condition of unboundedness:

(A3) for all C > 0, there exists n ∈ N such that P(Xnu ≥ C) > 0.

Finally, we need two more assumptions on function g and σ 2 to obtain possible unlimited
growth for Xn. Firstly, that g(x)u is bounded away from 0:

(A4) there exists s1 > 0 such that for all a, b > 0 such that s1 < a < b < ∞, if xu ∈ (a, b)

then there exists ε > 0 such that g(x)u > ε,

and secondly, that σ 2 is not infinite:

(A5) for all a > 0, sup‖x‖<a σ 2(x) < ∞.

2.2. Main theorem

We now give the criterion of unlimited growth for Xn.

Theorem 1. (Unlimited growth criterion.) We assume (A1) and (A2) hold.

(i) If c1 < d1/2 then P(‖Xn‖ → +∞) = 0.

(ii) If c1 > d1/2 and (A3), (A4), and (A5) hold then P(‖Xn‖ → +∞) > 0.

Compared to (2) and (3), we give a criterion in the special case where g has a dominant
term in (xu)α . This may seem restrictive, nevertheless most of the applications deal with
α = 0, which means that g is bounded by a constant. The c1 = d1/2 case remains unexplored
except for critical multitype Galton–Watson processes with immigration under some moment
assumptions (see Remark 1 in Section 3).

2.3. Proof of the theorem

The strategy of the proof of the theorem consists in showing that there exist an integer k and
a real-valued function L such that

E(L(Xn+ku) | Fn) ≤ L(Xnu)

when Xnu is larger than some constant. Then we build a supermartingale and proceed by using
the martingale convergence theorem.

Before proving the theorem, we state two key lemmas providing us with a Lyapunov function.
The proofs involve some technical computations and are deferred to Section 4.

Lemma 1. Let us assume that (A1) and (A2) hold. If c1 < d1/2, then there exists s > 0 and
k ∈ N

∗ such that
E(log(Xn+ku) | Fn) ≤ log(Xnu) if Xnu > s.
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Lemma 2. Let us assume that (A1) and (A2) hold. If c1 > d1/2, then there exists s > 0 and
k ∈ N

∗ such that
E(L(Xn+ku) | Fn) ≤ L(Xnu) if Xnu > s,

with L(x) = (log x)−1.

Proof of Theorem 1. Without loss of generality, we assume that, for every n ∈ N, Xnu ≥ 3
a.s. (otherwise consider Xn + 3v instead of Xn).

(i) We start by considering the case where c1 < d1/2. Following [6], let us assume that
Xnu → +∞ with positive probability. Let Un = Xnku, then Un → +∞ with positive
probability, too. Thus, there is a positive integer T such that

P

(
inf
n≥T

Un > s, Un → +∞
)

> 0. (4)

Let τ = inf{n ≥ T : Un ≤ s} with the convention that τ = +∞ if infn≥T Un > s. Let

Vn =
{

log(Un+T ) if n + T ≤ τ,

log(Uτ ) otherwise.

Since (Vn) is a positive supermartingale by Lemma 1, it converges a.s. and we obtain a
contradiction with (4).

(ii) We now turn to the case where c1 > d1/2. Let s > 0 be large enough, such that the
statement of Lemma 2 holds. Let A, B, C, and D be four sets defined as follows:

• A = {lim supn→∞ Xnu ≤ s},
• B = {lim supn→∞ Xnu < ∞ and there exists i ∈ {0, . . . , k − 1}, Xnk+iu →

Ri as n → ∞ with s < Ri < ∞},
• C = {there exists i ∈ {0, . . . , k − 1}, Xnk+iu → ∞ as n → ∞ and lim supn→∞

Xnk+i+1u < ∞},
• D = {Xnu → ∞ as n → ∞}.

We want to prove that P(D) > 0. We first prove that P(A ∪ B ∪ C ∪ D) = 1 (step 1).
Secondly, that P(A) < 1 (step 2). Thirdly, that P(B) = 0 (step 3) and, finally, that
P(C) = 0 (step 4).

Step 1. Let i ∈ {0, . . . , k − 1}. Then Ui,n = min(L(Xnk+iu), L(s)) is a nonnegative
bounded supermartingale which converges a.s. and in mean by Lemma 2. Therefore, either
Xnk+iu converges to a number greater than s, possibly ∞, or lim supn→∞ Xnk+iu ≤ s. So,
P(A ∪ B ∪ C ∪ D) = 1.

Step 2. Let us assume that P(A) = 1. Then, for all i ∈ {0, . . . , k − 1}, Ui,n converges
to L(s). Since E(min(L(Xn+klu), L(s))) ≤ E(min(L(Xnu), L(s))), for all l ∈ N, we obtain

E(min(L(Xnu), L(s))) ≥ L(s).

