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ABSTRACT

The generalized linear model (GLM) is a statistical model which has been
widely used in actuarial practices, especially for insurance ratemaking. Due to
the inherent longitudinality of property and casualty insurance claim datasets,
there have been some trials of incorporating unobserved heterogeneity of each
policyholder from the repeated observations. To achieve this goal, random
effects models have been proposed, but theoretical discussions of the methods
to test the presence of random effects in GLM framework are still scarce. In this
article, the concept of Bregman divergence is explored, which has some good
properties for statistical modeling and can be connected to diverse model selec-
tion diagnostics as in Goh and Dey [(2014) Journal of Multivariate Analysis,
124, 371–383]. We can apply model diagnostics derived from the Bregman
divergence for testing robustness of a chosen prior by the modeler to possible
misspecification of prior distribution both on the naive model, which assumes
that random effects follow a point mass distribution as its prior distribution,
and the proposed model, which assumes a continuous prior density of random
effects. This approach provides insurance companies a concrete framework for
testing the presence of nonconstant random effects in both claim frequency
and severity and furthermore appropriate hierarchical model which can explain
both observed and unobserved heterogeneity of the policyholders for insur-
ance ratemaking. Both models are calibrated using a claim dataset from the
Wisconsin Local Government Property Insurance Fund which includes both
observed claim counts and amounts from a portfolio of policyholders.
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TABLE 1

HYPOTHETICAL INFORMATION ON POLICYHOLDERS A AND B.

Policyholder A Policyholder B

No. of Claim No. of Claim
Year Gender Age Vehicle size claim(s) amount claim(s) amount

2015 M 45 Medium 0 0 1 500
2016 M 46 Medium 0 0 2 4000
2017 M 47 Large 1 200 1 8000

1. INTRODUCTION

Traditionally, generalized linear models (GLMs) have been used as bench-
marks in ratemaking of property and casualty (P&C) companies due to their
interpretability and efficiency in modeling. In ratemaking with GLM, regres-
sion coefficients associated with the observable characteristics of policyholders
(in other words, covariates) are estimated and used for future prediction of
claims. But it is not possible to observe all the characteristics of policyholders
which affect their risk profiles, such as driving habit. Since a policyholder can
be observed repeatedly for many years by a P&C insurance company, one can
try to capture the unobserved heterogeneity via random effects model.

Suppose we have the following information on policyholders A and B in
Table 1, who are identical in terms of observable characteristics but show quite
different patterns on their claims. This hypothetical example shows us that we
might capture the unobserved heterogeneity in risk by observing the residuals
after controlling for the effects of observed covariates, which can be explained
in terms of random effects for policyholders A and B.

Because of the longitudinal property in most of P&C claim datasets, there
have been some trials on the use of random effects model in actuarial science
literature, which has a natural Bayesian interpretation. For example, Frangos
and Vrontos (2001) tried to incorporate the random effects in bonus-malus
system for automobile insurance and obtained a closed form formula for cred-
ibility premiums on compound loss, assuming the independence between the
frequency and severity components. As an extension of their work, recently,
Jeong et al. (2020) also explored a random effects model for auto insurance
claims considering possible dependence between the frequency and severity
components.

Although the presence of random effects in the hypothetical example is
very clear, it can be less clear in real longitudinal datasets observed by an
insurance company. Therefore, one should be careful to incorporate random
effects in a ratemaking model because it may capture random noise as unob-
served heterogeneity via random effects so that the model has unnecessary
complexity. However, a theoretical approach has not been attempted for
testing the presence of random effects in claim modeling.
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Intuitively, assuming absence of random effects on the heterogeneity of risk
profiles for policyholders is equivalent to set the multiplicative random effects
for all policyholders as a constant, which means the use of a point mass prior
for random effects. Therefore, one can see that it is possible to test the presence
of random effects in a longitudinal dataset via prior elicitation in Bayesian
statistics. Bayesian inference requires to have an assumed prior distribution,
which represents any a priori beliefs or uncertainties about the parameters.
According to Dubitzky et al. (2013), “Elicitation is the process of extract-
ing knowledge, beliefs, and uncertainties about unknown quantities from the
client so that these can be expressed as a prior probability distribution.” In
that sense, if a point mass prior is believed to be appropriate (or we have a
strong belief that there is no presence of unobserved heterogeneity in the risks
of policyholders), then it tells us that we can ignore the random effects in the
modeling, whereas if a continuous prior is deemed to be suitable (or we have a
strong belief that the impact of unobserved heterogeneity in the risks of policy-
holders is significant), then random effects are incorporated naturally in claim
modeling.

It is possible to see some works on prior elicitation and Bayesian sensi-
tivity analysis in actuarial literature though there is no previous direct work
on testing the presence of random effects. For example, Gómez-Déniz et al.
(1999) and Gómez-Déniz et al. (2000) performed Bayesian sensitivity analysis
on Poisson-gamma frequency model to investigate how sensitive the posterior
distribution of interest is to changes in prior distribution based on Esscher
premium principle and variance premium principle, respectively.

In this article, Bregman divergence, proposed by Goh and Dey (2014), is
used as a Bayesian model diagnostics for testing the robustness of a chosen
prior. Since it is hardly possible to know the true prior distribution in gen-
eral, we want the posterior distribution based on a chosen prior by the modeler
would not deviate too much from the true posterior distribution regardless of
the true prior. Therefore, if the posterior distribution based on a continuous
prior shows less deviation from the true posterior distribution compared to
the posterior distribution based on a point mass prior, then we can favor a
continuous prior as the more robust one to possible misspecification of prior
distribution and incorporate nonconstant random effects in our model accord-
ingly. This idea is applied to actuarial science so that we can test the presence
of random effects in a longitudinal claim dataset and suggest a sophisticated
framework for ratemaking model selection.

