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The steady-state second-harmonic resonance between the fundamental and the
second-harmonic modes for waves in a circular basin is investigated by solving the
water-wave equations as a nonlinear boundary-value problem. The resulting waves are
called (1,2)-waves. The geometry of the basin allows for both travelling waves (TW) and
standing waves (SW). A solution procedure based on a homotopy analysis method (HAM)
approach is used. In the HAM framework, the mathematical obstacle due to the singularity
corresponding to the resonant-wave component can be overcome by adding the resonant
term in the initial guess of the velocity potential. Approximate homotopy-series solutions
can be obtained for both (1,2)-TW and (1,2)-SW. Two branches of (1,2)-TW and two
branches of (1,2)-SW are found. They bifurcate from the trivial solution. For (1,2)-TW,
the HAM-based approach is combined with a Galerkin numerical-method-based approach
to follow the branches of nonlinear solutions further. The approximate homotopy-series
solutions are used as initial guesses for the Galerkin method. As the nonlinearity increases,
an increasing number of wave components are involved in the solution.
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1. Introduction

Resonance is an important phenomenon in the nonlinear interaction of water waves.
For gravity waves, the most basic resonance is that of resonant quartets described by
Phillips (1960), which involves the interaction of third-order nonlinear terms. Higher-order
resonant waves also exist (Hammack & Henderson 1993; Annenkov & Shrira 2006;
Liu & Liao 2014). Resonant triads can occur in capillary-gravity waves (Wilton 1915;
McGoldrick 1965; Vanden-Broeck 1984; Jones & Toland 1985; Bridges 1990; Dias &
Bridges 1990; Chabane & Choi 2019), in interfacial waves (Christodoulides & Dias 2019;
Chossat & Dias 1995), or in acoustic-gravity waves (Kadri & Stiassnie 2013; Kadri &
Akylas 2016). In addition, the second-harmonic resonance associated with a resonant triad
can occur in a circular basin (Mack 1962; Miles 1984). Such resonances can occur in
harbours or bays (Bryant 1989; Chossat & Dias 1995), so they have real-world applications.

From the mathematical point of view, much progress was made in the understanding
of resonance between two modes by Bridges (1990). He based his study of all space-
and time-periodic (m, n)-waves on their symmetries and on the Hamiltonian structure of
the water-wave problem. That led him to consider all types of periodic waves, and not
travelling waves (TW) or standing waves (SW) in isolation. In the case where two modes
resonate, Bridges (1990) showed that in addition to well-known TW and SW other classes
of periodic waves, in particular three-mode mixed waves (MW), may exist. The last section
of his paper is devoted to the special case of (1,2)-waves. Later, Chossat & Dias (1995), by
exploiting in addition the symmetry of time reversibility, showed that the presence of the
O(2) symmetry brings non-trivial modifications to the classical 1 : 2 resonance.

Waves in a circular basin naturally inherit the O(2) symmetry. Therefore, when
considering (1,2)-waves in a circular basin, one expects to find TW, SW and possibly
MW. The present paper focuses on TW and SW. We solve the water-wave equations
as a nonlinear boundary-value problem. The geometry is a circular basin, with d the
ratio of depth to radius. Mack (1962), who studied finite-amplitude symmetric SW in
a circular basin, noted that at certain values of d a higher mode at a frequency equal
to an integral multiple of the basic frequency has the same order of magnitude as the
basic mode (see table 6). Miles (1976) constructed the Lagrangian and Hamiltonian for
nonlinear gravity waves in a cylindrical basin and considered resonantly coupled free
oscillations. Miles (1976) mentioned that the perturbation solution fails if resonance
occurs, but harmonic motions are still possible for special initial conditions, and in general
the two modes must be expected to have slowly varying amplitudes and phases. The
terminology ‘steady-state’ is often used to describe solutions with constant amplitudes,
as opposed to solutions with slowly varying amplitudes. In the present paper, we only
consider steady-state solutions. Miles (1984) gave the critical depths for resonance in a
circular basin when the fundamental wave component is the (1,1) mode (see definition in
§ 2.1). Bryant (1989) obtained multiple families of waves, when searching for steady waves
in the neighbourhood of resonances with d as a parameter. The resonance condition reads

m(k11tanh k11d)1/2 = (kmntanh kmnd)1/2, (1.1)

where kmn is defined in § 2.1. The solutions of (1.1) up to m = 4 are listed in table 1, which
shows the different sets of resonant wave components associated with each of the ratios of
depth to radius. The second-harmonic resonance studied in the present paper is obtained
when m = n = 2.

The stability of (1,2)-waves has been studied by various authors. Bryant (1989)
pointed out that steady waves with significant resonant wave components are linearly
unstable. Chossat & Dias (1995) considered the slow-time evolution of the amplitudes
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Steady-state resonant waves in a circular basin

m n d

2 2 0.831377
3 2 0.278971
3 3 0.455047
3 4 0.747753
4 2 0.158247
4 3 0.249080
4 4 0.329579
4 5 0.422613
4 6 0.541608
4 7 0.721051
4 8 1.204065

Table 1. Ratios of depth to radius d satisfying the linear resonance relation.

of weakly nonlinear (1,2)-waves. The following statement can be found in Chossat
& Dias (1995): ‘The analysis shows that the presence of the O(2) symmetry brings
non-trivial modifications to the classical 1 : 2 resonance. For example, the persistence
of the well-known one-parameter family of homoclinic orbits to “pure-mode” TW is no
longer obvious’. The bifurcation analysis performed in the paper of Chossat & Dias (1995)
is generic and therefore applies to the steady-state (1,2)-waves we compute in the present
paper. However, none of the above studies focuses on the computation of finite-amplitude
steady-state waves at exact resonance in a circular basin.

In steady-state (1,2)-waves, the amplitudes of the fundamental wave component and
the second harmonic component are of the same order. In the literature, a number of
different terminologies are used to describe similar waves: ‘2-mode mixed TW’ in Chossat
& Dias (1995), ‘mixed type’ in Jones & Toland (1985), Wilton ripples in Wilton (1915),
McGoldrick (1965), Christodoulides & Dias (1994) and Chabane & Choi (2019).

In recent years, using the homotopy analysis method (HAM) (Liao 1992, 2003, 2010,
2011a; Van Gorder & Vajravelu 2008; Vajravelu & Van Gorder 2012; Zhong & Liao 2017,
2018a,b), Liao (2011b) found multiple steady-state resonant gravity waves in deep water as
solutions to the water-wave equations. The success in obtaining steady-state resonant wave
solutions is attributed to the following advantages of HAM in solving nonlinear problems.
First, the HAM provides great freedom to choose the initial guess. When resonance
occurs, only the resonant term needs to be added in the initial guess, and the secular
term thus generated can be successfully avoided. Additionally, a reasonable selection
of the auxiliary linear operator can eliminate singularities with zero denominators in
homotopy-series solutions. Furthermore, as opposed to other analytic approximation
methods, the HAM can guarantee the convergence of the solution series with the choice of
a proper value of the so-called convergence-control parameter c0. After Liao’s work, Xu
et al. (2012) successfully obtained convergent solutions of steady-state resonant gravity
waves, consisting of two progressive primary waves in finite water depth. In both Liao
(2011b) and Xu et al. (2012), only a single special resonant quartet was investigated. Liu
& Liao (2014) extended the work of Liao (2011b) from a single quartet to more complex
cases, including multiple and coupled resonant quartets and resonant sextets and found
that the multiple steady-state resonant waves exist in all considered cases. The existence
of the multiple steady-state resonant waves was confirmed by physical experiments in a
basin of the State Key Laboratory of Ocean Engineering in Shanghai (Liu et al. 2015).
By choosing a generalized auxiliary linear operator in the HAM framework, Liao, Xu
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& Stiassnie (2016) obtained as well steady-state nearly resonant waves in deep water
and mentioned that the steady-state nearly resonant waves have nothing fundamentally
different from the steady-state waves at exact resonance. Moreover, Yang, Dias & Liao
(2018) obtained steady-state resonant acoustic-gravity waves in an ocean of uniform depth
by means of HAM.