But, by definition, min(L(Xnu), L(s)) ≤ L(s), therefore, min(L(Xnu), L(s)) = L(s) a.s. or
Xnu ≤ s for all n, which contradicts (A3).

Thus, P(B ∪ C ∪ D) > 0.
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Step 3. Without loss of generality, let us assume that set B holds with i = 0 and let
R = 2 sup Xnu.

By (A4), there exists s1 < R0 and ε > 0 such that, for all x, such that xu ∈ (s1, R), we
have g(x)u > ε.

Since Xnku converges to R0, there exists N0 such that, for all n ≥ N0, Xnku ∈ (s1, R).
Thus, we can choose N such that, for all n ≥ N , Xnu ≤ R and g(XN)u �= 0.
Consider now

An =
n∑

l=0

g(XN+l )u, Mn =
n∑

l=0

A−1
l ξN+lu.

One can check that Mn is a martingale.
Further, by (A4) and (A5), we have

∞∑
n=0

E((Mn+1 − Mn)
2 | FN+n+1) =

∞∑
n=1

A−2
n σ 2(XN+n)

≤ C

∞∑
n=1

A−2
n

≤ C′
∞∑

n=1

A−2
n (An − An−1)

≤ C′
∫ ∞

A1

t−2 dt

< ∞.

By a martingale convergence theorem, Mn converges a.s. Since Xnku converges to R, An →
+∞, and by Kronecker’s lemma, we have

n∑
l=1

ξlu = o(An).

For n ≥ N , we obtain the contradiction

Xn+1u = XNu +
n∑

l=N

g(Xl )u +
n∑

l=N

ξlu = An + o(An) → +∞.

Thus, P(B) = 0, so with positive probability, there exists i ∈ {0, . . . , k − 1} such that
Xnk+iu tends to ∞. Let us prove that this implies that Xnu tends to ∞.

Step 4. Without loss of generality, let us assume that Xnku tends to ∞.
Let γ = 2/(1 − α), r > s and n such that nγ > 2r .
Let 
n = [nγ , (n + 1)γ ) be a sequence of intervals and N(l) be an increasing sequence of
stopping times defined by

N(l) = inf{n > N(l − 1) such that Xnku ∈ [lγ , ∞)}.
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By Markov’s inequality, we obtain

P(XN(n)k+1u ≤ 2r | XN(n)ku ≥ nγ ) ≤ sup
l≥n

P(ξN(n)ku ≤ (2r − lγ ) | XN(n)ku ∈ 
l)

≤ sup
l≥n

P((ξN(n)ku)2 ≥ (lγ − 2r)2 | XN(n)ku ∈ 
l)

≤ sup
l≥n

Klγ (α+1)

l2γ

≤ K ′ 1

n2 .

Hence, by the Borel–Cantelli lemma, for any r > 0 sufficiently large,

P

(
lim sup
n→∞

Xnk+1u ≤ r | Xnku → ∞
)

= 0.

Thus, Xnk+1u converges to ∞ so P(C) = 0.
Since P(A∪B ∪C ∪D) = 1 and P(B) = P(C) = 0; thus, P(A∪D) = 1. Since P(A) < 1,

we have the desired result

P(D) = P(Xnu → ∞) > 0. �

3. Applications

Our applications focus on the α = 0 case. This is because we consider population models
with finite variance of number of offsprings per individual. Thus, σ has to be of the order of xu

and g of the order of a constant. Note also that all models here are Markov chains, although
our result is applicable to processes that need not be Markov chains. In the particular case of
irreducible Markov chains, the process has an unlimited growth with positive probability if and
only if the chain is transient. Conversely, it does not tend to ∞ a.s. if and only if the chain is
recurrent.

3.1. Multitype Galton–Watson process with immigration

A first class of processes governed by the stochastic difference equation (1) is given by
critical multitype Galton–Watson processes with immigration. Kawazu [5] gave a criterion of
recurrence and transience that he proved by using generating functions. We recover here the
same result.

Let (Zn) be a critical multitype Galton–Watson process with immigration with d-types. At
generation n, the kth individual of type-i, i ∈ {1, . . . , d} and k ∈ {1, . . . , (Zn)i}, gives birth
to Xi,j,k,n individuals of type-j , j ∈ {1, . . . , d}. The random vectors (Xi,j,k,n)j∈{1,...,d} with
i ∈ {1, . . . , d}, k ≥ 1 and n ∈ N are independent with distribution depending only on i. For
ease of notation, we write Xi,j for Xi,j,1,1.

