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Binary fluid mixtures with a negative separation ratio heated from below exhibit
steady spatially localized states called convectons for supercritical Rayleigh numbers.
Numerical continuation is used to compute such states in the presence of both
Neumann boundary conditions and no-slip no-flux boundary conditions in the
horizontal. In addition to the previously identified convectons, new states referred
to as anticonvectons with a void in the centre of the domain, and wall-attached
convectons attached to one or other wall are identified. Bound states of convectons
and anticonvectons called multiconvecton states are also computed. All these states
are located in the so-called snaking or pinning region in the Rayleigh number and
may be stable. The results are compared with existing results with periodic boundary
conditions.
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1. Introduction
Spatially localized states are of great interest in the theory of pattern formation.

They occur not only in vibrating granular media (Umbanhowar, Melo & Swinney
1996) and polymeric fluids (Lioubashevski et al. 1999) but also in reaction–diffusion
systems (Lee et al. 1994), nonlinear optics (Vladimirov et al. 2002), ferrofluids
(Richter & Barashenkov 2005) and in several convection systems, including natural
doubly diffusive convection (Ghorayeb & Mojtabi 1997; Bergeon & Knobloch 2008),
magnetoconvection (Blanchflower 1999; Blanchflower & Weiss 2002) and binary
fluid convection (Batiste & Knobloch 2005a; Batiste et al. 2006; Jung & Lücke
2007). Similar structures, localized in the cross-stream direction, are also present
in plane Couette flow (Schneider, Gibson & Burke 2010). Recent years have seen
substantial progress in our understanding of such states, both in one and two spatial
dimensions. However, this understanding has largely been developed on the basis of
simple variational models such as the Swift–Hohenberg equation (Burke & Knobloch
2007b). It is therefore of great interest to examine in greater detail the properties
of ‘real’ systems such as convection or shear flows in order to identify gaps in
our understanding of the properties of these states, and to suggest extensions of
the theory to realistic situations. In the present paper, we focus on spatially localized
steady convection in binary mixtures with negative separation ratio heated from below
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Convectons in binary fluid convection 587

(Batiste & Knobloch 2005a; Batiste et al. 2006), and follow Blanchflower (1999) in
referring to such states as convectons to distinguish them from other localized states
found in binary fluid convection such as localized travelling waves (Kolodner, Surko
& Williams 1989; Steinberg et al. 1989; Barten et al. 1995; Batiste & Knobloch
2005b).

In binary fluid convection, convectons have been observed to emerge from dispersive
chaos (Kolodner, Glazier & Williams 1990) via remarkable relaxation oscillations
(Batiste et al. 2006): as the Rayleigh number R is increased, the dispersive chaos state
undergoes a focusing instability, resulting in spatially localized convection in part
of the domain, with convection suppressed elsewhere. When these localized states
first begin to form they are weakly unstable and gradually erode before collapsing
back into the unstable dispersive chaos state. Thus, the rapid focusing instability is
followed by a slow erosion phase before the cycle repeats. Since the cycle involves a
chaotic state the resulting oscillation is in general irregular. However, if the footprint
excavated in the concentration distribution by the convecton during its lifetime heals
on a time scale longer than that of the focusing instability, the convecton will generally
reform in the same location, although it may differ from its predecessor. For slightly
larger values of R the convectons become stable and do so despite the fact that the
background laminar state is unstable to the oscillatory instability responsible for the
presence of dispersive chaos at lower R. As explained by Batiste et al. (2006), when
the oscillatory instability of the conduction state is convective and convectons are
present, we do not expect to see a background of travelling waves. Such waves are
only observed once the Rayleigh number exceeds the threshold for absolute instability
(Alonso et al. 2007).

The binary mixture convectons are organized within a snaking region R− < R < R+

in the Rayleigh number R. Within this region, one finds two distinct types of
convectons, with odd and even parity. The presence of steady distinct parity states can
be traced to the presence of a reflection symmetry in the midplane of the system, and
so requires not only the Boussinesq symmetry but also identical boundary conditions
at the top and bottom of the layer. These states lie on distinct solution branches that
snake back and forth across the snaking region. At each saddle-node near R = R−,
the convecton nucleates a pair of rolls, one on either side, respecting the parity of the
structure. As one follows each branch upward, towards R = R+, these rolls strengthen
to the amplitude of the existing rolls. As a result, successive convectons at R = R+

differ by a pair of rolls, one on each side, but are otherwise identical. Thus, the snaking
interval contains a large multiplicity of coexisting odd and even convectons of different
lengths, many of which turn out to be numerically stable (Batiste et al. 2006; Alonso
et al. 2010). The snaking region is a consequence of ‘pinning’ of the fronts bounding
each convecton on either side to the periodic structure within (Pomeau 1986). In
analogy with the one-dimensional Swift–Hohenberg equation, we believe that the
detailed structure of the resulting snaking or pinning region (Burke & Knobloch
2007b) is a consequence of the transverse intersections of the unstable manifold of
the conduction state and the centre-stable manifold of periodic convection within the
steady-state convection equations viewed as a dynamical system in space (Woods &
Champneys 1999; Coullet, Riera & Tresser 2000; Beck et al. 2009). The necessary
conditions for its presence are (a) coexistence between the conduction and convection
states (i.e. the requirement that convection be subcritical), (b) spatial reversibility
(i.e. the requirement that the equations describing steady convection are invariant
under reflection x → −x, together with the corresponding change in the dependent
variables) and (c) the presence of a heteroclinic connection between the conduction
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Figure 1. (Colour online) (a) An even-parity convecton and (b) a phase-matched even-parity
anticonvecton, both of which terminate together on an even-parity P7 state with seven roll pairs
within the Γ = 14 periodic domain (c). (d ) An odd-parity convecton and (e) a phase-matched
odd-parity anticonvecton, both of which terminate together on an odd-parity P7 state (f ). This
state is a translate of the state (c), implying that both even and odd localized states terminate
at the same Rayleigh number, here R = 1795. The states are visualized in terms of contours of
constant temperature fluctuation θ (upper panels) and contours of constant concentration C
(lower panels). Here and elsewhere, all solution profiles use the same colour table to indicate
the amplitude of the temperature and concentration fields. From Mercader et al. (2010a).

and convection states (i.e. the presence of a front connecting these states). Under
these circumstances, reversibility guarantees the existence of a reverse front and these
fronts can then be used back-to-back to construct different types of steady localized
structures provided R is confined to the pinning region (Champneys 1998; Hunt et al.
2000; Burke & Knobloch 2007b).