The steady-state resonant/near-resonant waves investigated above are all weakly
nonlinear. For finite-amplitude steady-state resonant waves, Liu, Xu & Liao (2018)
extended the results of Liao et al. (2016) from weakly nonlinear steady-state
nearly resonant waves to finite-amplitude wave groups with multiple near-resonances.
Liu & Xie (2019) combined the HAM-based analytical approach with a Galerkin
numerical-method-based approach to obtain finite-amplitude steady-state wave groups
with multiple near-resonances in finite water depth. In some cases, the numerical method
can make up for the deficiencies of the analytical method, so that a fast convergent
solution can be reached, as mentioned by Liu & Xie (2019). The Galerkin method was
applied to SW of large amplitude and almost-limiting short-crested gravity waves in
deep water by Okamura (Okamura 2003, 2010). For the nonlinear interactions between
waves in a circular basin, similar numerical methods were used by Bryant (1989),
which were previously applied on oblique wave groups and doubly periodic progressive
permanent waves in deep water (Bryant 1984, 1985). In the present paper, we provide
expressions for the steady-state second-harmonic resonant waves ((1,2)-waves) in a
circular basin in which the water surface displacement η and the velocity potential
ϕ are both represented by truncated Fourier–Bessel series. The presence of Bessel
functions makes it difficult to use solely an analytical method. Therefore, following the
work of Liu & Xie (2019), we combine the HAM-based analytical approach with a
Galerkin numerical-method-based approach. In the HAM framework, the singularity can
be avoided by only adding the resonant term in the initial guess. Then, an approximate
homotopy-series solution of the HAM is used as the initial guess for the Galerkin
method.

The objective of this paper is to investigate steady-state (1,2)-waves in a circular basin.
The layout of the paper is as follows. The governing equations and resonance criterion
are described in § 2.1. In § 2.2, we transform the original problem into a boundary-value
one by using a new variable and give the solution expressions. The analytic and numerical
solution procedures to obtain (1,2)-TW are explained in §§ 2.3 and 2.4, respectively. The
solutions for the steady-state (1,2)-TW in a circular basin are described in § 3 and some
(1,2)-wave profiles are provided with various levels of nonlinearity. The solutions for the
steady-state (1,2)-SW and the procedure to obtain them are described in § 4. Conclusions
and a discussion of our results are presented in § 5.

2. Mathematical framework

2.1. Governing equations
The classical assumptions used to derive the water-wave equations are applied. We assume
that the fluid inside the circular basin is inviscid and incompressible, the flow is irrotational
and surface tension is neglected. Cylindrical polar coordinates (r, θ, z) are used. The origin
(0, 0, 0) is at the centre of the mean horizontal free water surface, where (r, θ ) lie along
the mean water level and the z-axis is vertically upwards. The radius of the circular basin
is R, which is chosen as the unit length. Here d denotes the ratio of depth to radius. The
unit time is (R/g)1/2, where g is the acceleration due to gravity. The governing equation is
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Laplace’s equation in cylindrical coordinates,

∂2ϕ

∂r2 + 1
r
∂ϕ

∂r
+ 1

r2
∂2ϕ

∂θ2 + ∂2ϕ

∂z2 = 0, r ≤ 1, −d ≤ z ≤ η(r, θ, t), (2.1)

subject to the following boundary conditions:

∂ϕ

∂r
= 0, on r = 1, (2.2)

∂ϕ

∂z
= 0, on z = −d, (2.3)

∂η

∂t
− ∂ϕ

∂z
+ ∂ϕ

∂r
∂η

∂r
+ 1

r2
∂ϕ

∂θ

∂η

∂θ
= 0, on z = η(r, θ, t), (2.4)

∂ϕ

∂t
+ 1

2

[(
∂ϕ

∂r

)2

+ 1
r2

(
∂ϕ

∂θ

)2

+
(
∂ϕ

∂z

)2
]

+ η = 0, on z = η(r, θ, t), (2.5)

where ϕ(r, θ, z, t) is the velocity potential and η(r, θ, t) the free-surface elevation.
Combining the boundary conditions (2.4) and (2.5) and eliminating η gives a boundary
condition only containing the velocity potential ϕ:

∂2ϕ

∂t2
+ ∂ϕ

∂z
+ ∂ f̄
∂t

+ ∂ϕ

∂r
∂2ϕ

∂t∂r
+ 1

r2
∂ϕ

∂θ

∂2ϕ

∂t∂θ
+ ∂ϕ

∂r
∂ f̄
∂r

+ 1
r2
∂ϕ

∂θ

∂ f̄
∂θ

= 0, on z = η(r, θ, t),

(2.6)
where

f̄ = 1
2

[(
∂ϕ

∂r

)2

+ 1
r2

(
∂ϕ

∂θ

)2

+
(
∂ϕ

∂z

)2
]
. (2.7)

In this section, we only consider waves rotating with angular velocity ω in the positive
θ -direction. Standing waves will be considered in § 4. The linear solutions of the system
(2.1)–(2.5) read

η̄(r, θ, t) = Jm(kmnr) [a cos m(θ − ωt)+ α sin m(θ − ωt)] , (2.8)

ϕ̄(r, θ, z, t) = Jm(kmnr)
cosh kmn(z + d)

cosh kmnd
[b sin m(θ − ωt)+ β cos m(θ − ωt)] , (2.9)

where Jm(r) denotes the Bessel function of order m and kmn denotes the nth zero of J′
m:

J′
m(kmn) = 0 (m = 0, 1, 2, . . . , n = 1, 2, . . .). (2.10)

Note that a = mωb and α = −mωβ since η̄ = −∂ϕ̄/∂t. For steady-state symmetric waves,
a, b are constants and α, β are equal to zero as mentioned by Bryant (1989). Here we study
such symmetric steady-state waves. The linear solution satisfies the dispersion relation

m2ω2 = kmn tanh kmnd. (2.11)

For nonlinear waves dominated by the fundamental wave component (1,1) (i.e. m = n =
1), the linear frequency is

ω2 = k11 tanh k11d. (2.12)

Due to nonlinear interactions, higher-order harmonic wave components can be generated.
Under certain conditions, the harmonic wave component (m, n) will resonate with the
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fundamental wave component (1, 1). Resonance occurs at depths such that there exists a
kmn satisfying

m(k11tanh k11d)1/2 = (kmntanh kmnd)1/2. (2.13)

There exist different sets of resonant wave components associated with each one of the
ratios of depth to radius, as shown in table 1. The case m = n = 2 corresponds to the
second-harmonic resonance studied in the present paper.

