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Efficiently predicting the flow field and load in aerodynamic shape optimisation remains
a highly challenging and relevant task. Deep learning methods have been of particular
interest for such problems, due to their success in solving inverse problems in other
fields. In the present study, U-net-based deep neural network (DNN) models are trained
with high-fidelity datasets to infer flow fields, and then employed as surrogate models
to carry out the shape optimisation problem, i.e. to find a minimal drag profile with a
fixed cross-sectional area subjected to a two-dimensional steady laminar flow. A level-set
method as well as Bézier curve method are used to parameterise the shape, while trained
neural networks in conjunction with automatic differentiation are utilised to calculate the
gradient flow in the optimisation framework. The optimised shapes and drag force values
calculated from the flow fields predicted by the DNN models agree well with reference
data obtained via a Navier–Stokes solver and from the literature, which demonstrates that
the DNN models are capable not only of predicting flow field but also yielding satisfactory
aerodynamic forces. This is particularly promising as the DNNs were not specifically
trained to infer aerodynamic forces. In conjunction with a fast runtime, the DNN-based
optimisation framework shows promise for general aerodynamic design problems.

Key words: computational methods, Navier–Stokes equations, general fluid mechanics

1. Introduction

Owing to its importance in a wide range of fundamental studies and industrial applications,
significant effort has been made to study the shape optimisation for minimising
aerodynamic drag over a bluff body (Bushnell & Moore 1991; Bushnell 2003). The
deployment of computational fluid dynamics tools has played an important role in
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these optimisation problems (Thévenin & Janiga 2008). While a direct optimisation
via high-fidelity computational fluid dynamics models gives reliable results, the high
computational cost of each simulation, e.g. for Reynolds-averaged Navier–Stokes
formulations, and the large amount of evaluations needed lead to assessments that such
optimisations are still not feasible for practical engineering (Skinner & Zare-Behtash
2018). When considering gradient-based optimisation, the adjoint method provides an
effective way to calculate the gradients of an objective function with respect to design
variables and alleviates the computational workload greatly (Jameson 1988; Giles &
Pierce 2000; Economon, Palacios & Alonso 2013; Kline, Economon & Alonso 2016;
Zhou et al. 2016), but the number of required adjoint computational fluid dynamics
simulations is typically still prohibitively expensive when multiple optimisation objectives
are considered (Mueller & Verstraete 2019). In gradient-free methods (e.g. genetic
algorithm), the computational cost rises dramatically as the number of design variables
is increased, especially when the convergence requirement is tightened (Zingg, Nemec &
Pulliam 2008). Therefore, advances in terms of surrogate-based optimisation are of central
importance for both gradient-based and gradient-free optimisation methods (Queipo et al.
2005; Sun & Wang 2019).

Recently, state-of-the-art deep learning methods and architectures have been
successfully developed to achieve fast prediction of fluid physics. Among others,
Bhatnagar et al. (2019) developed the convolutional neural network method for
aerodynamics flow fields, while others studied the predictability of laminar flows (Chen,
Viquerat & Hachem 2019), employed graph neural networks to predict transonic flows
(de Avila Belbute-Peres, Economon & Kolter 2020) or learned reductions of numerical
errors in partial differential equation fluid solvers (Um et al. 2020). For the inference
of Reynolds-averaged Navier–Stokes solutions, a U-net-based deep learning model was
proposed and shown to be significantly faster than a conventional computational fluid
dynamics solver (Thuerey et al. 2018). These promising achievements open up new
possibilities of applying deep neural network (DNN)-based flow solvers in aerodynamic
shape optimisation. In the present study we focus on evaluating the accuracy and
performance of DNN-base surrogates in laminar flow regimes.

Modern deep learning methods are also giving new impetus to aerodynamic shape
optimisation research. For example, Eismann, Bartzsch & Ermon (2017) used a
data-driven Bayesian approach to design optimisation and generated object shapes with an
improved drag coefficient. Viquerat & Hachem (2019) evaluated quantitative predictions
such as drag forces using a VGG-like convolutional neural network. To improve the
surrogate-based optimisation, Li et al. (2020) proposed a new sampling method for
airfoils and wings based on a generative adversarial network. Renganathan, Maulik &
Ahuja (2020) designed a surrogate-based framework by training a DNN that was used
for gradient-based and gradient-free optimisations. In these studies, the neural network
is mainly trained to construct the mapping between shape parameters and aerodynamic
quantities (e.g. lift and drag coefficients), but no flow-field information can be obtained
from the network models. We instead demonstrate how deep learning models that were
not specifically trained to infer the parameters to be minimised can be used in optimisation
problems. The proposed deep learning model offers two advantages. First, the model is
flexible as it predicts a full flow-field in a region of interest. Once trained, it can be used
in different optimisation tasks with multiple objectives. This is of particular importance
when considering problems such as compressor/turbine blade wake mixing (Michelassi
et al. 2015). Second, as the model is differentiable, it can be seamlessly integrated with
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deep learning algorithms (de Avila Belbute-Peres et al. 2018; Holl, Thuerey & Koltun
2020).