Binary fluid convection is subcritical for sufficiently negative separation ratios S.
Existing computations of the convectons present in this case used periodic boundary
conditions (PBC) and a value of S for which the snaking or pinning region was quite
narrow (Batiste et al. 2006). For larger values of |S|, the width of this interval increases
(Mercader et al. 2010b) and for the parameters used below convectons are present
over a relatively wide interval of Rayleigh numbers, allowing us to study the variety
of steady states present in the snaking region. For this purpose, we use a numerical
domain with a modest aspect ratio Γ . Since the process of nucleating new rolls must
terminate when the domain is full, snaking in a finite domain terminates after a finite
number of turns. The manner in which this occurs depends strongly on the boundary
conditions used and differs profoundly between PBC (Bergeon et al. 2008) and closed
container boundary conditions (Mercader et al. 2009). With PBC, the bifurcation
diagram shows a pair of branches of localized states with odd and even parity. These
bifurcate together from the subcritical primary branch of periodic states and typically
(but not always) terminate together in an Eckhaus bifurcation on another branch of
periodic states. For the purposes of this paper, it is important to understand in detail
what occurs at this bifurcation. This understanding is complicated by the presence of
midplane reflection symmetry whenever the boundary conditions at top and bottom
of the layer are identical (the usual case). Figure 1(a) shows a typical even-parity
convecton in a spatially periodic domain with period Γ =14 computed by Mercader
et al. (2010a). The convecton has been placed at the centre of the domain although
it can of course form anywhere in the domain. In particular, if the convecton is
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Convectons in binary fluid convection 589

translated by Γ/2 the void region, hereafter an ‘anticonvecton’, will be located in
the centre of the domain instead of the convecton itself. The original convecton now
appears split into two portions, with half located at the left boundary and half at
the right boundary. Figure 1(b) shows an anticonvecton obtained from figure 1(a)
by a Γ/2 translation, followed by a reflection in the midplane. The convecton and
anticonvecton generated in this way are not only both reflection-symmetric with
respect to x = 0 but are in addition phase-matched, in the sense that the rising and
descending plumes are located at the same spatial locations in both. As a result, both
bifurcate simultaneously from the even-parity periodic state shown in figure 1(c). As
shown in figure 1(d–f ) the same construction for odd-parity convectons shows that
the odd-parity convecton shown in figure 1(d ) and the odd-parity anticonvecton in
figure 1(e) bifurcate simultaneously from the odd-parity periodic state in figure 1(f ).
Moreover, since each of the states in figure 1 can be reflected in the midplane to obtain
new solutions, there are in fact eight branches of localized states in the bifurcation
diagram, all of which bifurcate simultaneously from a circle of periodic states and
all of which terminate simultaneously on another circle of periodic states (Mercader
et al. 2010a). However, since the four even-parity states are related by symmetry, they
appear as a single branch in a bifurcation diagram that shows the Nusselt number
as a function of the Rayleigh number, and similarly for the odd-parity states. The
circle of periodic states is likewise represented by a single branch (with all translation-
related periodic states represented by a single representative). Such a representation
allows for the fact that the localized states terminate on different representatives from
the group orbit of these states (figure 1). These observations are important in what
follows since they allow us to understand the consequences of changing the lateral
boundary conditions away from PBC.

In fact, the odd- and even-parity states do not always terminate together on the
same branch of periodic states – their termination points change discontinuously as
Γ varies through a process that resembles ‘unzipping’ (Bergeon et al. 2008; Dawes
2009), and occurs at different critical values of Γ for different parity states. In cases
where the branches of localized states terminate on different branches of periodic
states, each termination point is also a termination point of a branch of mixed modes
that does not snake (Bergeon et al. 2008; Mercader et al. 2009). Thus, in all cases
the Eckhaus point is the termination point of two branches, one of which consists of
states with odd parity while the other consists of states with even parity. Once again
this situation corresponds to the simultaneous termination of eight branches, four of
which correspond to even states that terminate on an even-parity periodic state while
the remaining four correspond to odd states that terminate on an odd-parity periodic
state, as seen in figure 1.

This paper is motivated by a simple question: do the convecton and anticonvecton
states persist when the boundary conditions are changed to realistic lateral boundary
conditions and do they retain their properties? It is immediately clear that the lateral
boundaries destroy the symmetry relating the convecton and anticonvecton states
by eliminating the translation invariance that relates them. Thus, one expects the
convecton and anticonvectons to have different properties, even if they persist in
some form or other. In this paper we show that these states are indeed present in
domains with realistic lateral boundary conditions and show how their properties
are modified by the presence of the boundaries. We find it easiest to consider the
case of Neumann boundary conditions (NBC) first. These correspond to free-slip
thermally insulating boundary conditions. Once we understand the role played by the
lost symmetry in this case, we can understand the origin of the more complex states
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590 I. Mercader, O. Batiste, A. Alonso and E. Knobloch

we find with realistic closed container boundary conditions. These include not only
anticonvectons but also convectons attached to one or other lateral boundary, and a
variety of bound states of two convectons. We show by numerical continuation that
all these states snake in a particular interval of Rayleigh numbers called the snaking
or pinning region, and relate the results to existing results with PBC.

This paper is organized as follows. In § 2, we introduce the equations for binary
fluid convection, followed in § 3 by a description of our results on single-pulse
localized states with NBC. These results are extended to closed containers with
no-slip boundaries in § 4. Sections 5 and 6 describe the corresponding results for
two-pulse states. The paper concludes with a brief discussion in § 7.

2. Formulation of the problem
Binary mixtures are characterized by cross-diffusion quantified by the separation

ratio S. When S < 0, the heavier component (of concentration C) migrates up
the temperature gradient. Thus, in a layer heated from below the destabilizing
temperature gradient competes with a stabilizing concentration gradient that develops
in response to the heating. If this effect is strong enough convection sets in as growing
oscillations once the Rayleigh number R exceeds a critical value Rc; this instability is
typically subcritical and develops into a variety of travelling wave states depending
on parameters and initial conditions. The convectons that are of interest here emerge
from this time-dependent state as described by Batiste et al. (2006).