2.2. Expressions for the travelling-wave solutions
Consider a steady-state resonant wave system in a circular basin dominated by the
fundamental wave component (1,1), with σ denoting the actual wave frequency. Due to
the nonlinearity, the actual wave frequency σ is slightly different from the linear frequency
ω = √

k11tanh k11d, and also depends on the wave amplitude. Write

ε = σ

ω
, (2.14)

where the value of ε is slightly different from 1. Then, we define the variable

ξ = θ − σ t. (2.15)

For steady-state waves, the actual wave frequency σ is independent of time. Using the new
variable ξ , the original initial/boundary-value problem governed by (2.1)–(2.3), (2.5) and
(2.6) can be transformed into a boundary-value problem. In the new coordinate system (r,
ξ , z), the governing (2.1) becomes

∂2ϕ

∂r2 + 1
r
∂ϕ

∂r
+ 1

r2
∂2ϕ

∂ξ2 + ∂2ϕ

∂z2 = 0, r ≤ 1, −d ≤ z ≤ η(r, ξ), (2.16)

subject to the boundary conditions

∂ϕ

∂r
= 0, on r = 1, (2.17)

∂ϕ

∂z
= 0, on z = −d, (2.18)

and the following two boundary conditions on the unknown free surface z = η(r, ξ):

N1[ϕ] = σ 2 ∂
2ϕ

∂ξ2 + ∂ϕ

∂z
− σ

∂f
∂ξ

− σ
∂ϕ

∂r
∂2ϕ

∂ξ∂r

− σ

r2
∂ϕ

∂ξ

∂2ϕ

∂ξ2 + ∂ϕ

∂r
∂f
∂r

+ 1
r2
∂ϕ

∂ξ

∂f
∂ξ

= 0, on z = η(r, ξ), (2.19)

N2[ϕ, η] = η − σ
∂ϕ

∂ξ
+ f = 0, on z = η(r, ξ), (2.20)

where

f = 1
2

[(
∂ϕ

∂r

)2

+ 1
r2

(
∂ϕ

∂ξ

)2

+
(
∂ϕ

∂z

)2
]
, (2.21)

and N1, N2 are the two nonlinear operators defined above.
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Steady-state resonant waves in a circular basin

For steady-state waves, there is no exchange of energy between different wave
components, i.e. all physical quantities related to the waves are constant. Hence, according
to the linear governing equation (2.16) and the linear boundary conditions (2.17) and (2.18),
the symmetric steady-state wave elevation η(r, ξ) and the velocity potential ϕ(r, ξ, z) can
be described by combinations of the linear solutions (2.8) and (2.9):

η =
∞∑

m=0

∞∑
n=1

amnJm(kmnr) cos mξ, (2.22)

ϕ =
∞∑

m=1

∞∑
n=1

bmnΨmn, (2.23)

with

Ψmn(r, ξ, z) = Jm(kmnr)
cosh kmn(z + d)

cosh kmnd
sin mξ, (2.24)

where amn and bmn are constants to be determined later. Note that the velocity potential
(2.23) satisfies the linear governing equation (2.16) and the boundary conditions (2.17) and
(2.18) identically. Therefore, the unknown coefficients amn and bmn are determined by the
two nonlinear boundary conditions on the free surface (2.19) and (2.20).

2.3. Analytic solution procedure
Steady-state gravity wave systems near and at exact resonance were investigated by Liao
(2011b), Xu et al. (2012), Liu & Liao (2014), Liao et al. (2016), Liu et al. (2018), and Liu
& Xie (2019) using the HAM. Recently, Yang et al. (2018) obtained steady-state resonant
acoustic-gravity waves in finite uniform depth using the HAM. Detailed mathematical
derivations can be found in the above-mentioned articles. For the sake of simplicity, we just
give the basic formulae here. In the HAM framework, for the unknown velocity potential
ϕ and free-surface elevation η, we have the so-called homotopy-series solution:

ϕ(r, ξ, z) =
∞∑

m=0

ϕm(r, ξ, z), (2.25)

η(r, ξ) =
∞∑

m=0

ηm(r, ξ). (2.26)

The unknown term ϕm(r, ξ, z) is governed by the high-order deformation equation (on
z = 0):

L[ϕm] = c0Δ
ϕ
m−1 + χmSm−1 − S̄m, (2.27)

and ηm(r, ξ) is easily obtained from the other high-order deformation equation (on z = 0):

ηm = c0Δ
η
m−1 + χmηm−1, (2.28)

where χ1 = 0 and χm = 1 for m > 1, ϕ0 is the initial guess of the velocity potential
ϕ, L denotes the auxiliary linear operator that can be almost freely chosen, and c0
is the so-called convergence-control parameter (which has no physical meaning). It
is noteworthy that all the terms Δϕm−1, Sm−1, S̄m, Δηm−1 on the right-hand side of
(2.27) and (2.28) are determined by the known previous approximations ηj and ϕj( j =
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0, 1, 2, . . . ,m − 1), and can thus be regarded as known terms. The detailed expressions
for Δϕm−1, Sm−1, S̄m, and Δηm−1 are given in Appendix A.

In the HAM framework, we have great freedom to choose the auxiliary linear operator
L. Based on the linear part of (2.19), we define the auxiliary linear operator as

L[ϕ] = ω2 ∂
2ϕ

∂ξ2 + ∂ϕ

∂z
, (2.29)

with the property

L[Ψmn(r, ξ, z)] = λmnΨmn(r, ξ, z), (2.30)

L−1[Ψmn(r, ξ, z)] = Ψmn(r, ξ, z)
λmn

, (2.31)

where

λmn = kmntanh kmnd − m2ω2 (2.32)

is an eigenvalue of the auxiliary operator (2.30). Obviously, λmn = 0 corresponds to
the wave resonance and leads to the singularity. When considering the second-harmonic
resonance, with the definition of λmn, we always have two zero eigenvalues:

λ11 = λ22 = 0. (2.33)

The fundamental wave component Ψ11 together with the second-harmonic resonant wave
component Ψ22 are considered as homogeneous solutions to the auxiliary linear operator
(2.30). The solution of the mth-order approximation ϕm(r, ξ, z) is

ϕm = ϕ∗
m(r, ξ, z)+ B11,mΨ11 + B22,mΨ22, (2.34)

where

ϕ∗
m = L−1 [

c0Δ
ϕ
m−1 + χmSm−1 − S̄m

]
(2.35)

is the particular solution of ϕm, and the unknown constants B11,m and B22,m are determined
by avoiding the secular terms J1(k11r) sin ξ and J2(k22r) sin 2ξ appearing on the right-hand
side of the (m + 1)th-order deformation equation (2.27) for ϕm+1(r, ξ, z) (m = 1, 2, . . .).
To be more specific, we force the coefficients of J1(k11r) sin ξ and J2(k22r) sin 2ξ to
be zero, thus obtaining two equations for the two unknown constants B11,m and B22,m,
from which the values of B11,m and B22,m can be determined. It should be emphasized
that, when we substitute ϕm−1, ϕm−2, . . . , ϕ0, and ηm−1, ηm−2, . . . , η0 into the mth-order
deformation equation (2.27), the right-hand side of (2.27) is not in the form of the solution
expression (2.23). Fortunately, it can be transformed into the solution expression (2.23)
form by the orthogonality properties of Bessel functions. Then, we have