This paper has been organized as follows. In Section 2, the two-part com-
pound risk model is introduced and the models to be tested upon the presence
of random effects are specified. In Section 3, the concept of Bregman diver-
gence is introduced as well as the interpretation of Bregman divergence as a
diagnostic for robustness of a chosen prior. In Section 4, description of the
characteristics of the dataset and results of Bayesian sensitivity analysis are
provided, which support the use of a continuous prior on the random effects
rather than the use of a point mass. A conclusion is made in Section 5.
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2. LONGITUDINAL TWO-PART COMPOUND RISK MODEL

Suppose that we have available information on M policyholders for T years.
Then we can define the number of claims for the policyholder i ∈ {1, 2, . . . ,M}
in year t as Nit. Likewise, the claim amount of the kth accident (where k≤Nit)
for the policyholder i in year t can be defined as Yitk. Furthermore, we can
define the exposure eit ∈ [0, 1] which means the proportion of coverage period
within the calendar year t for the policyholder i. Finally, we may define covari-
ates xit, which often include age, gender, vehicle type, building type, building
location, driving history, and so forth. Note that each policyholder is followed
up to Ti ≤T . Here Ti means the number of insurance years for a specific
policyholder i. Since it is not unusual for a policyholder to switch his/her insur-
ance company once the automobile insurance contract expires, it is possible
that Ti varies for each policyholder.

For ratemaking in P&C insurance, it is of our interest to predict the
following total cost of claims for each policyholder i in year t:

Sit =

⎧⎪⎨
⎪⎩

Nit∑
k=1

Yitk, Nit �= 0,

0, Nit = 0.

Then one can use two-part model to predict the number of claims Nit and the
average claim amount Cit with the following decomposition of the joint density
into the frequency part and conditional severity part:

f (Nit,Cit|xit)= f (Nit|xit)× f (Cit|Nit, xit).

Note that Cit is defined as

Cit =

⎧⎪⎨
⎪⎩

1
Nit

Nit∑
k=1

Yitk, Nit �= 0,

Undefined, Nit = 0.

Here “Undefined” can be understood as “NA” because without observing any
accident (in order words, N = 0), there is no way to observe the average claim
amount per claim.

2.1. Frequency part model

In actuarial practices, Poisson distribution has been used for the calibration of
the number of claims with the presence of covariates as follows:

Nit|xit, eit indep∼ P(νit) where νit = eit exp(xitα), (2.1)
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which means Nit follows a Poisson distribution with mean νit and is indepen-
dent of Ni′t′ as long as i �= i′ or t �= t′ given the information on covariates and
exposure.

Note that conditioning argument on xit, eit is suppressed afterward for nota-
tional convenience. Although this approach has been widely used due to its
simplicity, the longitudinal property of usual claim datasets allows us to con-
sider the unobserved heterogeneity of the policyholders via random effects as
follows:

Nit|θN[i]
indep∼ P(νitθN[i]) where νit = eit exp(xitα), θN[i] ∼ πN(θ), (2.2)

which has been explored by some authors, such as Boucher et al. (2008).
We can see that this random effects approach has a good Bayesian inter-

pretation because θN[i] is not observable so that we need to assume a prior
on this. Furthermore, (2.1) can be interpreted as a special case of (2.2) with
P(θN[i] = θ)= 1{θ=1} for all i where 1{θ=1} = 1 if θ = 1 and 1{θ=1} = 0 otherwise.

Therefore, model selection between (2.1) and (2.2) is equivalent to the prior
elicitation of πN(θ). Since the impact of unobserved heterogeneity on claim
frequency is usually unknown so that it needs to be assessed by the observed
claim frequency, it is desirable to use noninformative prior on θN , which has
less impact on our Bayesian analysis. Therefore, as in a lot of Bayesian lit-
erature including but not limited to Jeffreys (1946) and Berger (1985), it is
natural to consider the use of the Jeffreys’ prior as a candidate of noninfor-
mative prior on θN . Note that the Jeffreys’ prior for a random variable Z with
density f (z|θ) is defined as the square root of the Fisher information I(θ), where

I(θ)=E

[
− ∂2

∂θ2
log f (z|θ)

]
.

Suppose N|θN ∼P(νθN) where θN > 0. Then the Jeffreys’ prior of θN is
given as πN(θ)= θ−1/2, and the corresponding posterior distribution is gamma
distribution with the following density:

πN(θ |N)∝ θN−1/2 exp(−νθ) so that θN |N ∼ G(N + 0.5, ν−1),

because it is easy to see that

I(θ)=E

[
− ∂2

∂θ 2
log p(N|θ)

]
= ν/θ =⇒ πN(θ)= θ−1/2 ∝√

I(θ)

and

πN(θ |N)∝ πN(θ)p(N|θ)∝ θN−1/2 exp(−νθ) =⇒ θN |N ∼ G(N + 0.5, ν−1).

Note that although the Jeffreys’ prior is improper, the corresponding posterior
is still proper. However, even though we can have a prior with less information
and proper posterior, we hope the mean of θN to be one because θN is a multi-
plicative random effect and it gives rise to an identifiability issue if E [θN ] �= 1.
Therefore, we want to impose E [θN ]= 1 as shown in Ng and Cook (2000) and
Ding and Wang (2008) while we retain the same distribution on the posterior.
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Hence, we may propose the following prior on θN , which satisfies E [θN ]= 1 as
well as has conjugate gamma posterior.

πN(θ)∝ θ r−1e−θr so that θN[i]
i.i.d.∼ G(r, 1/r), E [θN[i]

]= 1, and Var
[
θN[i]

]= 1
r
.