In this paper we study binary fluid convection in two spatial dimensions. The system
is described by the dimensionless equations (Mercader, Alonso & Batiste 2004)

ut + (u · ∇)u = −∇P + σR[(1 + S)θ − Sη] ẑ + σ∇2u, (2.1)

θt + (u · ∇)θ = w + ∇2θ, (2.2)

ηt + (u · ∇)η = τ∇2η + ∇2θ, (2.3)

together with the incompressibility condition

∇ · u = 0. (2.4)

Here u ≡ (u, w) is the velocity field in (x, z) coordinates, P is the pressure, and
θ denotes the departure of the temperature from its conduction profile, in units
of the imposed temperature difference �T > 0 across the layer. The variable η is
defined such that its gradient represents the dimensionless convective mass flux. Thus,
η ≡ θ −Σ , where C =1−z+Σ is the concentration of the heavier component in units
of the concentration difference that develops across the layer as a result of cross-
diffusion. The system is specified by four dimensionless parameters: the Rayleigh
number R providing a dimensionless measure of the imposed temperature difference
�T , the separation ratio S that measures the resulting concentration contribution to
the buoyancy force due to cross-diffusion, and the Prandtl and Lewis numbers σ ,
τ , in addition to the aspect ratio Γ . For the no-slip fixed temperature boundaries
employed here u = θ = ηz = 0 on z = 0, 1.

In the following, we shall be interested in different types of steady solutions of (2.1)–
(2.4). Of particular interest are even- and odd-parity solutions. These satisfy (u(x, z),
w(x, z), θ(x, z), η(x, z)) = (−u(−x, z), w(−x, z), θ(−x, z), η(−x, z)) and (u(x, z),
w(x, z), θ(x, z), η(x, z)) = − (u(−x, 1 − z), w(−x, 1 − z), θ(−x, 1 − z), η(−x, 1 − z)),
respectively, relative to a suitable origin in x. Thus, even solutions are invariant under
the reflection x → −x while odd states are point-symmetric. These symmetries in turn
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imply that both states are stationary and hence do not drift. These are the only
steady solutions that can bifurcate from the conduction state (Crawford & Knobloch
1991). We compute such solutions using numerical continuation as described by
Mercader, Batiste & Alonso (2006). A Newton solver together with initial conditions
of appropriate type is used to find steady solutions required to initialize the procedure.
Throughout we focus on domains of aspect ratio Γ = 14 subject to one of three sets
of boundary conditions in the horizontal: (i) PBC with period Γ , (ii) NBC, viz.

u = wx = θx = ηx = 0 on x = ±Γ/2, (2.5)

and (iii) insulating closed container boundary conditions (ICCBC), viz.

u = θx = ηx = 0 on x = ±Γ/2, (2.6)

corresponding to no-slip, thermally insulating lateral boundaries. The modest aspect
ratio used is large enough to allow well-localized structures and permits a much more
detailed study of the problem than the aspect ratio Γ =60 used by Batiste et al.
(2006).

The results obtained below are for water–ethanol mixtures with S = −0.1, σ = 7,
τ = 0.01. For these parameter values, the conduction state loses stability at a Hopf
bifurcation at Rc ≈ 1909; however, we do not compute the time-dependent states that
result.

3. Single-pulse states: Neumann boundary conditions
NBC have a simple but very useful property. All steady solutions satisfying NBC

on a domain of aspect ratio Γ can be found by solving the problem on a periodic
domain with period 2Γ and picking out the solutions that solve the original NBC
problem (Crawford et al. 1991). The essential point is that any solution of the NBC
problem can be reflected in a lateral boundary without introducing discontinuities in
any spatial derivative; as a result, the solution with its reflection satisfies the equation
on the domain 2Γ with PBC. Moreover, all solutions of this PBC problem that are
even with respect to the boundary automatically satisfy NBC on the domain Γ . This
simple observation has several consequences. First, the linear stability problem for
the conduction state is solved by sines and cosines with fixed values of the mode
number. These eigenstates can be used to construct nonlinear states and these can
therefore be characterized by the mode number of the eigenstate. Thus even solutions
have wavenumbers 2πn/Γ (plus harmonics) while odd solutions have wavenumbers
2π(n + (1/2))/Γ (plus harmonics), where n is an integer (n= 0, 1, . . .). This is not the
case for non-NBC for which the linear eigenstates are not pure sines or cosines, and
the wavelength of the solution can change as a function of its amplitude.

The fact that the NBC problem can be embedded in a PBC problem is responsible
for the presence of a ‘hidden’ translation symmetry in the NBC problem (Crawford
et al. 1991), which is in turn responsible for the presence of well-defined mode
numbers. This hidden symmetry is also responsible for the fact that not only odd-
parity but also even-parity solutions bifurcate from the conduction state in pitchfork
bifurcations.

3.1. Even-parity convectons and anticonvectons

The bifurcation diagram showing the Nusselt number Nu for even-parity convectons
with NBC as a function of the Rayleigh number R is shown in figure 2(a). These states
are centred in the middle of the domain (figure 3a, top) and snake within a snaking
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Figure 2. Bifurcation diagrams with NBC on a Γ =14 domain showing (a) even-parity
localized convectons (LC) and phase-matched anticonvectons (LH), and (b) even-parity
phase-matched mixed modes of convecton (MC) and hole (MH) type. The LC and LH
states are related by a ‘hidden’ symmetry and likewise for the mixed modes, and so are
represented by a single branch. The LC/LH branch snakes and the width of the snaking
region is identical to that of even-parity states with PBC. Once the domain is almost filled,
the branch exits the snaking region to the left and terminates on the branch SOC14 of 14 rolls
within the domain Γ . The mixed modes bifurcate together from the branch SOC12 of 12 rolls
within Γ and do not snake. The solid dots indicate the location of the solutions shown in
figure 3.