L[ϕm] = c0Δ
ϕ
m−1 + χmSm−1 − S̄m =

N′∑
p=1

N′∑
q=1

GpqJp(kpqr) sin pξ, (2.36)

where Gpq depends upon the unknowns B11,m−1 and B22,m−1. The value of N′ should be
infinite theoretically, but is truncated in practice. With the property of the auxiliary linear
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operator (2.31), the particular solution ϕ∗
m is written

ϕ∗
m = L−1

⎡
⎣ N′∑

p=1

N′∑
q=1

GpqJp(kpqr) sin pξ

⎤
⎦ =

N′∑
p=1

N′∑
q=1

Gpq

λpq
Ψpq. (2.37)

When m = 0, we get the initial guess of the velocity potential ϕ:

ϕ0 = B11,0Ψ11 + B22,0Ψ22. (2.38)

Substituting ϕm, ϕm−1, . . . , ϕ0, and ηm−1, ηm−2, . . . , η0 into the mth-order deformation
equation (2.28) and utilizing the orthogonality properties of the Bessel functions, we can
directly get ηm in the form of the solution expression (2.22). For the sake of simplicity,
we select the initial solution of the free surface as η0 = 0, which is also used by most
traditional analytical methods.

2.4. Numerical solution procedure
In order to follow branches of solutions further by increasing the nonlinearity, we use
a combination of the HAM and a numerical method. Numerical methods were used by
Bryant (1989) when solving the nonlinear interactions between waves in a circular basin
and applied to SW of large amplitude and almost-limiting short-crested gravity waves in
deep water by Okamura (2003) and Okamura (2010), respectively. More recently, new
algorithms have been developed to compute time-periodic solutions of the free-surface
Euler equations with improved resolution, accuracy and robustness. Wilkening & Yu
(2012) used the shooting method. They achieved robustness by posing the problem as an
overdetermined nonlinear system and using either adjoint-based minimization techniques
or a quadratically convergent trust-region method to minimize the objective function. They
achieved efficiency by parallelizing the Jacobian computation. They delayed updates of
the Jacobian until the previous Jacobian ceases to be useful. For accuracy, they used
spectral collocation with optional mesh refinement in space and a high-order Runge–Kutta
method in time. The reason for using such high-performance algorithms was to resolve
a long-standing open question, posed by Penney & Price (1952), on whether the most
extreme SW develop wave crests with sharp 90◦ corners each time the fluid comes
to rest. Previous numerical studies reached different conclusions about the form of the
limiting wave, but none were able to resolve the fine-scale oscillations that develop due to
resonant effects. Qadeer & Wilkening (2019) developed a new algorithm to compute the
Dirichlet–Neumann operator in a cylindrical geometry with a variable upper boundary.
They used a transformed field expansion method that reduced the problem to a sequence
of Poisson equations on a flat geometry. The solver applied for these subproblems made
use of Zernike polynomials for the circular cross-section instead of the traditional Bessel
functions, thus allowing spectral accuracy and a significant computational speed-up.
Although the methods of Wilkening & Yu (2012) and Qadeer & Wilkening (2019) are
state-of-the-art, we chose a more classical method because our purpose is not the same.
Indeed, we are not interested in following branches of solutions all the way to their limiting
configurations. Our purpose is simply to slightly extend the analytical results obtained
with the HAM to finite-amplitude waves. Following the work of Liu & Xie (2019), we
apply a Galerkin numerical-method-based approach to accelerate the convergence speed
of the homotopy-series solutions and get convergent series solutions of the steady-state
second-harmonic resonant waves in a circular basin. The tenth-order solution of the HAM
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is used as the initial solution of the Galerkin method. In the numerical solution approach,
we express the wave elevation η and the velocity potential ϕ with truncated series as

η =
N∑

m=0

N∑
n=1

amnJm(kmnr) cos mξ, (2.39)

ϕ =
N∑

m=1

N∑
n=1

bmnΨmm. (2.40)

The total number of unknowns (amn and bmn) is N(2N + 1). As the nonlinearity of the
waves increases, the value of N is increased in order to reach convergence. Substituting
(2.39) and (2.40) into (2.19) and (2.20), we obtain the independent relations

Pi,j =
∫ 2π

0

∫ 1

0
N1[ϕ(r, ξ, z)]rJi(kijr) sin iξ dr dξ = 0, on z = η(r, ξ), (2.41)

Qi,j =
∫ 2π

0

∫ 1

0
N2[ϕ(r, ξ, z), η(r, ξ)]rJi(kijr) cos iξ dr dξ = 0, on z = η(r, ξ).

(2.42)

The number of functionals Pi,j, Qi,j is the same as the number of unknown coefficients
amn, bmn. For given values of ε and d, we substitute the initial solution into (2.19) and
(2.20) over a network of points in r and ξ . The initial discrete free-surface profile is

z = η(r, ξ) = η

(
10−7 + (i − 1)(1 − 10−7)

M
,

2π( j − 1)
M

)
, i, j = 1, 2, . . . ,M + 1.

(2.43)
Since r appears in the denominator of (2.19) and (2.20), we do not select discrete points
at r = 0 to avoid singularities. Note that when we choose the smallest value of r as 10−7

or 10−8, we get the same result. Here Pi,j and Qi,j and their derivatives with respect to
the unknown variables are obtained by using the trapezoidal rule. Newton’s iteration is
used to improve the approximate homotopy-series solution. Detailed expressions of the
Jacobian matrices, which are necessary for Newton’s method, are shown in Appendix B.
We stop the iteration if the maximum difference between the unknowns before and after
the iteration is smaller than 10−6.

We define the wave amplitude H as

H = max[η(r, ξ)] − min[η(r, ξ)]
2

. (2.44)

Table 2 shows the wave amplitude H and the absolute value of the coefficient a2,2 for
various values of N and M for d = 0.831377 when ε = 0.9989. For different truncation
numbers N ranging from 6 to 16, the values of H and |a2,2| remain unchanged for M ≥ 100.
Besides, the values of H and |a2,2| converge as N increases from 6 to 16. The truncation
number N and the number of discrete points M are selected to ensure that the unknowns
amn and bmn are correct within three significant digits. From a purely mathematical point of
view, using only three significant digits is relatively poor. But as stated above our purpose
is simply to extend the branches of solutions to finite amplitude and not to get their fine
details. Bessel functions are notoriously unwieldy and not suited for fast convergence
(see Qadeer & Wilkening 2019). The truncation number N of the wave elevation η and
velocity potential ϕ is given in table 3 for cases with different values of ε . As the
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Steady-state resonant waves in a circular basin

N\M 60 80 100

6 (0.05165, 0.05306) (0.05167, 0.05306) (0.05168, 0.05306)
9 (0.05145, 0.05285) (0.05147, 0.05286) (0.05148, 0.05286)
12 (0.05130, 0.05260) (0.05132, 0.05260) (0.05133, 0.05261)
14 (0.05150, 0.05273) (0.05150, 0.05274) (0.05150, 0.05274)
15 (0.05153, 0.05268) (0.05155, 0.05269) (0.05155, 0.05269)
16 (0.05153, 0.05266) (0.05155, 0.05266) (0.05155, 0.05267)

Table 2. The wave amplitude H and the absolute value of the coefficient a2,2 for various values of N and M
for d = 0.831377 and ε = 0.9989.