(2.3)

Now, according to the aforementioned arguments, we can formulate the
model selection in case of frequency part as follows:

[Naive Frequency Model]

Data likelihood: Nit|θN[i]
indep∼ P(νitθN[i]).

Prior distribution: P(θNi = θ)= 1{θ=1} for all i.

Posterior distribution:

P(θNi = θ |Ni1 = ni1, . . . ,NiTi = niTi )∝ P({θNi = θ} ∩ {Ni1 = ni1, . . . ,NiTi = niTi})
∝ 1{θ=1}.

Predictive distribution:

p(Ni,Ti+1|Ni1,Ni2, . . . ,NiTi )=
∫
p(Ni,Ti+1|θ)πN(θ |Ni1,Ni2, . . . ,NiTi )dθ

= p(Ni,Ti+1|θ = 1).

Therefore, we can see that Ni,Ti+1|Ni1,Ni2, . . . ,NiTi ∼P(νi,Ti+1), which means
that predictive distribution of Ni,Ti+1 does not depend on the previous claim
frequency observation due to the marginal independence among Ni,t.

[Proposed Frequency Model]

Data likelihood: Nit|θN[i]
indep∼ P(νitθN[i]).

Prior distribution: πN(θ)∝ θ r−1e−θr so that θN[i] ∼ G(r, 1/r) and E
[
θN[i]

]=
1, Var

[
θN[i]

]= 1
r . Therefore, as r→ ∞, πN(θ) degenerates to the Dirac delta

function at θ = 1 which means that the naive frequency model is a merely lim-
iting case of the proposed frequency model. According to Lemaire (1998), the
observed number of claims from previous years has been widely used as an
adjustment weight factor to penalize or provide bonus on policyholders, which
is analogous to the empirical estimates of the values of random effects on claim
frequency. Moreover, the range of adjustment weight factor on frequency pre-
miums is usually from 54% to 200%. Therefore, it is natural to incorporate this
knowledge on choosing the hyperparameter r for our proposed prior so that
the 95% highest posterior density (HPD) interval of θN can include (0.54, 2.00).
Thus, r= 3.8 is used as the hyperparameter so that 95% HPD interval of θN
under the proposed prior can be around (0.16, 2.01).
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Posterior distribution:

πN(θ |Ni1,Ni2, . . . ,NiTi )∝ πN(θ)
Ti∏
t=1

p(Nit|θ)∝ θ r−1e−θr
(

Ti∏
t=1

θNit

)
e−∑Ti

t=1 νitθ

∝ θ∑Ti
t=1 Nit+r−1e−θ (∑Ti

t=1 νit+r),

so that θN[i]|Ni1,Ni2, . . . ,NiTi ∼ G(∑Ti
t=1 Nit + r, [

∑Ti
t=1 νit + r]−1).

Predictive distribution:

p(Ni,Ti+1|Ni1,Ni2, . . . ,NiTi )=
∫
p(Ni,Ti+1|θ)πN(θ |Ni1,Ni2, . . . ,NiTi )dθ

=
(∑Ti+1

t=1 Nit + r− 1
Ni,Ti+1

)( ∑Ti
t=1 νit + r∑Ti+1
t=1 νit + r

)∑Ti
t=1 Nit+r

×
(

νi,Ti+1∑Ti+1
t=1 νit + r

)Ni,Ti+1

.

Therefore, we can see that

Ni,Ti+1|Ni1,Ni2, . . . ,NiTi ∼NB
(

Ti∑
t=1

Nit + r,
νi,Ti+1∑Ti+1
t=1 νit + r

)
,

so that E
[
Ni,Ti+1|Ni1,Ni2, . . . ,NiTi

]= ∑Ti
t=1 Nit+r∑Ti
t=1 νit+r

νi,Ti+1.

Note that individual premium on the frequency component depends on ran-
dom effect θN as well as the covariate information at time t, which is associated
with the regression coefficient α so that we have the following:

E[Ni,Ti+1|Ni,1, . . . ,NiTi ]= exp(xi,Ti+1α)E[θN[i]|Ni1, . . . ,NiTi ],

which means posterior mean of θN[i] is not the same as the predictive mean
of Ni,Ti+1 given Ni1, . . . ,NiT . Furthermore, knowing predictive distribution of
Ni,Ti+1|Ni1, . . . ,NiT could be useful since E[Ni,Ti+1eγNi,Ti+1 |Ni1, . . . ,NiT ] needs
to be evaluated in order to obtain E[Si,Ti+1|Ni1, . . . ,NiTi ,Ci1, . . . ,CiTi ] with
dependence between the frequency and severity components.

2.2. Severity part model

Traditionally, gamma distribution has been used for the calibration of the
average claim amount with the presence of covariates as follows:

Cit|xit,Nit
indep∼ G(ψit,μit/ψit) where μit = exp(xitβ + γNit), ψit =Nit/φ.

(2.4)
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Note that conditioning argument on xit,Nit is suppressed afterward for nota-
tional convenience. Again, the longitudinal property of usual claim datasets
allows us to consider the unobserved heterogeneity of the policyholders via
random effects as follows:

Cit|θC[i] indep∼ G(ψit, θC[i]μit/ψit) where μit = exp(xitβ + γNit),

ψit =Nit/φ, θC[i] ∼ πC(θ). (2.5)

Unlike the traditional approach for compound loss model which assumes
independence between the frequency and severity components, here the
observed frequency is also used as an explanatory variable for the average
severity to capture the possible dependence between the frequency and the
average severity. Although the independence assumption between the fre-
quency and severity has been widely used due to its simplicity, recent research
works in actuarial science show empirical evidences of dependence between the
frequency and severity in various claim datasets. For the detailed approach,
please see Garrido et al. (2016) and Jeong et al. (2020). We also have a good
Bayesian interpretation in this case so that (2.4) can be interpreted as a special
case of (2.5) with P(θCi = θ)= 1{θ=1} for all i.