(a) (b)

C

R = 1920 (LC) R = 2100 (MC)

R = 1920 (LH) R = 2100 (MH)

θ

C

θ

Figure 3. (Colour online) Even-parity states with NBC in a Γ = 14 domain. (a) Top: an
even-parity convecton (LC). Bottom: a phase-matched even-parity anticonvecton (LH), both
at R = 1920. The two states are related by a ‘hidden’ symmetry and so correspond to a single
location (solid dot) in the bifurcation diagram in figure 2(a). The states terminate together
on the branch SOC14. (b) Top: an even-parity mixed mode of C-type (MC). Bottom: a
phase-matched even-parity mixed mode of H-type (MH), both at R = 2100. The two states
are related by a ‘hidden’ symmetry and so correspond to a single location (solid dot) in the
bifurcation diagram in figure 2(b). The states terminate together on the branch SOC12.

or ‘pinning’ region that is identical to the corresponding region with PBC. The figure
shows, in addition, the branch of phase-matched even-parity anticonvectons or ‘hole’
states with the hole centred in the middle of the domain (figure 3a, bottom). In the
following, we refer to these states as localized convectons (LC) and localized holes
(LH), respectively. Both states carry the same heat flux and hence are represented by
identical curves in the bifurcation diagram. This is a consequence of the fact that
both solve the same PBC problem with period 2Γ and hence are related by a ‘hidden’
translation symmetry (Crawford et al. 1991). When the domain is almost full, the two
branches exit the snaking region and terminate together on a branch SOC14 consisting
of 14 rolls within the domain. This state is a periodic solution of the PBC problem
with Γ = 14, and since it contains seven full wavelengths within Γ we also refer to it
as P7.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

46
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004623


Convectons in binary fluid convection 593

C

(a) (b)
θ
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θ

R = 1930 (LW) R = 1957 (LW)

Figure 4. (Colour online) Different localized wall (LW) states in a Γ = 14 domain with (a)
NBC, both at R = 1930, and (b) ICCBC, both at R = 1957. The location of the states on the
associated LW branches is indicated in figure 5(a, b) by solid dots.

Figure 2(b) shows a different class of states allowed by NBC called mixed modes.
These states also bifurcate from spatially periodic solutions (PBC case) or from
the corresponding SOC solutions (NBC case) but do not snake. The mixed modes
represent spatially extended convection with superposed amplitude modulation with
maximum permitted wavelength. These states are shown in figure 3(b). The top panel
shows a mixed mode with minimum amplitude at the walls (hereafter, C-type mixed
mode), while the bottom panel shows a mixed mode with minimum amplitude in
the centre (hereafter H-type mixed mode). In the following, we think of the mixed
modes as representing extended states with a defect in an otherwise periodic structure.
Like the convecton and hole states, these two defect states are related by a hidden
translation symmetry and hence fall on identical curves in the bifurcation diagram
(figure 2b). Both solutions bifurcate together from the branch SOC12 of 12 rolls within
the domain Γ ; this branch is an example of a subsidiary primary periodic branch
and may be labelled P6. Mixed modes play a prominent role in our discussion of
odd-parity localized states, as discussed next.

3.2. Localized wall states

The hole state in figure 3(a, bottom) resembles a pair of wall states, with one attached
to either lateral wall. Figure 2(a) shows that these wall-attached states snake in the
classic fashion. However, as shown in figure 4(a), we can also find solutions with a
wall state attached to just one of the lateral walls. We refer to states of this type as
localized wall states or LW for short. Since we impose NBC at the wall, this solution
in fact represents an even convecton on a domain of length 2Γ . As a result, it snakes
as it would do in a 2Γ domain, implying that with each oscillation of the branch a
single roll is added at the left as the structure grows away from the boundary. Thus,
the branch undergoes twice as many back and forth excursions (figure 5a, dashed
line) as the LC branch (figure 5a, solid line, reproduced from figure 2a) before the
domain is full and the branch exits the snaking region, and terminates on the SOC14

branch. Moreover, since the effective domain is 2Γ , the LW branch terminates closer
to the saddle-node than the LC branch (Bergeon et al. 2008).

3.3. Odd-parity convectons and anticonvectons

We now turn to the more interesting case of odd-parity convectons. In figure 6(a) we
show a branch of centred convectons LC and a branch of mixed modes labelled M13.
As in the case of even-parity states, the former snake while the latter do not. The two
branches terminate together on a branch labelled SOC13 with 13 rolls in the NBC
domain, with the result that the diagram resembles similar diagrams obtained with
PBC. However, in the PBC case the two (distinct) branches that terminate together on
a periodic branch correspond to states of opposite parity (one is odd while the other
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Figure 5. (Colour online) Bifurcation diagrams for localized wall (LW, dashed line) states
and single-pulse convectons (LC, solid line) for (a) NBC and (b) ICCBC in a Γ = 14 domain.
The wall states differ by one roll at successive right saddle-nodes, and hence require twice as
many turns to fill the domain as a localized convecton or hole. The solid dots indicate the
location of the solutions shown in figure 4(a, b).
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Figure 6. Bifurcation diagrams with NBC on a Γ = 14 domain showing (a) odd-parity
localized convectons LC and (b) odd-parity anticonvectons LH. The LC terminate on the
branch SOC13 consisting of 13 rolls in the Γ = 14 domain, together with a branch of H-type
mixed modes M13. The LH terminate on the branch SOC15 together with a branch of C-type
mixed modes M15. Examples of each solution type are shown in figure 7. The width of the LC
and LH snaking regions is the same as that for even-parity LC.

is even) while here both branches correspond to odd-parity states. These are shown
in figure 7(a, top and middle) and terminate together on an odd-parity periodic state
(bottom), just as the even-parity states terminate together on an even-parity periodic
state. Since this (Eckhaus) bifurcation necessarily creates modulated states of C- and
H-types, the mixed modes are necessarily of H-type (figure 7a, middle).

Figure 6(b) shows the corresponding results for centred odd-parity anticonvectons.
This time it is the anticonvecton branch LH that snakes but it terminates on the
branch SOC15 with 15 rolls in the domain and does so simultaneously with an odd-
parity mixed-mode branch M15 with 15 rolls that does not snake. The states on the
latter are necessarily of C-type, i.e. the defect is now ‘divided’ between the left and
right boundaries so that the solution resembles a domain-filling convecton. The LH
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(b)

R = 2022 (M15)

R = 2053 (SOC15)
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Figure 7. (Colour online) Odd-parity states with NBC in a Γ = 14 domain. (a) Top: an
odd-parity convecton (LC). Middle: an odd-parity mixed-mode state of H-type (M13). Bottom:
an odd-parity SOC13 state. The states LC and M13 terminate together on SOC13 (figure 6a). (b)
Top: an odd-parity anticonvecton (LH). Middle: an odd-parity mixed-mode state of C-type
(M15). Bottom: an odd-parity SOC15 state. The states LH and M15 terminate together on
SOC15 (figure 6b). Neither SOC13 nor SOC15 solves the PBC problem with Γ = 14 but each
solves the PBC problem with period 2Γ . The mixed-mode states M13 and M15 resemble
odd-parity hole and convecton states, respectively, but do not snake. The disparity in the
average concentration on either side of the holes in the LH and M13 states is maintained
through concentration pumping by the rolls on either side of the hole, together with no-flux
boundary conditions at x = ±Γ/2.

and M15 states are shown in figure 7(b, top and middle) and once again terminate on
an odd-parity periodic state, this time SOC15 (bottom).