ε N (Total components) ε N (Total components)

1.00014 16(272) 0.9996 9(90)
1.00013 16(272) 0.9995 9(90)
1.00012 14(210) 0.9994 9(90)
1.00011 9(90) 0.9993 12(156)
1.00010 9(90) 0.9992 12(156)
1.00008 9(90) 0.9991 14(210)
1.00005 6(42) 0.9990 14(210)
1.00001 6(42) 0.9989 16(272)
0.9999 6(42) 0.9988 16(272)
0.9998 6(42) 0.9987 16(272)
0.9997 9(90) — —

Table 3. Truncation number N of the wave elevation η and velocity potential ϕ for d = 0.831377 for different
values of the nonlinearity ε.

nonlinearity increases, more terms are needed to get a convergent solution, which indicates
that with increasing nonlinearity, higher-order harmonics have an increasing influence on
the whole wave system. Even when ε = 0.9987, 272 wave components are required to
obtain a convergent steady-state resonant solution. Because of the difficulties associated
with Bessel functions and the slow decay of coefficients (see next section), the truncation
number N used in the examples shown in the present paper did not exceed 16.

3. Analysis of the results for (1,2)-TW

For TW in a circular basin, the second-harmonic resonance occurs at a ratio of depth
to radius d = 0.831377. The corresponding resonant wave mode is the (2,2) mode. With
the HAM-based analytical approach and a Galerkin numerical-method-based approach,
we successfully obtained steady-state nonlinear (1,2)-TW in a circular basin. There exist
convergent solutions when the dimensionless angular frequency is both slightly less than
one (ε < 1) and slightly more than one (ε > 1). The converged results of the two branches
of (1,2)-TW with different values of ε are listed in tables 4 and 5. If the radius of the
circular basin is 1m, the water depth and the wave amplitude components in tables 4 and
5 are in metres (m). For all the steady-state resonant waves obtained in the present paper,
the coefficients of the fundamental wave component (1,1) and of the second-harmonic
resonant wave component (2,2) are much larger than the other wave components. This
means that most of the energy of the (1,2)-wave is in the fundamental and second harmonic
resonant wave components. Based on the results in the present paper, it is found that, as the
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ε |a1,1| |a2,2| |a3,2| |a4,3| |a1,3| |a3,4| H

0.9999 0.0066 0.0080 0.0002 0.0001 0.0001 — 0.0064
0.9998 0.0127 0.0145 0.0006 0.0004 0.0002 0.0001 0.0120
0.9997 0.0186 0.0202 0.0012 0.0008 0.0004 0.0003 0.0172
0.9996 0.0244 0.0253 0.0019 0.0013 0.0007 0.0005 0.0220
0.9995 0.0301 0.0300 0.0028 0.0019 0.0010 0.0007 0.0267
0.9994 0.0356 0.0343 0.0037 0.0024 0.0013 0.0011 0.0312
0.9993 0.0410 0.0384 0.0048 0.0030 0.0017 0.0015 0.0355
0.9992 0.0463 0.0422 0.0060 0.0037 0.0021 0.0019 0.0397
0.9991 0.0514 0.0459 0.0072 0.0044 0.0026 0.0025 0.0438
0.9990 0.0562 0.0493 0.0085 0.0051 0.0030 0.0031 0.0478
0.9989 0.0609 0.0527 0.0098 0.0058 0.0035 0.0038 0.0516
0.9988 0.0652 0.0559 0.0111 0.0066 0.0040 0.0045 0.0551
0.9987 0.0691 0.0590 0.0124 0.0073 0.0045 0.0054 0.0585

Table 4. Absolute values of some of the coefficients amn and wave amplitude H for d = 0.831377 and
different values of ε (ε < 1).

ε |a1,1| |a2,2| |a3,2| |a4,3| |a1,3| |a4,2| H

1.00001 0.0007 0.0009 — — — — 0.0007
1.00005 0.0036 0.0050 0.0001 0.0001 — — 0.0038
1.00008 0.0060 0.0087 0.0002 0.0002 0.0001 0.0001 0.0064
1.00010 0.0078 0.0116 0.0003 0.0003 0.0001 0.0001 0.0085
1.00011 0.0087 0.0133 0.0004 0.0004 0.0001 0.0001 0.0097
1.00012 0.0098 0.0153 0.0005 0.0005 0.0002 0.0002 0.0110
1.00013 0.0110 0.0177 0.0006 0.0007 0.0002 0.0002 0.0126
1.00014 0.0126 0.0211 0.0008 0.0009 0.0003 0.0003 0.0149

Table 5. Absolute values of some of the coefficients amn and wave amplitude H for d = 0.831377 and
different values of ε (ε > 1).

nonlinearity increases (the value of |ε − 1| becomes larger), the amplitude of each wave
component increases and so does the amplitude of the (1,2)-wave. An increasing number
of higher-order harmonic wave components have non-negligible amplitudes.

Figure 1 represents |amn| as a function of m or n for two values of ε when ε < 1.
Specifically, figures 1(a) and 1(c) show the change of the coefficient |amn| as the order
of the Bessel function m increases. Figures 1(b) and 1(d) show the change of |amn|
with the increase of the zero order n. The two points at the top left of each subplot
of figure 1 represent the fundamental and second-harmonic resonant wave components,
respectively. Note that |amn| does not represent the magnitude of the corresponding wave
component, because only the maximum amplitude of the Bessel function J0 is 1. The
maximum amplitude of Jm(m > 0) is less than 1 and decreases as m increases. Thus,
the amplitude of the higher-order harmonic wave components is smaller than the value
of |amn|. Therefore, as can be seen from figures 1(a) and 1(c), the amplitude of the
higher-order harmonic wave components decreases as the order of the Bessel function
increases. Comparing figures 1(a) and 1(b), and figures 1(c) and 1(d), it can be seen that
the high-order (large n) zero terms of the low-order (small m) Bessel functions become
more and more important as the nonlinearity increases. It also can be seen from figure 1
that the points representing higher-order harmonic components get closer to the two
points representing the fundamental and second-harmonic resonant wave components as

915 A136-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

16
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.165


Steady-state resonant waves in a circular basin

0 2 4 6 8 10 12 14 16
10–9

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100(a) (b)

(c) (d )

0 2 4 6 8 10 12 14 16
10–9

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

m

|a
m

n|
|a

m
n|

0 2 4 6 8 10 12 14 16
10–9

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

σ/ω = 0.9989 σ/ω = 0.9989

σ/ω = 0.9997 σ/ω = 0.9997

n
0 2 4 6 8 10 12 14 16

10–9

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

Figure 1. The absolute value of the coefficient amn as a function of m or n: (a,b) ε = 0.9997; (c,d)
ε = 0.9989.

the nonlinearity increases. Therefore, with the growth of nonlinearity, more higher-order
harmonic wave components join the (1,2)-wave.