We assume that, for all i, j ∈ {1, . . . , d}, P(Xi,j = 0) > 0. Let M = (E(Xi,j ))i,j be the
mean matrix. We assume that M is a nonnegative primitive matrix. Since the process is critical,
the largest eigenvalue of M is 1. Let u (respectively v) the right (respectively the left) eigenvector
corresponding to this eigenvalue. At each generation n, An ∈ N

d individuals immigrate. The
random variables An are independent and identically distributed, with P(A1 = (0, . . . , 0)) > 0,
E(A1) = a, and var(A1u) = τ 2. The random variables An are also independent of all variables
Xi,j,k,n. Therefore, we have E(Zn+1) = E(Zn)M + a.
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We assume that there exists δ > 0 such that, for (i, j) ∈ {1, . . . , d}2,

E(X2+δ
i,j ) < +∞ and E((A1u)2+δ) < +∞. (5)

Let 
i = (cov(Xi,j , Xi,j ′))j,j ′∈{1,...,d} be the matrix of the covariances of offspring distribu-
tions. Let

V (z) =
d∑

i=1

zi
i for z ∈ R
d .

We obtain the stochastic difference equation

Zn+1 = ZnM + a + ξn

with

ξn =
( d∑

i=1

(Zn)i∑
k=1

{Xi,j,k,n − E(Xi,j,k,n)} + Anej − E(Anej )

)
1≤j≤d

,

where the (ej )j∈{1,...,d} are the standard unit vectors and

E((ξnu)2 | Fn) = u�V (Zn)u + τ 2.

Proposition 1. The process (Zn) is

• recurrent if 2au < u�V (v)u,

• transient if 2au > u�V (v)u.

Remark 1. Kawazu [5] obtained the same criterion under weaker assumptions: he did not
require var(A1u) < +∞ and (5). He also proved that the process is null recurrent when
2au = u�V (v)u if E(X2

i,j log(Xi,j )) < +∞ and E(A1 log(A1)) < +∞.

Proof of Proposition 1. Firstly, note that

E((ξnu)2 | Fn) = u�V (Zn)u + τ 2 = (Znu)u�V (v)u + u�V (Zn(I − uv))u + τ 2,

then recurrence and transience depend on the sign of 2au − u�V (v)u.
Since (A1) is verified with α = 0, c1 = au, h1 = 0, d1 = u�V (v)u, h2(y) = u�V (y)u,

f1 = 0, and f2 = τ 2, and (A3), (A4), and (A5) are also verified, we just have to check (A2) to
apply Theorem 1.

Let l ∈ N
∗ and (Uk)k∈{1,...,l} be some random variables independent with zero mean and such

that E(|Uk|2+δ) < +∞ for all k ∈ {1, . . . , l}. We can apply both the Marcinkiewicz–Zygmund
[11, p. 108] and Hölder inequalities, i.e. there exists R > 0 such that

E

(∣∣∣∣
l∑

k=1

Uk

∣∣∣∣
2+δ)

≤ R E

(( l∑
k=1

U2
k

)1+(δ/2))
≤ Rlδ/2

E

( l∑
k=1

|Uk|2+δ

)
.

Since there are three sums in ‖ξn‖, we now apply three times the latter inequality to verify that
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(A2) holds, i.e.

E(‖ξn‖2+δ | Fn) ≤ 22+δ
E

(( d∑
j=1

( d∑
i=1

(Zn)i∑
k=1

{Xi,j,k,n − E(Xi,j,k,n)}
)2)1+(δ/2) ∣∣∣∣ Fn

)

+ 22+δ
E(‖An − a‖2+δ | Fn)

≤ 22+δdδ/2
E

(( d∑
j=1

∣∣∣∣
d∑

i=1

(Zn)i∑
k=1

{Xi,j,k,n − E(Xi,j,k,n)}
∣∣∣∣
2+δ) ∣∣∣∣ Fn

)

+ 22+δ
E(‖An − a‖2+δ | Fn)

≤ Rdδ
E

( d∑
j=1

d∑
i=1

∣∣∣∣
(Zn)i∑
k=1

{Xi,j,k,n − E(Xi,j,k,n)}
∣∣∣∣
2+δ ∣∣∣∣ Fn

)

+ 22+δ
E(‖An − a‖2+δ | Fn)

≤ R2dδ
E

( d∑
j=1

d∑
i=1

(Zn)
δ/2
i

(Zn)i∑
k=1

|Xi,j,k,n − E(Xi,j,k,n)|2+δ

∣∣∣∣ Fn

)

+ 22+δ
E(‖An − a‖2+δ | Fn).