The superposition of the bifurcation diagrams in figure 2(a,b) and figure 6(a,b) can
be thought of as the result of an unfolding of the bifurcation diagram with PBC with
its eight branches of localized states. This unfolding is a consequence of changing the
PBC to NBC and splits apart the even- and odd-parity branches, and in addition
the odd-parity convectons and odd-parity anticonvectons. Because of the absence of
translation invariance, each of these states now terminates on a different branch of
periodic states. This behaviour in turn demands the presence of mixed-mode states;
in fact, these are present not only in the NBC case (figures 2b and 6a, b) but in the
PBC case as well (Mercader et al. 2010a). Thus, the loss of translation invariance has
a dramatic effect on the bifurcation diagram with PBC.

4. Single-pulse states: closed container boundary conditions
In this section, we examine the corresponding states with the ICCBC. As noted by

Mercader et al. (2009), see also Houghton & Knobloch (2009) and Kozyreff, Assemat
& Chapman (2009), the presence of non-Neumann boundary conditions destroys the
periodic state present with PBC and its counterpart in the NBC problem. As a result,
the snaking branches can no longer terminate on a periodic branch, and one instead
finds that as the domain fills up with convection rolls the snaking branches leave the
snaking region in the direction of larger Rayleigh numbers and turn continuously into
a large amplitude state resembling the mixed modes M present with PBC and NBC.
Mercader et al. (2009) refer to this situation as snaking without bistability. Figure 8
shows the resulting bifurcation diagrams for both even and odd states. Figure 9(a)
shows an even-parity convecton (bottom), together with its large-amplitude domain-
filling counterpart (top). The former is very similar to the corresponding NBC state,
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Figure 8. Bifurcation diagrams for (a) even and (b) odd-parity centred convectons with
ICCBC in a Γ =14 domain. Solid dots indicate location of the states shown in figure 9. Both
convecton branches turn continuously into large amplitude branches of domain-filling states
with defects at either boundary (figure 9).
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Figure 9. (Colour online) Convectons with ICCBC in a Γ = 14 domain at locations indicated
by solid dots in figure 8. (a) Even-parity convectons at R = 1934 (top) and R = 1926 (bottom).
(b) Odd-parity convectons at R = 2033 (top) and R = 1935 (bottom).

since the lateral walls are far from the structure. However, the extended state shown
in the top panel reveals the effect of the lateral walls, which reduce the flow in their
vicinity suppressing advection. The corresponding results for odd convectons are
shown in figure 9(b). Anticonvectons consisting of a pair of wall-attached states with
a hole in between can also be found but are affected more strongly by the boundary
conditions (see § 6).

As shown in figure 5(b), we can also find wall-attached states analogous to the
state shown in figure 5(a) computed with NBC. Figure 4(b) shows sample solutions.
Except for the defect at the right wall, the structure snakes exactly as in the NBC
case, although this time when the wall-attached state becomes so large that it fills the
domain it connects to the branch LC of even convectons at a secondary bifurcation,
i.e. it turns into an even state after exiting the snaking region (figure 5b).

5. Two-convecton states: Neumann boundary conditions
As is well-known from the study of localized states in the Swift–Hohenberg equation

(Wadee, Coman & Bassom 2002; Burke & Knobloch 2009; Knobloch et al. 2010)
and related systems (van der Heijden, Champneys & Thompson 2002), the pinning
or snaking region also contains multipulse states, i.e. bound states of two or more
convectons. With PBC, two identical and equidistant localized states are equivalent
to a single-pulse state on half the domain. Thus, equidistant two-pulse convectons
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Figure 10. (Colour online) Bifurcation diagrams for even-parity two-pulse states in a Γ = 14
domain. (a) Solutions based on 12 rolls. (b) Solutions based on 14 rolls. Solid dots indicate
the location of the solutions shown in figure 11.

should also snake, and execute half as many turns as a single convecton, before filling
the domain and exiting the snaking region. On the other hand, unequally spaced
two-convecton states are expected to lie on nested isolas (Burke & Knobloch 2009;
Knobloch et al. 2010); on the real line there will be an infinite number of such isolas,
corresponding to the infinite number of discrete separations permitted by the locking
between the oscillatory tails of neighbouring convectons. Moreover, each set of nested
isolas corresponds to a fixed number of rolls within the two convectons forming
the two-pulse state. Thus, on the real line the snaking region is expected to contain
an infinite stack of such isolas, each corresponding to a bound state of convectons
with different number of rolls (Burke & Knobloch 2009; Knobloch et al. 2010). In
general, the breakup of the snakes-and-ladders structure of the pinning region (Burke
& Knobloch 2007a) that gives rise to these structures becomes exponentially small as
soon as the two convectons are substantially far apart. This is a consequence of the
exponential dependence on the separation of the effective interaction force between
pairs of convectons. This makes it impractical to look for multipulse states in large
domains. For Γ =14, however, such states can be located and the effects of non-PBC
investigated.

In the following, we focus on the case of two equidistant convectons and refer to
the individual convectons using their spatial phase (Burke & Knobloch 2007a). Even-
parity convectons have phase 0 (π) if the fluid is rising (descending) in the centre.
Odd-parity convectons have phase π/2 (3π/2) if the odd roll in the centre rotates
anticlockwise (clockwise). Thus, the convectons in figure 1(a, d ) have phases π, 3π/2,
respectively. In this terminology, the (equidistant) two-pulse states just discussed are
of type (0, 0) or (π, π) (even parity) and (π/2, π/2) or (3π/2, 3π/2) (odd parity). As
for single-pulse states this situation is unfolded when the boundary conditions are
changed to NBC.