Therefore, model selection between (2.4) and (2.5) is equivalent to the prior
elicitation of πC(θ) and we again consider the use of the Jeffreys’ prior as a can-
didate of noninformative prior on θC as follows. Suppose C|θC ∼ G(ψ ,μθC/ψ)
where θC > 0. Then the Jeffreys’ prior of θC is given as πC(θ)= θ−1, and the
corresponding posterior distribution is inverse gamma distribution with the
following density:

πC(θ |C)∝
(
1
θ

)−ψ−1

exp
(

−ψCμ
−1

θ

)
so that θC|C ∼ IG(ψ , ψCμ−1),

since it is easy to see that

I(θ)=E

[
− ∂2

∂θ 2
log f (C|θ)

]
=ψ/θ 2 =⇒ πC(θ)= θ−1 ∝√

I(θ)

and

πC(θ |C)∝ πC(θ)f (C|θ)∝
(
1
θ

)−ψ−1

exp
(

−ψCμ
−1

θ

)

=⇒ θC|C ∼ IG(ψ , ψCμ−1).

Note that although the Jeffreys’ prior is improper, the corresponding posterior
is still proper. However, again we hope the mean of θC to be one because θC is
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a multiplicative random effect. Hence, we may propose the following prior on
θC, which satisfies E [θC]= 1 as well as has conjugate inverse gamma posterior.

πC(θ)∝ θ−k−2e−k/θ so that θC[i]
i.i.d.∼ IG(k+ 1, k),

E
[
θC[i]

]= 1, and Var
[
θC[i]

]= 1
k− 1

. (2.6)

Therefore, we can formulate the model selection in case of the average severity
part as follows:

[Naive Severity Model]

Data likelihood: Cit|θC[i] indep∼ G(ψit, θC[i]μit/ψit).

Prior distribution: P(θCi = θ)= 1{θ=1} for all i.

Posterior distribution:

P(θCi = θ |Ci1 = ci1, . . . ,CiTi = ciTi )∝ P({θCi = θ} ∩ {Ci1 = ci1, . . . ,CiTi = ciTi})
∝ 1{θ=1}.

Predictive distribution:

f (Ci,Ti+1|Ci1,Ci2, . . . ,CiTi )=
∫
f (Ci,Ti+1|θ)πC(θ |Ci1,Ci2, . . . ,CiTi )dθ

= f (Ci,Ti+1|θ = 1).

Therefore, we can see that Ci,Ti+1|Ci1,Ci2, . . . ,CiTi ∼ G(ψi,Ti+1,μi,Ti+1/ψi,Ti+1),
which means that predictive distribution of Ci,Ti+1 does not depend on the pre-
vious claim severity observations due to the marginal independence amongCi,t.

[Proposed Severity Model]

Data likelihood: Cit|θC[i] indep∼ G(ψit, θC[i]μit/ψit).

Prior distribution: πC(θ)∝ θ−k−2e−k/θ so that θC[i] ∼ IG(k+ 1, k) and
E
[
θC[i]

]= 1, Var
[
θC[i]

]= 1
k−1 . Therefore, as k→ ∞, πC(θ) degenerates to

the Dirac delta function at θ = 1, which means that the naive severity model
is a merely limiting case of the proposed severity model. According to the
Lemaire (1998), most of countries except for South Korea do not use histor-
ically observed claim amounts for the construction of penalty or bonus on a
policyholder, which supports the assertion that there is less variability on θC,
the random effect of the severity component than on θN , which is the random
effect of the frequency component. Therefore, k= 11 is used so that the 95%
HPD interval of θC under the proposed prior can be around (0.49, 1.61),
which is narrower than the 95% HPD interval of θN under the proposed prior.
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Indeed, if empirical Bayes method is applied by maximizing the marginal
likelihood with respect to both β and k where initial value of k as 11, then the
optimal k is given as 11.00226. However, since five digits of decimal might give
a false feeling of precision and 11.00226 is not much different from 11, k= 11
is used as the value of hyperparameter throughout this article.

Posterior distribution:

πC(θ |Ci1,Ci2, . . . ,CiTi )∝ πC(θ)
Ti∏
t=1

f (Cit|θ)∝ θ−k−2e−k/θ
(

Ti∏
t=1

θ−ψit
)
e−

(∑Ti
t=1

ψitCit
μit

)
/θ

∝ θ−
(∑Ti

t=1 ψit+k+2
)
e−

(∑Ti
t=1

ψitCit
μit

+k
)
/θ ,

so that θC[i]|Ci1,Ci2, . . . ,CiTi ∼ IG(k+∑Ti
t=1 ψit + 1,

∑Ti
t=1

ψitCit
μit

+ k).

Predictive distribution:

f (Ci,Ti+1|Ci1,Ci2, . . . ,CiTi )=
∫
f (Ci,Ti+1|θ)πC(θ |Ci1,Ci2, . . . ,CiTi )dθ

= (ψi,Ti+1Ci,Ti+1/μi,Ti+1)ψi,Ti+1

(k+∑Ti+1
t=1 ψi,tCi,t/μi,t)

∑Ti
t=1 ψi,t+k+1

× �(
∑Ti

t=1 ψi,t + k+ 1)C−1
i,Ti+1

�(ψi,Ti+1)�(
∑Ti

t=1 ψi,t + k+ 1)
.