Figure 2 shows some values of |amn| as a function of ε. The two branches of (1,2)-TW
bifurcate at ε = 1. When ε = 1 (infinitesimal solution), the values of amn approach 0.
As |ε − 1| increases, |amn| increases, and so does the amplitude of the (1,2)-wave. The
left branch provides converged solutions with higher nonlinearity than those on the
right branch. Hence, (1,2)-TW with relatively large amplitude can be obtained on the
left branch. For ε < 1, as the nonlinearity increases, the amplitude of the coefficient of
the fundamental wave |a11| increases faster than the amplitude of the coefficient of the
second-harmonic component |a22|. However, for ε > 1, |a22| increases faster than |a11|
with increasing nonlinearity.

Figure 3 shows the ratio |a22|/|a11| as a function of ε, thus demonstrating the
relationship between the coefficients of the fundamental wave component and of the
second-harmonic resonant wave component, and nonlinearity. Even though figure 3
represents two different branches of steady-state (1,2)-waves depending on the value of ε,
the curves are smoothly connected. The ratio |a22|/|a11| increases across the whole range
of values of ε considered in the present paper. But there are some differences between the
two families. When ε < 1 and the value of |ε − 1| becomes large, the value of |a22|/|a11|

915 A136-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

16
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.165


X. Yang, F. Dias, Z. Liu and S. Liao

σ/ω

|a
m

n|

0.9988 0.999 0.9992 0.9994 0.9996 0.9998 1.0000 1.0002
–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.10

|a11|
|a22|
|a32|

Figure 2. Some values of |amn| as a function of ε = σ/ω for (1,2)-TW.

slowly decreases. When ε > 1 and the value of |ε − 1| becomes large, the trend is exactly
the opposite: the curve increases sharply. The coefficient of the resonant wave component
(2,2) is approximately 1.7 times the coefficient of the fundamental wave component (1,1)
for the case with ε = 1.00014. However, when ε < 1, the coefficient of the resonant wave
component (2,2) is almost the same as the coefficient of the fundamental wave component
(1,1). The two branches of steady-state (1,2)-TW have different behaviours.

Away from resonance, the free surface is gently sloping and is only slightly deformed.
For resonant cases, as shown in figures 4 and 5, the wave profile has two peaks in the
middle, and there exists a saddle-shaped depression between the two crests (at the centre
of the circular basin). This phenomenon is caused by the second-harmonic resonant wave
component (2,2), which is significant for resonant cases since it has a similar amplitude to
that of the fundamental wave component (1,1).

Wave profiles for (1,2)-TW with ε = 0.9997 and ε = 0.9989 are shown in figure 4. Here
ε = 0.9997 corresponds to a case with weak nonlinearity, while ε = 0.9989 corresponds
to a case with a stronger nonlinearity. When ε = 0.9997, the free surface of the (1,2)-TW
is smooth. However, when ε = 0.9989, there are more ripples on the surface of the wave,
that are due to the influence of higher-order harmonic wave components. The profiles for
(1,2)-TW with ε = 1.00014 are shown in figure 5. The wave profiles are similar to those
with ε < 1, but there are some differences. Comparing the conditions with ε = 0.9989
and ε = 1.00014 at t = 0, one sees that the orientation of the waveforms is different. It
illustrates that ε < 1 and ε > 1 are associated with two different (1,2)-TW. Furthermore,
since the coefficient of the resonant wave component (2,2) is approximately 1.7 times
the coefficient of the fundamental wave component (1,1) for the case with ε = 1.00014,
in contrast to the case with ε = 0.9989, the second-harmonic resonant wave component
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Figure 3. The value of |a22|/|a11| as a function of ε = σ/ω for (1,2)-TW.
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Figure 4. Wave profiles for d = 0.831377 at t = 0: (a) ε = 0.9997, (b) ε = 0.9989.

plays a more important role in the entire wave. The two peaks are more prominent, and the
area of the two protrusions is relatively large.

4. (1,2)-SW

The same resonance can be found for SW in a circular basin. For SW, the governing
equation and boundary conditions are (2.1)–(2.5) without the dependence on θ .
In addition, we have the condition of mass conservation:∫ 1

0
rηs(r, t) dr = 0. (4.1)
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Figure 5. Wave profile for d = 0.831377 and ε = 1.00014 at t = 0.

The linear solutions of the standing-wave system read

η̄s(r, t) = asJ0(kjr) cos i(ωst), (4.2)

ϕ̄s(r, z, t) = bsJ0(kjr)
cosh kj(z + d)

cosh kjd
sin i(ωst), (4.3)

where kj denotes the jth zero of J′
0:

J′
0(kj) = 0 (i = 1, 2, . . . , j = 1, 2, . . .). (4.4)

The linear solution satisfies the dispersion relation

i2ω2
s = kj tanh kjd. (4.5)

For nonlinear waves dominated by the fundamental wave component (1,1) (i.e. i = j =
1), the linear frequency is

ω2
s = k1tanh k1d. (4.6)

Due to nonlinear interactions, higher-order harmonic wave components can be generated.
Under certain conditions, the harmonic wave component (i, j) will resonate with the
fundamental wave component (1, 1). Resonance occurs at ratios of depth to radius d such
that there exists a kj satisfying

i(k1tanh k1d)1/2 = (kjtanh kjd)1/2. (4.7)

There exist different sets of resonant wave components associated with each one of the
ratios of depth to radius, as shown in table 6. The case i = 2, j = 3 corresponds to the
second-harmonic resonance studied in the present paper.

Similarly, due to the nonlinearity, the actual wave frequency σs is slightly different from
the linear frequency ωs = √

k1tanh k1d, and also depends on the wave amplitude. Let εs =
σs/ωs. Then, we define the variable

ξs = σst. (4.8)

Like for TW, we solve the standing-wave problem in a new coordinate system (r, z, ξs).
The standing-wave elevation η(r, ξs) and the velocity potential ϕ(r, z, ξs) can be described
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by combinations of the linear solution (4.2) and (4.3):

ηs =
∞∑

i=0

∞∑
j=1

as
ijJ0(kjr) cos iξs, (4.9)

ϕs =
∞∑

i=1

∞∑
j=1

bs
ijΨ

s
ij , (4.10)

with

Ψ s
ij (r, ξ, z) = J0(kjr)

cosh kj(z + d)
cosh kjd

sin iξs, (4.11)

where as
ij and bs

ij are constants to be determined later. Note that the velocity potential (4.10)
satisfies the linear governing equation, the boundary conditions on r = 1 and r = −d and
the wave elevation (4.9) satisfies the condition of mass conservation (4.1) identically.
Therefore, the unknown coefficients as

ij and bs
ij are determined by the two nonlinear

boundary conditions on the free surface.
Like for TW, we have the so-called homotopy-series solutions for resonant SW in a

circular basin for the unknown velocity potential ϕs and free-surface elevation ηs. They
read

ϕs(r, z, ξs) =
+∞∑
m=0

ϕs
m(r, z, ξs), (4.12)

ηs(r, ξs) =
+∞∑
m=0

ηs
m(r, ξs). (4.13)

As opposed to the steady-state (1,2)-TW in a circular basin, we take the nonlinear
frequency σs as an unknown quantity. The so-called homotopy-series solution about the
nonlinear frequency σs is

σs =
+∞∑
m=0

σ s
m. (4.14)

The calculations are similar to those for (1,2)-TW in a circular basin. It is worth noting
that we choose the initial guess of the velocity potential ϕs as

ϕs
0 = Bs

11Ψ
s
11 + Bs

23,0Ψ
s
23, (4.15)

where the constant Bs
11 is given and corresponds to the primary wave. The unknown

constants σ s
0 and Bs

23,0 are determined by avoiding the secular terms J0(k1r) sin ξs and
J0(k3r) sin 2ξs appearing on the right-hand side of the first-order deformation equation.
The rest of the calculation process is similar to that of the (1,2)-TW in a circular basin.