In figure 10, we show the effect of this change on even-parity two-pulse states.
Figure 10(a) shows two-pulse states composed of identical even-parity convectons.
The branch labelled 2PC12 is of type (0, 0) and consists of an even-parity central
convecton with a rising warm plume in the centre and a pair of wall-attached states
at either end of the domain (figure 11a, top). Glued together back-to-back, the
latter represent another even convecton with a rising plume in the centre. Thus, the
observed structure is in fact identical to the (0, 0) two-pulse configuration that one
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Figure 11. (Colour online) Even-parity two-pulse states in a Γ = 14 domain. (a) Solutions
based on 12 rolls: bound states 2PC12 (top) and 2PH12 (bottom), both at R =1967. The
solutions are related by a hidden symmetry and so fall on the same branch in figure 10(a).
(b) Solutions based on 14 rolls: bound state 2PC14 (top) at R = 1967 and bound state 2PH14

(bottom) at R = 2015.

finds with PBC on the domain Γ . Of course, the snaking region is not nearly as
well developed since each convecton only has the length Γ/2 available for growth.
In contrast, the branch labelled 2PH12 consists of (π, π) states with the convectons
located on either side of a central hole (figure 11a, bottom). As before, these solutions
are phase-matched and hence terminate together, this time on the branch SOC12 with
12 rolls in the domain Γ . However, in addition both states are even under reflection
in x = Γ/4 and satisfy NBC on the half-domain 0 � x � Γ/2. The discussion in
§ 3.1 for single even-parity convectons with NBC therefore applies and shows that
the two states in figure 11(a) are related by a (hidden) symmetry and hence lie on
the same branch; cf. figure 10(a) and figure 2(a). This is no longer the case for the
2PC14 and 2PH14 states shown in figure 10(b). The states on the branch labelled
2PC14 also consist of an even-parity central convecton, this time with a descending
cold plume in the centre, together with a pair of wall-attached states at either end
of the domain which when glued together again represent an even convecton with
a rising plume in the centre (figure 11b, top). Thus, the structure shown is in fact
identical to the (0, π) two-pulse configuration that one finds with PBC on the domain
Γ . In contrast, the states on the 2PH14 branch correspond to bound states of pairs of
back-to-back odd-parity convectons in configuration (π/2, 3π/2) (figure 11b, bottom).
The resulting structure is also even about the middle of the domain and hence also
identical to a two-pulse state with PBC on the domain Γ . The 2PC14 and 2PH14 in
figure 11(b) are phase-matched and hence also terminate together, this time on the
branch SOC14 of 14 rolls in the domain Γ . Once again, both states satisfy NBC on
the half-domain 0 � x � Γ/2, but this time both states are odd under reflection in
x = Γ/4. In this case, the discussion of § 3.3 shows that the two states in figure 11(b)
are not symmetry-related and hence generically lie on distinct solution branches, as
seen in figure 10(b).

The question now arises as to the presence of two-pulse states with overall odd
parity, i.e. with overall point symmetry. Such states are indeed present and bifurcate,
much as the single-pulse states, from the SOC13 and SOC15 branches. Figure 12(a)
shows that two distinct branches of two-pulse states bifurcate simultaneously from
SOC13. The first, referred to as 2PC13, consists of a central convecton with the second
convecton split between the two lateral walls (figure 13a, top). The central convecton
has odd parity but the remaining convecton that is split between the boundaries cannot
be glued together to form a second odd-parity convecton. This is because the 2PC13

state is in fact point-symmetric. This is so for the state labelled 2PH13 as well. This state
consists of a central hole with a pair of convectons on either side. In figure 13(a, middle
and bottom), this state resembles a bound state of (0, π) type located at x = ±Γ/4.
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Figure 12. (Colour online) Bifurcation diagrams for two-pulse point-symmetric states in a
Γ = 14 domain. (a) Solutions based on 13 rolls. (b) Solutions based on 15 rolls. Solid dots
indicate the locations of the solutions shown in figure 13.
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Figure 13. (Colour online) Point-symmetric two-pulse states in a Γ = 14 domain. (a) Solutions
based on 13 rolls: bound state 2PC13 at R = 1929 (top), bound state 2PH13 at R =1965 (middle)
and bound state 2PH13 at R = 2120 (bottom). (b) Solutions based on 15 rolls: bound state
2PC15 at R = 1938 (top), bound state 2PH15 at R = 1955 (middle) and bound state 2PH15 at
R = 2111 (bottom).

However, the point symmetry implies that the boundary conditions on the right
convecton are Dirichlet boundary conditions (DBC) at x = 0 and NBC at x =Γ/2,
and similarly for the left convecton. Thus, neither convecton has exact even parity.
This is a consequence of their mutual interaction. Indeed, in this example the state
obtained by reflecting it in the boundary x = Γ/2 differs from a Γ/2 translation, in
contrast to the situation in figure 10, i.e. the state 2PH13, like 2PC13, does not satisfy
PBC with period Γ . Moreover, since the 2PH13 state is not a bound state of two
pure parity states, it changes its appearance along the branch. For example, near
the bifurcation point on SOC13, it no longer looks like a bound state of two even
convectons and resembles instead an extended point-symmetric state with a defect at
x = 0 (not shown). Of course this must be so since the SOC13 state is point-symmetric.

Similar but different two-pulse states also bifurcate from SOC15 (figure 12b). The
states, labelled 2PC15 and 2PH15, are shown in figure 13(b). Both are point-symmetric,
with 2PC15 consisting of a central point-symmetric convecton with two wall-attached
convectons at either wall (top) while 2PH15 consists of a central hole surrounded
by apparently odd-parity convectons on either side (middle). However, since each
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Figure 14. Bifurcation diagram with ICCBC in a Γ = 14 domain showing (a) a branch of
odd-parity states with both single-pulse hole states (LH) and two-pulse holes states (2PH), and
(b) a branch of even-parity states with both single-pulse hole states (LH) and two-pulse holes
states (2PH). In both cases, the two solution types lie on a single curve with the transition
between them near the leftmost saddle-node (figures 15b and 16b).

constituent convecton satisfies NBC on one side and DBC on the other, neither is
a pure parity state. As a result, the form of these solutions changes dramatically
as one follows each branch. Figure 13(b, bottom) shows a solution on the 2PH15

branch far from the bifurcation on the SOC15 branch, and reveals that the solution
that resembled a bound state of two convectons of type (3π/2, 3π/2) at R = 1955
becomes at larger R a pair of out-of-phase states confined to the vicinity of either
boundary. Thus, in contrast to figure 13(a) the distance between the two convectons
is a strong function of location along the 2PH15 branch. This is a consequence
of strongly inhomogeneous growth of individual convectons near NBC boundaries.
Such behaviour resembles closely recent results on the Swift–Hohenberg equation
with quadratic-cubic (SH23) and cubic-quintic (SH35) nonlinearities (Dawes 2009;
Houghton & Knobloch 2009; Kozyreff et al. 2009), which clearly demonstrate that the
loss of translation invariance resulting from changing PBC to NBC has a dramatic
effect on the states present with PBC that do not satisfy the new boundary conditions.
In particular, one finds that when this is the case the solution wavenumber is no
longer well defined, and the wavelength and in particular the location of the localized
structures varies substantially along the corresponding solution branches.