Therefore, we can see that

Ci,Ti+1|Ci1,Ci2, . . . ,CiTi ∼ GP
(
k+

Ti∑
t=1

ψit + 1,

[
k+

Ti∑
t=1

ψi,t
Cit

μit

]
μi,Ti+1

ψi,Ti+1
,ψi,Ti+1

)
,

with predictive mean

E
[
Ci,Ti+1|Ci1,Ci2, . . . ,CiTi

]=
[
k+∑Ti

t=1 ψit
Cit
μit

]
k+∑Ti

t=1 ψit

μi,Ti+1

=
[
kφ +∑Ti

t=1 Sit/μit

]
kφ +∑Ti

t=1 Nit

μi,Ti+1,

since ψitCit =NitCit/φ = Sit/φ.
Note that generalized Pareto (GP) distribution is defined with the following

density as in Klugman et al. (2012):

f (y|a, τ , c)= �(a+ τ )
�(a)�(τ )

caxτ−1

(x+ c)a+τ
,

so that E [Y ]= c τ

a−1 when Y ∼ GP(a, τ , c).
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One can see that the suggested compoundmodel leaves the patterns that are
usually used in the actuarial field, the underlying assumption of independence
between the frequency and severity components by letting E[Cit|Nit, θC[i]]=
θC[i]μit = θC[i] exp(xitβ +Nitγ ), which is a flexible extension of traditional inde-
pendent compound risk model so that we may capture possible dependence
between the frequency and severity components via γ . It is an interesting topic
by itself to understand a posteriori premium of Si,Ti+1 with both types of depen-
dences, dependence between frequency and severity as well as dependence
among the claims of the same policyholder. However, a thorough discussion
on this topic is not covered in this article in order not to overwhelm the
readers.

3. BAYESIAN SENSITIVITY ANALYSIS WITH BREGMAN DIVERGENCE

Bayesian sensitivity analysis, which is also known as robust Bayesian analysis,
is an area which studies the impact on the posterior due to possible perturba-
tions of prior distribution. According to the philosophy of Bayesian statistics,
a modeler specifies a prior based on his/her insight or experience and updates
it with observed data, which yields the posterior distribution used for inference
about the parameter(s). It implies that misspecification of the prior distribution
might affect the resulting posterior distribution and statistical inference based
on the posterior. Thus, it is desirable to test whether a prior would be robust, or
less sensitive to possible misspecification so that there can be more consistency
on the Bayesian inference, which is based on the obtained posterior distribution
of parameter(s) even if the used prior by the modeler is misspecified one.

There are some proposed methods for modeling misspecification of prior
distribution which are described in Berger et al. (1994), but here we can use
the comparison between given π(θ) and the ε-contaminated prior πε(θ), which
has been used in the actuarial literature such as Gómez-Déniz et al. (2002b),
Gómez-Déniz and Vázquez-Polo (2005), and Gómez-Déniz et al. (2006) and is
defined as follows:

�= {πε(θ) : πε(θ)= (1− ε)π(θ)+ ε q(θ), q ∈Q, ε ∈ [0, 1]}, (3.1)

where Q is a certain class of prior distributions used as perturbations.
In this formulation, π(θ) is the prior chosen by the modeler, whereas q(θ)

is a distinct prior irrelevant to π(θ). Therefore, by assuming that the “true”
prior, π true(θ), is given as πε(θ), the amount of ε works as a degree of prior mis-
specification. For example, if ε = 0, then π true(θ)= πε(θ)= π(θ) so that there is
no misspecification of prior distribution chosen by the modeler. On the other
hand, if ε = 1, then π true(θ)= πε(θ)= q(θ) so that the modeler totally failed to
specify the prior distribution in a correct way. In this regard, it is of our interest
to measure the discrepancy between πε(θ |z), the “true” posterior, and π(θ |z),
the posterior based on the prior choice of the modeler.
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In the perspective of ratemaking with longitudinal data, we may apply
this idea to test the robustness of the naive prior (equivalent to constant
random effects, which is one of the industry benchmarks) and the proposed
prior in both frequency and severity components by comparing the measured
discrepancy between πε(θ |z) and π(θ |z).

To measure the distance between the posterior densities, we can consider
the concept of Bregman divergence proposed by Bregman (1967). Bregman
divergence has some properties of usual metric but neither is symmetric nor
satisfies the triangle inequality. After the introduction of its concept, it has been
utilized in a variety of statistical learning.

For example, Gelfand and Dey (1991) used Kullback–Leibler divergence in
Bayesian sensitivity analysis, while Peng and Dey (1995) applied f -divergence
in the context of outlier detection. Note that both KL divergence and
f -divergence can be explained in terms of Bregman divergence. Zhang (2004)
used Bregman divergence to study statistical behavior and consistency of
classification methods. Recently, Bregman divergence was used to obtain a
class of loss function in order for robust Bayesian prediction according to
Karimnezhad and Parsian (2018).

According to Goh and Dey (2014), the difference between πε(θ |z) and
π(θ |z) can be measured by using functional Bregman divergence which is
defined as follows:

Definition 1. Let h1, h2 be nonnegative measurable functions on σ -finite mea-
sure space (Z ,�, v) and ψ : (0,∞)→R be a strictly convex and differentiable
function. Then the functional Bregman divergence Dψ is defined as

D(h1, h2)=
∫ {

ψ(h1(z))−ψ(h2(z))− (h1(z)− h2(z))ψ ′(h2(z))
}
dv(z).

It is easy to check that D(h, h)= 0 for any nonnegative measurable function h.
Therefore, it is desirable to minimize the following quantity, which measures
the relative difference between πε(θ |z) and π(θ |z):

DR
ψ =Dψ

(
πε(θ |z)
π(θ |z) , 1

)

=
∫ {

ψ

(
πε(θ |z)
π(θ |z)

)
−ψ(1)−

(
πε(θ |z)
π(θ |z) − 1

)
ψ ′(1)

}
π(θ |z)dθ

=
∫ {

ψ

(
πε(θ |z)
π(θ |z)

)
π(θ |z)−ψ(1)π(θ |z)− (πε(θ |z)− π(θ |z)) ψ ′(1)

}
dθ

=
∫
ψ

(
πε(θ |z)
π(θ |z)

)
π(θ |z)dθ −ψ(1).