We consider the second-harmonic resonance of nonlinear SW dominated by the
fundamental wave component (1,1) with ratios of depth to radius d = 0.198143. The
corresponding resonant wave mode is the (2,3) mode. With the HAM-based analytical
approach, we successfully obtain (1,2)-SW in a circular basin. The converged results with
different values of Bs

11 in the initial guess of the velocity potential are listed in table 7. It
is found that, when resonance occurs, the amplitude of the fundamental wave component
(1,1) and of the resonant wave component (2,3) are of the same order of magnitude. As
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σ
s/ω

s

–0.012 –0.010 –0.008 –0.006 –0.004 –0.002 0
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0.9998

1.0000

1.0002
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2,3/as

1,1 > 0

as
2,3/as

1,1 < 0

B11
s

Figure 6. Value of εs = σs/ωs as a function of Bs
11 for (1,2)-SW.

the value of Bs
11 decreases, the nonlinearity of the (1,2)-SW shows an increasing trend.

The amplitude coefficients in front of the fundamental wave component (1,1) and the
resonant wave component (2,3) both increase. According to the variation of the value of
Bs

11, we found two branches of convergent solutions for the (1,2)-SW in a circular basin,
that correspond to the cases as

2,3/a
s
1,1 > 0 and as

2,3/a
s
1,1 < 0 respectively. Figure 6 shows

the value of εs = σs/ωs as a function of Bs
11. The two branches of (1,2)-SW split when the

value of Bs
11 approaches 0. As the value of Bs

11 decreases, the set of solutions as
2,3/a

s
1,1 > 0

goes further.

5. Concluding remarks and discussion

The water-wave equations in a circular cylinder with nonlinear boundary conditions
on the free surface are solved by a coupled analytical and numerical approach to
obtain second-harmonic resonant waves with time-independent spectra. For nonlinear
TW dominated by the fundamental wave component (1,1) in a circular basin, the
second-harmonic wave component (2,2) resonates with the fundamental wave component
(1,1) when the ratio of water depth to radius d = 0.831377. For nonlinear SW dominated
by the fundamental wave component (1,1), the (2,3) mode resonates with the fundamental
wave component (1,1) when the ratio of water depth to radius d = 0.198143.

In the resonance problem considered here, the second-harmonic resonant wave
component corresponds to a mathematical singularity, which is difficult to deal with
in the framework of perturbation methods. Additionally, the convergence rate of the
series solution obtained from the HAM reduces as the nonlinearity increases. The
slow convergence rate of series solutions obtained from the HAM makes it impossible
to consider steady-state resonant waves with strong nonlinearity. To overcome these
difficulties, a solution procedure that combines the HAM-based analytical approach and a
Galerkin numerical-method-based approach has been used. Based on the HAM, when the
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resonance occurs, only the resonant wave component needs to be added in the initial guess,
and the secular term thus generated can be successfully avoided. Then, an approximate
homotopy-series solution to the steady second-harmonic resonant waves can be obtained.
The Galerkin numerical method-based approach is used to obtain accurate steady-state
solutions. In this way, we successfully obtained steady nonlinear second-harmonic
resonant waves in a circular basin. However, even the numerical method shows some
slow convergence and high accuracy is difficult to reach for large nonlinearities. It will be
interesting to use in future work numerical methods that do not rely on Bessel functions.
The algorithm recently proposed by Qadeer & Wilkening (2019) looks promising.

This paper confirms the existence of finite-amplitude steady-state (1,2)-TW and
(1,2)-SW in a circular basin. There are two branches of (1,2)-TW solutions, one with
dimensionless angular frequency slightly less than one (ε < 1) and one with dimensionless
angular frequency slightly more than one (ε > 1). The coefficients of the fundamental
wave component (1,1) and of the second-harmonic resonant wave component (2,2) are
much larger than the other wave components, which means that most of the wave energy
resides in the fundamental and second-harmonic resonant wave components. Based on
our results, the amplitude of the wave group increases continuously with the nonlinearity
of the wave. As the nonlinearity increases (the value of |ε − 1| becomes larger), an
increasing number of higher-order harmonics play a role in the whole wave. In addition,
the (1,2)-resonance also exists in the case of SW in a circular basin. Similarly, there are
two branches of steady-state (1,2)-SW in a circular basin.

The results in the present paper deepen our understanding of the resonance of gravity
waves in a circular basin, which may occur in harbours or bays. We conclude with two
suggestions for future work. Bridges (1990) showed that in addition to well-known TW
and SW other classes of periodic waves, in particular three-mode MW, may exist. It will
be interesting to check whether such MW can be computed with the method used in the
present paper. The branches of TW and SW have different behaviours. It will be interesting
to use state-of-the-art numerical methods to follow the branches towards more extreme
waves.
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Appendix A. Definitions of Δ
ϕ
m, Sm, S̄m and Δ

η
m in (2.27) and (2.28)

The definitions of Δϕm and Δηm in (2.27) and (2.28) are given by

Δϕm = σ 2ϕ̄0,2
m + ϕ̄0,0

z,m − 2σΓm,2 +Λm, (A1)

Δηm = ηm −
(
σ ϕ̄0,1

m − Γm,0

)
, (A2)

where

Λm =
m∑

n=0

(
ϕ̄1,0

n Γm−n,1 + 1
r2 ϕ̄

0,1
n Γm−n,2 + ϕ̄0,0

z,nΓm−n,3

)
, (A3)
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with the definitions

Γm,0 = 1
2

m∑
n=0

ϕ̄1,0
n ϕ̄

1,0
m−n + 1

2r2

m∑
n=0

ϕ̄0,1
n ϕ̄

0,1
m−n + 1

2

m∑
n=0

ϕ̄0,0
z,n ϕ̄

0,0
z,m−n, (A4)

Γm,1 =
m∑

n=0

(
ϕ̄1,0

n ϕ̄
2,0
m−n − 1

r3 ϕ̄
0,1
n ϕ̄

0,1
m−n + 1

r2 ϕ̄
0,1
n ϕ̄

1,1
m−n + ϕ̄0,0

z,n ϕ̄
1,0
z,m−n

)
, (A5)

Γm,2 =
m∑

n=0

(
ϕ̄1,0

n ϕ̄
1,1
m−n + 1

r2 ϕ̄
0,1
n ϕ̄

0,2
m−n + ϕ̄0,0

z,n ϕ̄
0,1
z,m−n

)
, (A6)