6. Two-convecton states: closed container boundary conditions
The use of ICCBC in place of NBC does not change the basic symmetries of the

problem. Consequently, we expect the same broad class of solutions in both cases.
Of course the use of ICCBC destroys the SOC states whose place is now taken by
large-amplitude extended states resembling the mixed-mode states present with PBC.
Thus, while we continue to expect snaking we also expect the snaking branch to turn
continuously into a mixed-mode-like state at large amplitude, much as found in § 4
for single-pulse states. In fact, the situation is rather more complicated.

Figure 14(a) shows the resulting bifurcation diagram for odd-parity (point-
symmetric) states. The figure shows the locations of two-pulse states with a hole
at x =0 (2PH) and of hole-like states with a wall-attached state on either side (LH),
and reveals that these two states are now found on the same solution branch.
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Figure 15. (Colour online) (a) An odd-parity state at R =1971, labelled 2PH in figure 14(a),
together with a hole-like state at R = 1992, labelled LH. (b) Two solutions near the leftmost
saddle-node in figure 14(a) showing the transition between the 2PH and LH states.

Thus, with ICCBC the solution branch passes through the snaking region twice,
once going up and once coming down. This type of reconnection is familiar from
the Swift–Hohenberg equation with non-NBC (Houghton & Knobloch 2009) and is
known to leave behind disconnected large amplitude states which we do not calculate.

In figure 15(a), we show sample solutions from the 2PH (top) and LH (bottom)
parts of the branch. The solutions are qualitatively similar but in the hole solution
the hole is bounded by two wall states attached to either boundary. In contrast, in the
two-pulse state, the pulses do not reach the walls and only settle towards the wall when
the two-pulse state turns into a hole state. The location of this (gradual) transition is
shown in figure 15(b). We see that as one approaches the leftmost saddle-node along
the two-pulse branch, each convecton starts to grow in a markedly asymmetric fashion,
unable to add rolls near the boundary while continuing to add rolls in the middle of
the domain and almost filling in the hole in the centre. Near the leftmost saddle-node,
the resulting two-pulse state adds an extra roll near each wall, thereby becoming a
hole state. Thus, the two-pulse branch turns continuously into a branch of hole states.
As one follows the branch further, the hole broadens by eliminating rolls on either
side while maintaining the odd parity of the state (figure 15a, bottom). Evidently,
the asymmetric growth of the convectons in the transition region is a consequence of
interaction with the boundary or equivalently with an image convecton that is nearer
than the other convecton comprising the state. We mention that the two-pulse state
in figure 15(b) at R = 1878 closely resembles the R = 1955 state in figure 13(b). This is
simply a consequence of the fact that the convectons are still sufficiently far from the
lateral walls for the details of the boundary conditions to be reflected in the solution.
Indeed, one finds that prior to the transition to the hole branch, the 2PH branch in
figure 14(a) is almost identical to the 2PH15 branch in figure 12(b). The differences
between these branches are confined to the left saddle-nodes where the nucleating
rolls are weak and the different boundary conditions are able to exert a noticeable
effect.

The corresponding results for even-parity states are shown in figures 14(b) and 16.
Once again, the two-pulse and hole states fall on the same solution branch with a
continuous transition between them in the vicinity of the leftmost saddle-node. As
in the odd-parity case the transition region between the two-pulse and hole states
is characterized by markedly asymmetric growth of the convectons once these reach
close to the lateral walls. In this case, the two-pulse branch in figure 14(b) is of
H-type and very similar to the branch 2PH12 in figure 10(a). Indeed, the solutions in
figure 16(a, top) and figure 11(a, bottom) are very similar. This is a consequence of
the fact that at this parameter value the convectons are still far from the wall.
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Figure 16. (Colour online) (a) An even-parity state at R = 1966, labelled 2PH in figure 14(b),
together with a hole-like state at R = 1916, labelled LH. (b) Two solutions near the leftmost
saddle-node in figure 14(b) showing the transition between the 2PH and LH states.

7. Conclusions
In this paper, we have examined the existence and properties of steady spatially

localized structures in binary fluid convection in a two-dimensional laterally bounded
domain. We examined two types of boundary conditions, NBC and ICCBC. The
former boundary conditions are convenient since they select from among the states
satisfying PBC, a class of states that satisfy NBC without perturbing these states.
This fact follows from a general construction that allows one to embed solutions
with NBC on a domain Γ among solutions with PBC on a domain with period 2Γ .
This construction carries over to a Γ domain with PBC when the state is even, but
not for odd-parity states. Thus, when Γ =14, even-parity states, whether single-pulse
convectons or anticonvectons, or two-pulse states with overall even parity, behave in
much the same way as periodic states on a Γ domain: all snake within the snaking
or pinning region in Rayleigh number, and once the domain is almost full they
exit the snaking region towards the left and terminate on a branch consisting of an
even number of rolls within Γ (either SOC12 or SOC14) or equivalently a branch
consisting of six (P6) or seven (P7) pairs of rolls within Γ . We conjecture that the
snaking region for all these states is the same and is defined by the first and last
tangencies between the unstable manifold of the conduction state and the centre-
stable manifold of periodic convection (Woods & Champneys 1999; Coullet et al.
2000; Beck et al. 2009). However, the situation for odd-parity states is more complex.
Here the NBC and periodic states are no longer the same. In addition, odd-parity
states pump concentration from one side of the structure to the other (Batiste et al.
2006) although their point symmetry guarantees that they remain stationary. Since
the odd-parity states with NBC are distinct states, their behaviour will differ from
that of periodic states, and we have identified two different types of single-pulse states
that snake, convectons and anticonvectons (holes). Since these states are no longer
related by translation, they terminate on different extended states, in our case SOC13

and SOC15, respectively, together with a new class of states we call mixed modes
which do not snake. Since the mixed modes by definition contain a defect or hole,
they are often difficult to distinguish from hole states (or from a convecton state
with holes at the sidewalls) unless one understands their location in the bifurcation
diagram.