(3.2)
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Note that if we can obtain the closed forms of both πε(θ) and π(θ), and further-
more it is easy to evaluate the integral given in the end of (3.2), then it might be
okay to directly use the closed form as in the following lemma.

Lemma 1. Suppose f (z|θ) is data likelihood and P(θ = 1)= 1, in other words, θ
has the point mass at 1. Then DR

ψ is given as follows:

DR
ψ =ψ

(
πε(1|z)
π(1|z)

)
−ψ(1)

=ψ

(
πε(1)f (z|1)
mε(1|z)

1
π(1|z)

)
−ψ(1)

=ψ

(
(1− ε)π(1)+ ε q(1)
(1− ε)m(z)+ ε mq(z)

f (z|1)
π(1|z)

)
−ψ(1)

=ψ

(
(1− ε)+ ε q(1)/π(1)

(1− ε)+ ε mq(z)/f (z|1)
)

−ψ(1),

where m(z)= ∫
f (z|θ)π(θ)dθ and mq(z)=

∫
f (z|θ)q(θ)dθ .

Proof. Since θ has the point mass at 1, we have∫
ψ

(
πε(θ |z)
π(θ |z)

)
π(θ |z)dθ =ψ

(
πε(1|z)
π(1|z)

)
.

Furthermore, since P(θ = 1|z)= 1 as well, π(θ) and π(θ |z) are the same as the
Dirac delta function at θ = 1. Therefore,

m(z)=
∫
f (z|θ)π(θ)dθ = f (z|1), π(1)= π(1|z). �

Since π(θ) is the Dirac delta function, it has infinite value when θ = 1.
Therefore, in actual implementation, we may use π̃(θ)∼N (1, 10−12).

However, in most of cases, it might not be possible to obtain the closed
form of either πε(θ) or π(θ). Even though we have the closed forms, still we
are not sure whether the integral is able to be evaluated in an analytic way.
Therefore, by denoting δ(θ) := πε(θ)/π(θ), we may use the following equation
as shown in Goh and Dey (2014), which is equivalent to (3.2) but enables us to
implement MCMC algorithm to evaluate DR

ψ numerically:

DR
ψ +ψ(1)=

∫
ψ

(
πε(θ |z)
π(θ |z)

)
π(θ |z)dθ

=
∫
ψ

(
πε(θ)f (z|θ)

π(θ |z) ∫ πε(θ)f (z|θ)dθ
)
π(θ |z)dθ

=
∫
ψ

(
δ(θ)π(θ)f (z|θ)

π(θ |z) ∫ δ(θ)π(θ)f (z|θ)dθ
)
π(θ |z)dθ
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=
∫
ψ

(
δ(θ)π(θ |z)

π(θ |z) ∫ δ(θ)π(θ |z)dθ
)
π(θ |z)dθ

=
∫
ψ

(
δ(θ)∫

δ(θ)π(θ |z)dθ
)
π(θ |z)dθ


 1
J

J∑
j=1

[
ψ

(
δ(θ̂j)

1
J

∑J
j=1 δ(θ̂j)

)]
,

(3.3)

where θ̂j s are posterior samples derived from π(θ |z).
Finally, to perform the sensitivity analysis with the contaminated class of

priors in (3.1), it is desirable to choose Q carefully so that it might neither be
too broad nor narrow, as mentioned in Berger and Berliner (1986). Therefore,
here we can consider the family Q which satisfies the usual assumption of
multiplicative random effects, having 1 as the prior mean. Furthermore, since
we are not sure whether the naive prior or the proposed prior represents true
dynamics on θ , we consider the family of distributionQ which has the average
of standard deviations of θ under the naive and proposed priors as the stan-
dard deviation of θ with q(θ). One can see that there are some research works
which specified the class Q in terms of moments, including but not limited to
Eichenauer et al. (1988), Young (1998), Insua et al. (1999), Gómez-Déniz et al.
(2002a), Gómez-Déniz et al. (2005), Boratyńska (2017), and Sánchez-Sánchez
et al. (2019).

Therefore, Q can be defined as follows:

Q=
{
q(θ) :Eq[θ ]= 1, Varq[θ ]= 1

4
(Varp[θ ]+Varn[θ ])= Varp[θ ]

4

}
.

Here Varn[θ ] means the variance of θ under the naive prior and Varp[θ ] means
the variance of θ under the proposed prior. And it is also easy to see that
Varn[θ ]= 0 and

√
Varq[θ ]= √

Varp[θ ]/2.
Therefore, in the following section, we are considering uniform, lognormal,

and normal priors as possible perturbations for θN and θC, respectively, so that
they can satisfy both mean and variance constraints as follows:

For θN : q1(θ)∼U (0.5557, 1.4443), q2(θ)∼LN (−0.0319, 0.2524),

q3(θ)∼N (1, 0.0658),

For θC : q1(θ)∼U (0.7261, 1.2738), q2(θ)∼LN (−0.0123, 0.1571),

q3(θ)∼N (1, 0.0250).

4. DATA ANALYSIS

For the empirical analysis, a public dataset on insurance claims provided
by Wisconsin Local Government Property Insurance Fund (LGPIF) is used,
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TABLE 2

OBSERVABLE POLICY CHARACTERISTICS USED AS COVARIATES.