To understand the mechanisms underlying drag reduction and to develop optimisation
algorithms, analytical and computational works have been specifically performed for
Stokes flow and laminar steady flow over a body (Pironneau 1973, 1974; Glowinski &
Pironneau 1975, 1976; Katamine et al. 2005; Kim & Kim 2005; Kondoh, Matsumori
& Kawamoto 2012). As far back as the 1970s, Pironneau (1973) analysed the minimum
drag shape for a given volume in Stokes flow, and later for the Navier–Stokes equations
(Pironneau 1974). By using the adjoint variable approach, Kim & Kim (2005) investigated
the minimal drag profile for a fixed cross-sectional area in two-dimensional laminar flow
with Reynolds number range of Re = 1 to 40. More recently Katamine et al. (2005) studied
the same problem at two Reynolds numbers, Re = 0.1 and Re = 40. With theoretical and
numerical approaches, Glowinski & Pironneau (1975, 1976) looked for the axisymmetric
profile of given area and smallest drag in a uniform incompressible laminar viscous flow
at Reynolds numbers between 100 and 105 and obtained a drag-minimal shape with a
wedge of angle 90◦ at the front end and a cusp rear end from an initial slender profile.
Although the laminar flow regimes are well studied, due to the separation and nonlinear
nature of the fluid, it can be challenging for surrogate models to predict a drag-minimal
shape as well as aerodynamic forces. Moreover, with the Reynolds number approaching
zero, the flow field experiences a dramatic change from a separated vortical flow towards a
creeping flow, which poses additional difficulties for the learning task. To our knowledge,
no previous studies exist that target training a ‘generalised model’ that performs well in
such a Reynolds number range. We investigate this topic and quantitatively assess the
results in the context of deep learning surrogates.

In the present paper, we adopt an approach for U-net-based flow-field inference
(Thuerey et al. 2018) and use the trained DNN as a flow solver in shape optimisation.
In comparison with conventional surrogate models (Yondo, Andrés & Valero 2018) and
other optimisation work involving deep learning (Eismann et al. 2017; Viquerat & Hachem
2019; Li et al. 2020; Renganathan et al. 2020), we make use of a generic model that infers
flow solutions: in our case it produces fluid pressure and velocity as field quantities. i.e.
given encoded boundary conditions and shape, the DNN surrogate produces a flow-field
solution, from which the aerodynamic forces are calculated. Thus, both the flow field and
aerodynamic forces can be obtained during the optimisation. As we can fully control and
generate arbitrary amounts of high-quality flow samples, we can train our models in a
fully supervised manner. We use the trained DNN models in shape optimisation to find
the minimal drag profile in the two-dimensional steady laminar flow regime for a fixed
cross-sectional area, and evaluate results with respect to shapes obtained using a full
Navier–Stokes flow solver in the same optimisation framework. We specifically focus on
the challenging Reynolds number range from 1 to 40. Methods based on both level set
and Bézier curve are employed for shape parameterisation. The implementation utilises
the automatic differentiation package of the PyTorch package (Paszke et al. 2019), so
the gradient flow driving the evolution of shapes can be directly calculated (Kraft 2017).
Here DNN-based surrogate models show particular promise as they allow for a seamless
integration into the optimisation algorithms that are commonly used for training DNNs.

The purpose of the present work is to demonstrate the capability of deep
learning techniques for robust and efficient shape optimisation, and for achieving an
improved understanding of the inference of the fundamental phenomena involved in
low-Reynolds-number flows. This paper is organised as follows. The mathematical
formulation and numerical method are briefly presented in § 2. The neural network
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architecture and training procedure are described in § 3. Details of the experiments and
the results are then presented in § 4 and concluding remarks in § 5.