We now apply (5) to obtain, for sufficiently large ‖Zn‖,

E(‖ξn‖2+δ | Fn) ≤ C

( d∑
i=1

(Zn)
(2+δ)/2
i

)
+ D ≤ C′σ 2+δ(Zn). �

3.2. State-dependent multitype Galton–Watson processes

State-dependent Galton–Watson processes were first introduced by Klebaner in [7] and
Höpfner in [2]. Höpfner compared the probability generating functions of these processes with
those of critical Galton–Watson processes with immigration to obtain a criterion of extinction.
However, this idea seems difficult to be transferred to the multitype case. Basically this is
because we have to alter the transitions of the Galton–Watson with immigration process for
an infinite number of states and, thus, we may change the nature of the process (recurrent or
transient). Klebaner [8], [9] defined multitype state-dependent Galton–Watson processes for
which he only gave sufficient conditions for extinction. In particular, he could not treat some
range of a parameter. In this subsection, we obtain a criterion to infer whether there is a.s.
extinction or survival with positive probability (except in a very special case).

Following [9], we define a discrete-time state-dependent multitype Galton–Watson process
with d types Zn by

Zn+1 =
( d∑

i=1

(Zn)i∑
k=1

Xi,j,k,n(Zn)

)
j∈{1,...,d}

,

where Xi,j,k,n(z) is the number of type-j offspring of the kth type-i parent when the process is
in the state z in time n. Given Zn = z, the kth parent of type-i has a random vector of offspring

(Xi,1,k,n(z), . . . , Xi,d,k,n(z)), k = 1, . . . , zi .

For each n ∈ N, the offspring vectors of distinct parents (k = 1, . . . , zi , i = 1, . . . , d)

are independent. Moreover, for a fixed parental type-i, the offspring vectors are identically
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distributed for all n and k, with distribution depending at most on the state z. For the sake of
notation clarity, we write Xi,j for Xi,j,1,1. Let

M(z) = (E(Xi,j (z)))i,j∈{1,...,d}

be the mean matrix.
We assume that

M(z) = M + C(z),

where M is a nonnegative primitive matrix with Perron root 1 and corresponding right and left
eigenvectors u and v, with vu = u�u = 1, and C(z) is a nonnegative matrix and we let

g(z) = zC(z).

We assume that
lim‖z‖→+∞ g(z) = D ∈ R

d+.

Let 
i(z) = (cov(Xi,j (z), Xi,j ′(z)))j,j ′∈{1,...,d} be the matrix of the covariances of offspring
distributions when the population size is in the state z. We assume that, for all i ∈ {1, . . . , d},

i(z) converges to 
i when ‖z‖ converges to ∞.

Let

Ṽ (z) =
d∑

i=1

zi
i(z)

be the conditional dispersion matrix of the next generation when the population is in the state z.
We also introduce the quantity

V (z) =
d∑

i=1

zi
i.

Then (Zn) satisfies the stochastic difference equation

Zn+1 = ZnM + g(Zn) + ξn,

with

ξn =
( d∑

i=1

(Zn)i∑
k=1

{Xi,j,k,n(Zn) − E(Xi,j,k,n(Zn))}
)

j∈{1,...,d}
.

One can easily check that E(ξnu | Fn) = 0 and

E((ξnu)2 | Fn) = u�Ṽ (Zn)u = (Znu)u�V (v)u + u�V (Zn(I − uv))u + f (Zn),

where the function f is such that f (x) = o(‖x‖) when ‖x‖ tends to ∞.
We assume that there exist δ > 0 and K > 0 such that, for all i, j ∈ {1, . . . , d} and z ∈ R

d+,

E(Xi,j (z)
2+δ) < K.

As in the previous example, the assumption (A2) is a consequence of the Marcinkiewicz–
Zygmund and Hölder inequalities.

We make the usual assumptions when one has in mind a population process: 0 is an absorbing
state and all states in N

d \ {0} communicate.
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Theorem 2. If
2Du

u�V (v)u
< 1

then the process becomes extinct a.s.
If

2Du

u�V (v)u
> 1

then the process survives with positive probability.

We cannot treat the 2Du/u�V (v)u = 1 case.
We now illustrate this result by the following example.

Example 1. We take the example of a two-type cell division process from [9]. We recall that
Xi,j,k,n(z) is the number of children of type-j for the kth parent of type-i at generation n when
the population is at state z. Again, we write Xi,j (z) for Xi,j,1,1(z).