Categorical
variables Description Proportions (%)

TypeCity Indicator for city entity Y = 1 14
TypeCounty Indicator for county entity Y = 1 5.78
TypeMisc Indicator for miscellaneous entity Y = 1 11.04
TypeSchool Indicator for school entity Y = 1 28.17
TypeTown Indicator for town entity Y = 1 17.28
TypeVillage Indicator for village entity Y = 1 23.73
NoClaimCreditIM No IM claim in three consecutive

prior years
Y = 1 42.1

Continuous Minimum Mean Maximum
variables
CoverageIM Log coverage amount of IM

claim in mm
0 0.85 46.75

lnDeductIM Log deductible amount for IM
claim

0 5.34 9.21

TABLE 3

SUMMARY STATISTICS FOR CLAIM FREQUENCY.

Minimum Mean Variance Maximum

FreqIM Number of IM claims in a year 0 0.06 0.1 6

which has been used in actuarial literature such as Frees et al. (2016). It con-
sists of 5677 observations in training set and 1098 observations in test set. It
is a longitudinal dataset with 1234 policyholders which can be tracked with a
unique identifier, followed for 5 years on multiple lines of claims. Among the
information on multiline insurance, only inland marine (IM) claim informa-
tion was used. Given dataset has seven categorical explanatory variables, most
of which are indicator variables on the types of location as described in Table
2. Note that “NoClaimCreditIM” is used in both frequency and severity mod-
eling considering current practices in ratemaking, because a premium discount
is followed by the absence of claim for three consecutive prior years, as a rule
of thumb in practice.

As continuous variables, the coverage amount of IM claim and deductible
amount for IM claim were used, which are expected to have positive and
negative effects on the claims, respectively.

In order to apply the idea of capturing individual heterogeneity via ran-
dom effect, we should assume that “The same person or object” is followed
for many years by a unique identifier even though the characteristics of insur-
ance contract change, and the source of individual heterogeneity is consistent
for observed years. For inland marine insurance data described above, one can

https://doi.org/10.1017/asb.2020.19 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.19


792 H. JEONG

TABLE 4

DISTRIBUTION OF IM FREQUENCY.

Count 0 1 2 3 4 5 6

FreqIM 5441 182 40 6 4 2 2

TABLE 5

SUMMARY STATISTICS FOR IM SEVERITY.

Minimum Mean Variance Maximum

log(yAvgIM) (log) Average size of IM
claim in a year

4.09 8.45 2.23 13.09

see that it satisfies both assumptions since a specific object can be observed
repeatedly via a unique classifier. However, in case of automobile insurance,
validity of the assumptions could be controversial. For example, it is possible
a policyholder shares a car with his/her kid or his/her driving skills (one of the
unobserved risk characteristics) might be improved over time. A thorough dis-
cussion on models with varying or multiple sources of random effects could be
an interesting topic for future research.

In terms of frequency, IM has relatively moderate dispersion of the number
of claims per year so that maximum number of claims per year is six as shown
in Tables 3 and 4. Since the observed sample mean of the number of claims
is much smaller than the observed sample variance, it is natural to consider
the use of different types of frequency distribution on the modeling other than
naive Poisson distribution. Moreover, it can be shown that marginal distri-
bution of claim frequency follows a multivariate negative binomial (MVNB)
distribution under the proposed prior so that it provides another rationale
to consider a non-point mass prior on the random effect of the frequency
component.

After we fixed the hyperparameters on the priors of each random effect
component, the marginal likelihood of both frequency and the average severity
components could be obtained with the naive and proposed priors, respec-
tively. Upon the obtained marginal likelihood, as a type of empirical Bayes
method, the regression coefficients can be estimated with the marginal like-
lihood and observed data. For the frequency component, use of the naive
prior leads us to the marginal likelihood of independent Poisson distribu-
tion, whereas the use of proposed prior leads us to the marginal likelihood of
MVNB distribution. Under each marginal likelihood, α̂ were obtained, which
are hyperparameters in the frequency model associated with the explanatory
variables. The estimated value of α̂ and loglikelihoods for both Poisson and
MVNB models are shown in Table 6.

Note that one can try to apply either Wald test or likelihood ratio test
(LRT) to test the presence of random effects in the frequency component,
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TABLE 6

REGRESSION ESTIMATES FROM MARGINAL FREQUENCY LIKELIHOODS.

Poisson MVNB

Estimate Standard error Estimate Standard error

(Intercept) −6.9455 1.0211 −7.3601 1.1532
TypeCity 3.7219 1.0101 3.7844 1.1359
TypeCounty 4.5654 1.0124 4.6135 1.1409
TypeSchool 1.8423 1.0274 2.0799 1.1496
TypeTown 2.3378 1.0263 2.5526 1.1494
TypeVillage 2.7545 1.0139 2.9450 1.1383
CoverageIM 0.0647 0.0072 0.0946 0.0143
lnDeductIM 0.1531 0.0455 0.1732 0.0520
NoClaimCreditIM −0.3697 0.1283 −0.1985 0.1326

Loglikelihood −973.2993 −931.2171

which is equivalent to test whether r= ∞ or not. If we let H0 : r= ∞ and
H1 : r<∞, then we have

�0 =: �N(α̂, r̂|H0)= −973.2993<−931.2171= �N(α̂, r̂|r= 3.8)

≤ �N(α̂, r̂|H1) := �1,

so that 2(�1 − �0) ≥ 2(−931.2171 + 973.2993) = 84.1644 > 15.1367 =
χ 2
0.9999(1). Therefore, one may conclude that MVNBmodel is more appropriate

than naive Poisson model for given frequency data based on LRT. However,
we should be careful to apply LRT in this case since we are testing the hypoth-
esis at the boundary of the parameter space, and there is no assurance that the
LRT test statistic would follow asymptotically χ 2 distribution, as mentioned
in Andrews (2001) and Cameron and Trivedi (2013). Besides, the applicability
of LRT depends on the nested structure between the naive and proposed prior,
which may not hold when proposed prior follows, for example, a two-point
mixture of gamma and normal distributions. In general, it is very unlikely to
assume that πN(θ) would follow the nested structure described as H0 : r= ∞
and H1 : r<∞ for sure, but Bayesian sensitivity analysis can be used without
assuming the nested structure, unlike LRT.