There is, however, an analogue of a single-pulse even-parity state on the domain
2Γ that survives in a Γ domain with NBC. This is the wall state. This state can be
thought of as a half-convecton attached to one or other lateral wall. These wall states
also snake and with each turn add a single roll in Γ . Thus, they grow half as fast as
a convecton in a Γ domain and must execute twice as many turns before the domain

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

46
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004623


Convectons in binary fluid convection 603

is full and the wall states terminate on an extended state. This type of state persists
with ICCBC.

The situation is yet more interesting for odd-parity multipulse states, and in
particular for the two-pulse states considered here. These states also bifurcate from
SOC13 and SOC15 but do so further from the saddle-node than the single-pulse states.
These states also snake, and in larger domains snake in the same snaking region
as even-parity states. This is because the boundary conditions suppress horizontal
concentration pumping by odd-parity states (Mercader et al. 2010a). Moreover, in the
presence of ICCBC, these odd-parity states no longer have a well-defined wavenumber
and so change their appearance and location in the domain as their amplitude or the
Rayleigh number varies. Thus, these states can resemble a two-pulse state in a part
of the parameter range and a pair of wall states in another part.

This type of state transformation occurs continuously, without bifurcation, and
closely resembles similar behaviour already observed in the Swift–Hohenberg equation
(Dawes 2009; Houghton & Knobloch 2009). We believe that this type of behaviour is
responsible for the observation of similar states in natural doubly diffusive convection
in a vertical cavity (Ghorayeb & Mojtabi 1997). This system is similar to the present
one with the vertical direction representing the extended direction, although it lacks
the analogue of the z → 1 − z symmetry. Multiconvectons have also been studied
in binary mixtures in a porous medium (Lo Jacono, Bergeon & Knobloch 2010)
but only with PBC. This system shares the symmetries of the system studied here
but is simpler since the velocity solves a time-independent equation and all velocity
boundary conditions are necessarily stress-free.

It is of interest finally to ascertain the origin of the variety of states identified
here for realistic parameter values and boundary conditions. To this end, we have
performed homotopic continuation from the stress-free boundary conditions required
by NBC to the no-slip ICCBC. For this purpose, we write

βw ± (1 − β)wx = 0 at x = ±Γ/2, (7.1)

and leave the remaining boundary conditions unchanged. Here β represents a
homotopy parameter with β =0 corresponding to NBC and β = 1 corresponding
to ICCBC. Figure 17 shows the different types of reconnection experienced by odd-
parity states. Figure 17(a) describes the breakup of the NBC (β = 0) bifurcation
diagrams in figures 6(a) and 12(a) when β = 0.05, and shows that the snaking single-
pulse solutions (solid curve) now connect smoothly to large-amplitude domain-filling
states with 13 cells, much as in figure 9(b) with ICCBC. These states are all of C-type,
i.e. all convect in the centre of the domain with convection suppressed near the lateral
boundaries. At the same time, the large-amplitude odd-parity mixed modes now
connect to a snaking branch of two-pulse states and do so via an interval of SOC-like
states (dashed curve). Of these states the mixed modes have a hole in the centre
of the domain as do the two-pulse states, i.e. the mixed modes are of H-type while
the two-pulse states are of 2PH-type. However, the SOC-like states consist of states
with convection in the centre (C-type), indicating that with non-Neumann boundary
conditions the presence or absence of convection at x = 0 is no longer a property
that can be used to characterize a given solution branch; cf. Houghton & Knobloch
(2009). Figure 17(a) also reveals the presence of small-amplitude three-pulse states
(dash-dotted curve) connected to two-pulse states of 2PC-type via a portion of the
original SOC13 branch. All of these states convect in the centre of the domain and so
are of C-type.
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Figure 17. (Colour online) Bifurcation diagrams for odd-parity convectons when β = 0.05,
with the remaining boundary conditions unchanged. The breakup of (a) the β =0 bifurcation
diagrams in figures 6(a) and 12(a), and (b) the β = 0 bifurcation diagrams in figures 6(b) and
12(b). The branches are distinguished by the maximum number n of pulses present along the
branch: n= 1 (solid curves), n= 2 (dashed curves), n= 3 (dash-dotted curves).

Figure 17(b) describes the corresponding breakup of the NBC (β = 0) diagrams in
figures 6(b) and 12(b). In this case, the large-amplitude SOC15 state with convection in
the centre connects to the corresponding C-type mixed-mode state, while the snaking
hole branch in figure 6(b) connects to small amplitude C-type 15 cell states which in
turn connect to two-pulse states arising from 2PH15 in figure 12(b). Thus, in this case
too the reconnection leads to a branch containing both H-type and C-type states.
In addition, the states identified as 2PC15 in figure 12(b) connect to a branch of
three-pulse states, again via an interval of small amplitude 15 cell states. All of these
states are of C-type.

It follows that in both cases the homotopic continuation unfolds the pitchfork
bifurcations on the SOC branch corresponding to Eckhaus bifurcations (Bergeon
et al. 2008). It is likely that this breakup process affects all Eckhaus points in like
fashion, creating connections between states with n−1 and n convectons, n= 1, 2, . . ..
With increasing β the single-pulse curve (solid line) in figure 17(a) morphs into the
single-pulse ICCBC branch in figure 9(a), while the dashed curve in figure 17(b)
morphs into the ICCBC branch shown in figure 14(a). Similar behaviour is found for
even-parity states as well (not shown).

In this paper, we have not discussed in detail the stability of these states, although we
know that many are stable (Batiste et al. 2006). Likewise, the states found by Ghorayeb
& Mojtabi (1997) were computed using time-stepping suggesting that they are also all
stable. At present, there is no experimental confirmation of our results, although some
experiments on water–ethanol mixtures (Kolodner 1993) have identified stationary
localized states embedded in a background of small-amplitude travelling waves. We
believe that the background waves are present because the Rayleigh number used
exceeded the threshold for absolute instability of the conduction state, and predict
that if this were lowered below this threshold, steady localized convectons embedded
in a laminar background would be observed (Alonso et al. 2007).

This work was supported in part by DGICYT under grant FIS2009-08821 and by
the National Science Foundation under grant DMS-0908102.
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