We assume that Xi,j (z) take values 0 or 1 with probabilities pi,j (z) and that P(Xi,1(z) =
0, Xi,2(z) = 0) > 0, i ∈ {1, 2}. Let bi(z) = P(Xi,1(z) = 1, Xi,2(z) = 1), i ∈ {1, 2} and
ai,j (x), i, j ∈ {1, 2}, be arbitrary functions nonvanishing for x > 0, such that

M(z) =
(

p 1 − p

p′ 1 − p′
)

+

⎡
⎢⎢⎢⎣

c1a1,1(z1)

z1a1,1(z1) + z2a2,1(z2)

c2a1,2(z1)

z1a1,2(z1) + z2a2,2(z2)

c1a2,1(z2)

z1a1,1(z1) + z2a2,1(z2)

c2a2,2(z2)

z1a1,2(z1) + z2a2,2(z2)

⎤
⎥⎥⎥⎦ ,

where p, p′ ∈ (0, 1) and c1, c2 > 0. We assume that bi(z) ∼ bi when ‖z‖ tends to ∞.

With the previous notation, we have

• u = 1/
√

2

(
1
1

)
and v = √

2
(
p′/(1 − p + p′) (1 − p)/(1 − p + p′)

)
,

• Du = (c1 + c2)/
√

2,

• and

V (z) = z1

(
p(1 − p) b1 − p(1 − p)

b1 − p(1 − p) p(1 − p)

)

+ z2

(
p′(1 − p′) b2 − p′(1 − p′)

b2 − p′(1 − p′) p′(1 − p′)

)
.

Corollary 1. If

c1 + c2 <
p′

1 − p + p′ b1 + 1 − p

1 − p + p′ b2

then the process becomes extinct a.s.
If

c1 + c2 >
p′

1 − p + p′ b1 + 1 − p

1 − p + p′ b2

then the process survives with positive probability.

In [9], Klebaner proved almost sure extinction if c1 + c2 < min(b1, b2) and survival with
positive probability if c1 + c2 > max(b1, b2). Thus, we have improved his result since we
prove that the critical value for c1 + c2 is (p′/(1 − p + p′))b1 + ((1 − p)/(1 − p + p′))b2.
Except for the equality case, we obtain a complete picture of the fate of the process.
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4. Proof of Lemmas 1 and 2

In this section we prove Lemmas 1 and 2. The proof is based upon the following result. Let

Yn = Xn − (Xnu)v

be the population vector minus the contribution along the eigenvector v. For later convenience,
we set �n,k = Xn+ku − Xnu.

Lemma 3. Let us assume that (A1) and (A2) hold. There exist c′
2 ≥ 0 and d ′

2 > 0 such that,
for all integers n, k ≥ 1 and for all ε > 0,

|E(�n,k | Fn) − c1k(Xnu)α| ≤ c′
2‖Yn‖α + o((Xnu)α), (6)

|E(�2
n,k | Fn) − kd1(Xnu)1+α| ≤ d ′

2‖Yn‖1+α + o((Xnu)1+α), (7)

E(|�n,k|21{�n,k≥εXnu} | Fn) = O((Xnu)1+α+((α−1)/2)δ), (8)

with c′
2 = 0 if α ≤ 0.

The proof of this lemma is based upon two technical lemmas that we state and prove first.

Lemma 4. Let us assume that (A1) and (A2) hold. For all α ∈ (−1, 1) and n, i ∈ N,

E((Xn+iu)α | Fn) = (Xnu)α + o((Xnu)α),

and
E((Xn+iu)1+α | Fn) = (Xnu)1+α + o((Xnu)1+α).

Proof. We first prove that

E((Xn+iu)γ | Fn) = (Xnu)γ + o((Xnu)γ )

for all γ ∈ [0, 2[ whatever the value of α.
The result is obvious if γ = 0. We first deal with the case where 0 < γ ≤ 1. Then for all

positive real r , (1 + r)γ ≤ 1 + γ r , we obtain the upper bound
E((Xn+1u)γ | Fn) ≤ E(Xn+1u | Fn)

γ

≤ (Xnu + g(Xn)u)γ

≤ (Xnu)γ + γg(Xn)u(Xnu)γ−1.

By using the inequality (1 + r)γ ≥ 1 − |r|γ , that holds for all r ≥ −1, we obtain the lower
bound

E((Xn+1u)γ | Fn) ≥ E((Xnu)γ − |g(Xn)u + ξnu|γ | Fn)

≥ (Xnu)γ − 2γ (g(Xn)u)γ − 2γ
E(|ξnu|γ | Fn).