Γm,3 =
m∑

n=0

(
ϕ̄1,0

n ϕ̄
1,0
z,m−n + 1

r2 ϕ̄
0,1
n ϕ̄

0,1
z,m−n + ϕ̄0,0

z,n ϕ̄
0,0
zz,m−n

)
. (A7)

The expressions for ϕ̄i,j
n and ϕ̄i,j

z,n are

ϕ̄i,j
n =

n∑
m=0

β
n−m,m
i,j , (A8)

ϕ̄i,j
z,n =

n∑
m=0

γ
n−m,m
i,j , (A9)

with the definitions

μm,n =

⎧⎪⎪⎨
⎪⎪⎩
ηn, m = 1, n ≥ 1,

n−1∑
i=m−1

μm−1,iηn−i, m ≥ 2, n ≥ m,
(A10)

ψ
n,m
i,j = ∂ i+j

∂ri∂ξ j

(
1

m!
∂ϕn

∂zm

∣∣∣∣
z=0

)
, (A11)

β
n,m
i,j =

⎧⎪⎪⎨
⎪⎪⎩
ψ

n,0
i,j , m = 0,

m∑
s=1

ψ
n,s
i,j μs,m, m ≥ 1,

(A12)
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γ
n,m
i,j =

⎧⎪⎪⎨
⎪⎪⎩
ψ

n,1
i,j , m = 0,

m∑
s=1

(s + 1)ψn,s+1
i,j μs,m, m ≥ 1.

(A13)

Due to the linear property of the auxiliary linear operator (2.29), the definitions of Sm−1
and S̄m in (2.27) are given by

Sm =
m−1∑
n=0

(
σ 2β

m−n,n
0,2 + ψ

m−n,n
0,0

)
, (A14)

S̄m =
m−1∑
n=1

(
σ 2β

m−n,n
0,2 + ψ

m−n,n
0,0

)
. (A15)

A similar detailed derivation for the nonlinear interaction of gravity waves in deep water
can be found in the appendix of Liao (2011b).

Appendix B. Detailed expressions of Jacobian matrices

The elements in the Jacobian matrix are related to the derivatives of Pi,j and Qi,j with
respect to the unknown variables amn and bmn. According to these two sets of unknowns,
the Jacobian matrix can be divided into four small matrices, as shown below:

∂Pi,j

∂bmn
=

∫ 2π

0

∫ 1

0

∂N1[ϕ]
∂bmn

rJi(kijr) sin iξ dr dξ, (B1)

∂Qi,j

∂bmn
=

∫ 2π

0

∫ 1

0

∂N2[ϕ, η]
∂bmn

rJi(kijr) cos iξ dr dξ, (B2)

∂Pi,j

∂amn
=

∫ 2π

0

∫ 1

0

∂N1[ϕ]
∂z

Jm(kmnr) cos mξ · rJi(kijr) sin iξ dr dξ, (B3)

∂Qi,j

∂amn
=

∫ 2π

0

∫ 1

0

∂N2[ϕ]
∂z

Jm(kmnr) cos mξ · rJi(kijr) cos iξ dr dξ, (B4)

where

∂N1[ϕ, η]
∂bmn

=
[(

−m2σ 2 + 2σ
r2 m2ϕξ − m2

r4 ϕξϕξ

)
· J

+
(

−2σϕrξ + 2ϕrϕrr + 2
r2ϕξϕrξ + ϕzϕrz

)
· Jr + ϕrϕr · Jrr

]
· CS

+kmn

[(
1 + ϕrϕrz + 1

r2ϕξϕξz − σϕξz

)
· J + ϕrϕz · Jr

]
· SS

+2m
[

1
r2

(
−σϕξξ + ϕrϕrξ + 1

r2ϕξϕξξ + ϕzϕzξ

)
· J +

(
−σϕr + 1

r2ϕrϕξ

)
· Jr

]
· CC

+mkmn

(
−σϕz + 1

r2ϕξϕz

)
· J · SC, (B5)

∂N2[ϕ, η]
∂bmn

=
(
−mσ + m

r2ϕξ

)
· J · CC + ϕr · Jr · CS + kmnϕz · Jr · SS, (B6)
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i j d

2 3 0.198143
2 4 0.346985
3 4 0.084425
.
.
.

.

.

.
.
.
.

3 10 0.439596

Table 6. Ratios of depth to radius d satisfying the linear resonance relation for standing waves (Mack 1962).

Bs
11 εs as

1,1 as
2,3 H

−0.0001 1.000000 0.000157 0.000200 0.000470
0.999996 0.000157 −0.000209 0.000041

−0.0005 1.000010 0.000783 0.000907 0.002246
0.999974 0.000783 −0.001226 0.000430

−0.0008 1.000010 0.001253 0.001368 0.003502
0.999937 0.001253 −0.002488 0.001306

−0.0010 1.000010 0.001567 0.001651 0.004312
−0.0030 0.999979 0.004700 0.003795 0.011695
−0.0050 0.999904 0.007834 0.005209 0.018358
−0.0100 0.999600 0.015667 0.007135 0.033649

Table 7. (1,2)-SW: dimensionless frequency εs, wave amplitude components and H = |ηs(0, 0)− ηs(1, 0)|
for d = 0.198143 with different values of Bs

11 in the initial guess of the velocity potential.

∂N1[ϕ, η]
∂z

= σ 2ϕξξz+ϕzz+
(

−2σ+ 1
r2ϕξ

) [(
ϕrzϕrξ+ϕrϕrξz

)+ 1
r2

(
ϕξzϕξξ + ϕξϕξξz

)]

+
(

−σ + 1
r2ϕξ

) (
ϕzzϕξz + ϕzϕξzz

) + ϕrz

(
ϕrϕrr + 1

r2ϕξϕξr + ϕzϕrz

)

+ϕr

[
(ϕrzϕrr + ϕrϕrrz)+ 1

r2

(
ϕξzϕξr + ϕξϕrξz

) + (ϕzzϕrz + ϕzϕrzz)

]

+ 1
r2ϕξz

(
ϕrϕrξ + 1

r2ϕξϕξξ + ϕzϕξz

)
, (B7)

∂N2[ϕ, η]
∂z

= 1 +
(

1
r2ϕξ − σ

)
ϕξz + ϕrϕrz + ϕzϕzz, (B8)

with the definitions

J = Jm(kmnr), (B9)

Jr = 1
2 kmnJm−1(kmnr)− 1

2 kmnJm+1(kmnr), (B10)

Jrr = 1
4 k2

mnJm−2(kmnr)− 1
2 k2

mnJm(kmnr)+ 1
4 k2

mnJm+2(kmnr), (B11)
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and

CS = cosh kmn(z + d)
cosh kmnd

sin mξ, SS = sinh kmn(z + d)
cosh kmnd

sin mξ, (B12a,b)

CC = cosh kmn(z + d)
cosh kmnd

cos mξ, SC = sinh kmn(z + d)
cosh kmnd

cos mξ. (B13a,b)

Then, we can get the complete Jacobian matrix(
∂Pi,j/∂bmn ∂Pi,j/∂amn

∂Qi,j/∂bmn ∂Qi,j/∂amn

)
. (B14)
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