In case of the average severity component whose summary statistics is pro-
vided in Table 5, use of the naive prior leads us to independent gammamarginal
likelihood, whereas use of the proposed prior leads us to marginal likelihood
of multivariate generalized Pareto (MVGP) distribution. Again, under each
marginal likelihood, β̂ and γ̂ were obtained, which are hyperparameters in the
average severity model associated with the explanatory variables. The esti-
mated values of β̂, γ̂ , and loglikelihoods for both gamma and MVGP models
are shown in Table 7.
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TABLE 7

REGRESSION ESTIMATES FROM MARGINAL AVERAGE SEVERITY LIKELIHOODS.

Gamma MVGP

Estimate Standard error Estimate Standard error

(Intercept) 8.8954 2.2013 8.7666 1.5147
TypeCity 2.5348 2.0274 2.5222 1.3807
TypeCounty 2.5214 2.0309 2.4038 1.3865
TypeSchool 1.1701 2.0645 1.2718 1.4083
TypeTown 1.6037 2.0552 1.5909 1.4062
TypeVillage 1.2629 2.0284 1.2599 1.3793
CoverageIM 0.0326 0.0184 0.0346 0.0152
lnDeductIM −0.1653 0.1442 −0.1533 0.1056
NoClaimCreditIM −0.1095 0.2775 −0.0957 0.2000
FreqIM −0.4632 0.1004 −0.4448 0.0717

Loglikelihood −3256.036 −2416.886

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Freq Uniform Perturbation

Perturbation level (e )

Se
ns

iti
vi

ty
 o

f p
os

te
rio

r(
D y
R

)

Naive Prior
Proposed Prior

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Freq Lognormal Perturbation

Perturbation level (e )

Se
ns

iti
vi

ty
 o

f p
os

te
rio

r(
D y
R

)

Naive Prior
Proposed Prior

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Freq Normal Perturbation

Perturbation level (e )

Se
ns

iti
vi

ty
 o

f p
os

te
rio

r(
D y
R

)
Naive Prior
Proposed Prior

FIGURE 1: Sensitivities of frequency priors with various perturbation priors.

With the hyperparameters from the marginal likelihoods, we can perform
Bayesian sensitivity analysis via Bregman divergence both for the frequency
priors and the average severity priors. For calculating DR

ψ , the following con-
vex function ψ(z)= z log z− z+ 1 is used, which is a special case of a class of
convex functions considered in Eguchi and Kano (2001).

Figure 1 shows us the result of Bayesian sensitivity analysis for the fre-
quency component. Here the x-axis of each graph means the magnitude of
perturbation given by ε ∈ [0, 1] and y-axis means the sensitivity of posterior
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FIGURE 2: Sensitivities of severity priors with various perturbation priors.

for θN measured by DR
ψ = ∫

ψ

(
πε(θ |z)
π(θ |z)

)
π(θ |z)dθ −ψ(1). Since πε(θN |n)=

π(θN |n) if ε = 0 andψ(1)= 0 by definition; one can expect thatDR
ψ = 0 provided

ε = 0 and DR
ψ increases as the value of ε gets larger because of the increasing

deviation of π(θN |n) from πε(θN |n), which is assumed to be the true poste-
rior for θN . However, one can clearly see that the sensitivity of posterior DR

ψ

increases much faster when we use the naive prior than when the proposed pos-
terior is used in all levels and distributions of perturbation. Therefore, Figure 1
tells us that use of the proposed prior for θN is less sensitive to possible mis-
specification of (usually unknown) the true prior than use of the naive prior for
θN , which is the industry benchmark so that it would be desirable to consider
the use of nonconstant random effects in the frequency component for given
dataset.

In case of the average severity priors for θC, as shown in Figure 2, we
can observe the similar results so that under perturbations with uniform, log-
normal, and normal priors, again the naive prior, point mass shows higher
sensitivity DR

ψ in all perturbation levels ε. Therefore, we can claim that in both
frequency and severity cases, use of the proposed priors is more robust from
possible misspecification of the true prior distribution.

Finally, use of the proposed priors could be justified under out-of-sample
validation. Using the predictive distributions in both frequency and the average
severity, the expected total losses are calculated based on the observed charac-
teristics of policyholders and compared with the actual total claims in the test
set. As shown in Table 8, the combination of proposed models in both fre-
quency and the average severity shows better performance on the prediction
results of total claims in terms of both root-mean-square error (RMSE) and
mean absolute error (MAE).
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TABLE 8

VALIDATION MEASURES FOR THE PREDICTION OF TOTAL CLAIMS.

Naive model Proposed model

RMSE 6692.328 6443.930
MAE 1800.494 1541.881

5. CONCLUSION

In this paper, we explored a framework to test the presence of nonconstant ran-
dom effects via prior elicitation and Bayesian sensitivity analysis. Use of a point
mass prior on random effects might be too informative so that it might be vul-
nerable to possible misspecification of the true prior distribution compared to
less informative priors proposed in this article. Upon the use of Bayesian sensi-
tivity analysis with Bregman divergence, it was shown that the proposed priors
might yield the more robustness than the naive priors both in frequency and the
average severity components, respectively. Furthermore, the predicted values
of total claims based on the estimates from the proposed marginal likelihood
ended up with better performance than the predicted values of total claims
based on the naive independent data likelihood. Therefore, this study pro-
vides a theoretical framework to test presence of nonconstant random effects
in longitudinal insurance claim datasets as well as the empirical results.
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