Since g(Xn)u = O((Xnu)α) and using

E(|ξnu|γ | Fn) ≤ E(|ξnu|2 | Fn)
γ /2 = O((Xnu)(1+α)γ /2),

we obtain
E((Xn+1u)γ | Fn) = (Xnu)γ + o((Xnu)γ ).
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We now deal with the case where γ > 1. Since, for all real r ≥ −1,

(1 + r)γ ≤ 1 + 2γ−1|r|γ + 2γ |r|,
we obtain

E((Xn+1u)γ | Fn)

≤ (Xnu)γ + 2γ−1
E(|g(Xn)u + ξnu|γ | Fn) + 2γ (Xnu)γ−1

E(|g(Xn)u + ξnu| | Fn)

≤ (Xnu)γ + O((Xnu)(1+α)γ /2) + O((Xnu)γ+(α−1)/2).

The lower bound is an easy consequence of Jensen’s inequality, i.e.

E((Xn+1u)γ | Fn) ≥ E(Xn+1u | Fn)
γ ≥ (Xnu)γ .

We have proved that

E((Xn+1u)γ | Fn) = (Xnu)γ + o((Xnu)γ ) for γ ∈ [0, 2). (9)

We will prove that
E(f (Xn+1u) | Fn) = o((Xnu)γ ), (10)

if f is a real-valued function such that f (r) = o(rγ ) when r tends to ∞. We recall that
f (r) = o(rγ ) if and only if, for all ε > 0, there exists Cε > 0 such that |f (r)| ≤ εrγ + Cε

since γ > 0.
Let f be a real-valued function such that f (r) = o(rγ ), ε > 0 and Cε > 0 such that

|f (r)| ≤ εrγ + Cε. By (9), we have

E(|f (Xn+1u)| | Fn) ≤ E(ε(Xn+1u)γ + Cε | Fn)

≤ ε(Xnu)γ + Cε + εo((Xnu)γ )

≤ 2ε(Xnu)γ + Cε + C1.

Thus, we obtain (10). Since we have (9) and (10), the result follows by induction.
We end the proof with the −1 < α < 0 case. The lower bound is again a consequence of

Jensen’s inequality, i.e.

E((Xn+1u)α | Fn) ≥ (Xnu + g(Xn)u)α ≥ (Xnu)α + αg(Xn)u(Xnu)α−1.

For the upper bound, we first majorize the probability that Xn+1u is smaller than Xnu/2 by
Markov’s inequality, i.e.

P

(
Xn+1u ≤ Xnu

2

∣∣∣∣ Fn

)
= P

(
ξnu ≤ −Xnu

2
− g(Xn)u

∣∣∣∣ Fn

)

≤ P

(
ξnu ≤ −Xnu

2

∣∣∣∣ Fn

)

≤ P

(
(ξnu)2 ≥ (Xnu)2

4

∣∣∣∣ Fn

)

≤ 4E((ξnu)2 | Fn)

(Xnu)2

≤ K(Xnu)α−1.
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Therefore, since, for all r > − 1
2 , (1 + r)α ≤ 1 + 4−α|r|, we obtain

E((Xn+1u)α | Fn) = E((1{Xn+1u≤Xnu/2} + 1{Xn+1u>Xnu/2})(Xn+1u)α | Fn)

≤ P

(
Xn+1u ≤ Xnu

2

∣∣∣∣ Fn

)

+ E

(
(Xnu)α

(
1 + 4−α |g(Xn)u + ξnu|

Xnu

) ∣∣∣∣ Fn

)
≤ (Xnu)α + O((Xnu)α−1) + O((Xnu)(3α−1)/2).

We conclude in the same way as above by using the fact that f (r) = o(rα) if and only if, for
all ε > 0, there exists Cε > 0 such that |f (r)| ≤ εrα + Cεr

(−1+α)/2. �
Lemma 5. Let us assume that (A1) and (A2) hold. For all γ ∈ [0, 2], there exists C ≥ 0 such
that, for all k, n ∈ N,

k−1∑
i=0

E(‖Yn+i‖γ | Fn) ≤ C‖Yn‖γ + o((Xnu)γ ).

Proof. We first write a recurrence relation for Yn by (1), i.e.

Yn+1 = YnM + g(Xn)(I − uv) + ξn(I − uv)

= Yn(M − uv) + g(Xn)(I − uv) + ξn(I − uv)

since Ynu = 0. Hence,

Yn+i = Yn(M − uv)i +
i−1∑
j=0

(g(Xn+j ) + ξn+j )(I − uv)(M − uv)i−1−j .

The Perron–Frobenius theorem states that the spectral radius λ of M − uv is less than 1. Let
λ1 ∈ (λ, 1). We recall that by Gelfand’s formula (see [3, p. 349]), we have

λ = lim
m→∞‖(M − uv)m‖1/m

for any matrix norm. Consequently, there exists a constant C which does not depend on i such
that we obtain

‖Yn+i‖ ≤ C

(
λi

1‖Yn‖ +
i−1∑
j=0

(‖g(Xn+j )‖ + ‖ξn+j‖)
)

.

Hence, by (14) below, we obtain

‖Yn+i‖γ ≤ C2γ λ
γ i
1 ‖Yn‖γ + C2γ

i−1∑
j=0

iγ (‖g(Xn+j )‖γ + ‖ξn+j‖γ ).

Since

E(‖g(Xn+j )‖γ | Fn) = O((Xnu)αγ ) and E(‖ξn+j‖γ | Fn) = O((Xnu)(1+α)γ /2),

by (A2), we obtain by summation

k−1∑
i=0

E(‖Yn+i‖γ | Fn) ≤ C2γ 1

1 − λ
γ
1

‖Yn‖γ + o((Xnu)γ ). �
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Proof of Lemma 3. We first prove (6). The proof is an easy consequence of Lemma 4,
Lemma 5, and (A1), i.e.

E(�n,k | Fn) ≤ E

(k−1∑
i=0

g(Xn+i )u

∣∣∣∣ Fn

)

≤ E

(k−1∑
i=0

c1(Xn+iu)α + c2‖Yn+i‖α + f1(Xn+i )

∣∣∣∣ Fn

)

≤ kc1(Xnu)α + C′‖Yn‖α + o((Xnu)α).

The same proof with −c2 instead of c2 gives the lower bound.
We now prove (7). As for (6), the main point is to show that d ′

2 does not depend on k.
By means of Lemma 4, Lemma 5, and (A1), we obtain

E(|�n,k|2 | Fn) ≤ E

((k−1∑
i=0

{g(Xn+i )u + ξn+iu}
)2 ∣∣∣∣ Fn

)

≤ E

(k−1∑
i=0

(ξn+iu)2 +
(k−1∑

i=0

g(Xn+i )u

)2 ∣∣∣∣ Fn

)

+ 2E

((k−1∑
i=0

ξn+iu

)(k−1∑
i=0

g(Xn+i )u

) ∣∣∣∣ Fn

)

≤ kd1(Xnu)1+α + d2‖Yn‖1+α + o((Xnu)1+α)

+ O((Xnu)2α) + O((Xnu)α(1+α)/2),

and the proof for the lower bound is similar. We conclude with the proof of (8).
By Markov’s inequality, we have

E(|�n,k|21{�n,k≥εXnu} | Fn) ≤ E(|�n,k|21{(�n,k)
δ≥(εXnu)δ} | Fn)

≤ E

( |�n,k|2+δ

(εXnu)δ

∣∣∣∣ Fn

)

≤ (2k)2+δ

(εXnu)δ
E

(k−1∑
i=0

|g(Xn+i )u|2+δ + |ξn+iu|2+δ

∣∣∣∣ Fn

)
.

Since E(|g(Xn+i )u|2+δ | Fn) = O((Xnu)2α+αδ) by Lemma 4 and E(|ξn+iu|2+δ | Fn) =
O((Xnu)1+α+((1+α)/2)δ) by (A2), we obtain

E(|�n,k|21{�n,k≥εXnu} | Fn) ≤ (2k)2+δ

(εXnu)δ

(
e1(k)(Xnu)2α+αδ + e2(k)(Xnu)1+α+((1+α)/2)δ

)
≤ e′

1(k, ε)(Xnu)1+α+((α−1)/2)δ,

which is the desired inequality. �

We now prove Lemmas 1 and 2.
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Proof of Lemma 1. We first recall an inequality proved in [6]. If ε > 0, x > 0, and h > −x,
then

log(x + h) ≤ log x + h

x
− h21{h≤εx}

2(1 + ε)x2 . (11)

Let k ∈ N and ε > 0, both to be fixed later on. We apply (11) with x = Xnu and h = �n,k to
obtain

E(log(Xn+ku) | Fn)

≤ log(Xnu) + E(�n,k | Fn)

Xnu
− E(|�n,k|2 | Fn)

2(1 + ε)(Xnu)2 + E(|�n,k|21{�n,k>εXnu} | Fn)

2(1 + ε)(Xnu)2 .

Using (6)–(8) from Lemma 3, we obtain

E(log(Xn+ku) | Fn)

≤ log(Xnu) + c1k(Xnu)α + c′
2‖Yn‖α + o((Xnu)α)

Xnu

− kd1(Xnu)1+α − d ′
2‖Yn‖1+α + o((Xnu)1+α)

2(1 + ε)(Xnu)2 + O((Xnu)1+α+((α−1)/2)δ)

2(1 + ε)(Xnu)2 .

By the Perron–Frobenius theorem [12], all coordinates of u are positive. Therefore, by definition
of Yn, there exists b > 0 such that, for every n,

‖Yn‖ ≤ bXnu. (12)

We obtain

E(log(Xn+ku) | Fn)

≤ log(Xnu) + c1k(Xnu)α + c′
2b

α(Xnu)α + o((Xnu)α)

Xnu

− kd1(Xnu)1+α − d ′
2b

1+α(Xnu)1+α + o((Xnu)1+α)

2(1 + ε)(Xnu)2 + O((Xnu)1+α+((α−1)/2)δ)

2(1 + ε)(Xnu)2 .

We first choose ε > 0 such that c1 < d1/2(1 + ε). We now choose k such that

k

(
c1 − d1

2(1 + ε)

)
+ c′

2b
α + d ′

2b
1+α

2(1 + ε)
< 0.

Thus, there exists s > 0 such that

E(log(Xn+ku) | Fn) ≤ log(Xnu) if Xnu > s. �

Proof of Lemma 2. We recall another inequality proved in [6]. For x ≥ 3, let

L(x) = (log x)−1.

There exists C2 > 0 such that, for any x ≥ 3, h > 3 − x and 0 < δ ≤ 1, then

L(x + h) ≤ L(x) + L′(x)h + L′′(x)h2

2
+ C2

|h|2+δ

(log x)2x2+δ
+ 1{h≤−x/2}. (13)
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As in the first case, we prove that E(L(Xn+ku) | Fn) ≤ L(Xnu) for some fixed k and large
enough Xnu.

We apply (13) with x = Xnu, h = �n,k , and k an integer to be fixed later on to obtain

E(L(Xn+ku) | Fn)

≤ L(Xnu) − E(�n,k | Fn)

(Xnu)(log(Xnu))2 + E(|�n,k|2 | Fn)

2(Xnu)2(log(Xnu))2 + 2E(|�n,k|2 | Fn)

2(Xnu)2(log(Xnu))3

+ C2
E(|�n,k|2+δ | Fn)

(log(Xnu))2(Xnu)2+δ
+ E(1{�n,k≤−Xnu/2} | Fn).

We start with the estimate

E(1{�n,k≤−Xnu/2} | Fn) ≤ E(1{22+δ |�n,k |2+δ/(Xnu)2+δ≥1} | Fn) ≤ E

(
22+δ |�n,k|2+δ

(Xnu)2+δ

∣∣∣∣ Fn

)
,

that follows easily from Markov’s inequality. We now use the basic inequality

(a + b)2+δ ≤ 22+δ(a2+δ + b2+δ), a, b > 0, (14)

and the facts (resulting from (A1) and (A2)) that there exist some positive real numbers A and B

such that
E(|g(Xn+i )u|2+δ | Fn) ≤ A(Xnu)α(2+δ),

and
E(|ξn+iu|2+δ | Fn) ≤ B(Xnu)((α+1)/2)(2+δ),

in order to obtain the upper bound

E(|�n,k|2+δ | Fn) ≤ (2k)2+δ
E

(k−1∑
i=0

|g(Xn+i )u|2+δ + |ξn+iu|2+δ

∣∣∣∣ Fn

)

≤ C3(k)(Xnu)((α+1)/2)(2+δ).

Therefore, there exists C4(k) such that

E(1{�n,k≤−Xnu/2} | Fn) ≤ C4(k)(Xnu)((α−1)/2)(2+δ).

We use the inequalities (6)–(8) from Lemma 3 and (12) to obtain

E(L(Xn+ku) | Fn) ≤ L(Xnu) − (c1k(Xnu)α − c′
2‖Yn‖α + o((Xnu)α))

(Xnu)(log(Xnu))2

+ (kd1(Xnu)1+α + d ′
2‖Yn‖1+α + o((Xnu)1+α))

2(Xnu)2(log(Xnu))2

+ 2(kd1(Xnu)1+α + d ′
2‖Yn‖1+α + o((Xnu)1+α))

2(Xnu)2(log(Xnu))3

+ C2
O((Xnu)1+α+((α−1)/2)δ)

(log(Xnu))2(Xnu)2+δ
+ C4(k)(Xnu)(α−1)(2+δ)/2

≤ L(Xnu) + k(d1/2 − c1) + b′
2

(Xnu)1−α(log(Xnu))2 + o

(
1

(Xnu)1−α(log Xnu)2

)
.
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Since d1/2 < c1, we first choose k such that

k

(
d1

2
− c1

)
+ b′

2 < 0,

with b′
2 = b1+αd ′

2/2 + bαc′
2. Then, there exists s > 0 such that

E(L(Xn+ku) | Fn) ≤ L(Xnu) if Xnu > s. �
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