2. Methodology

We first explain and validate our approach for computing the fluid flow environment
in which shapes should be optimised. Afterwards, we describe two different shape
parameterisiations, based on level-set and Bézier curve, which we employ for our
optimisation results.

2.1. Numerical procedure
We consider two-dimensional incompressible steady laminar flows over profiles of given
area and look for the minimal drag design. The profile is initialised with a circular cylinder
and updated by utilising steepest gradient descent as optimisation algorithm. The Reynolds
number ReD in the present work is based on the diameter of the initial circular cylinder. It
can be also interpreted that the the length scale is defined as the equivalent diameter for
given area S of an arbitrary shape, i.e. D = 2

√
S/π. In the present work, D ≈ 0.39424 m

is used.
To calculate the flow field around the profile at each iteration of the optimisation,

two methods are employed in the present study. The first approach is a conventional
steady solver of Navier–Stokes equations, i.e. simpleFoam within the open-source package
OpenFOAM (from https://openfoam.org/). The second one is the deep learning model
(Thuerey et al. 2018), which is trained with flow-field datasets generated by simpleFoam
that consists of several thousand profiles at a chosen range of Reynolds numbers. More
details of the architecture of the neural network, data generation, training and performance
are discussed in § 3.

SimpleFoam is a steady-state solver for incompressible, turbulent flow using the
semi-implicit method for pressure linked equations (known as SIMPLE) (Patankar &
Spalding 1983). The governing equations are numerically solved by a second-order
finite-volume method (Versteeg & Malalasekera 2007). The unstructured mesh in the fluid
domain is generated using open-source code Gmsh version 4.4.1. To properly resolve the
viscous flow, the mesh resolution is refined near the wall of the profile and the minimum
mesh size is set as ∼ 6 × 10−3D, where D is the equivalent circular diameter of the profile.
The outer boundary, where the free-stream boundary condition is imposed, is set as 50 m
(∼ 32D) away from the wall (denoted as OpenFOAM DOM50). The effects of domain size
are assessed by performing additional simulations with domain sizes of 25 and 100 m away
from the wall (denoted as OpenFOAM DOM25 and OpenFOAM DOM100, respectively).
Here the drag coefficient Cd is defined as the drag force divided by the projected length
and dynamic head. As shown in figure 1, from ReD = 0.1 to ReD = 40, the total Cd as
well as the viscous Cd,v and inviscid Cd,p parts obtained from the three different domains
almost collapse. Although small differences are observed when ReD < 0.5, the predictions
in the range of interest [1, 40] are consistent and not sensitive to the domain size. The
computation runs for 6000 iterations to obtain a converged state.

To validate the set-up, we compare our numerical results and literature data in
terms of the surface pressure coefficient and wall shear. As ‘sanity checks’ for the
numerical set-up, we also run SU2 (see Economon et al. 2016) with the same mesh
for comparison. Figure 2(a) shows the distribution of the surface pressure coefficient
( pw − p∞)/0.5ρ∞U2∞ at ReD = 1, 10 and 40. Here, θ is defined as the angle of the
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Figure 1. Drag coefficients from ReD = 0.1 to 40. Surface integral values from OpenFOAM simulations are
plotted as black curves. Results based on re-sampled points on Cartesian grids with resolutions of 128 × 128,
256 × 256 and 512 × 512 are plotted as red, black and green circles, respectively. All data are compared with
the experimental measurements of Tritton (1959), which are shown as squares.

intersection of the horizontal line and the vector of the centre to a local surface point, so
that θ = 0◦ is the stagnation point in the upwind side and θ = 180◦ that in the downwind
side. Only half of the surface distribution is shown due to symmetry. The results agree well
with the numerical results of Dennis & Chang (1970), and the results for OpenFOAM and
SU2 collapse. In figure 2(b), the results for OpenFOAM compare well with those predicted
by SU2. The drag coefficients for Reynolds numbers ranging from 0.1 to 40 agree well with
the experimental data of Tritton (1959) in figure 1, which further supports that the current
set-up and the solver produce reliable data.

To facilitate neural networks with convolution layers, the velocity and pressure field
from OpenFOAM in the region of interest are re-sampled with a uniform Cartesian grid
in a rectangular domain [−1, 1]2 (≈ [−1.27D, 1.27D]2). A typical resolution used in
the present study is 128 × 128, corresponding to a grid size of 0.02D. As also shown
in figure 1, the effect of the resolution of re-sampling on the drag calculation has been
studied. The details of the force calculation on Cartesian grids are given in § 2.2.1.
Results with three different resolutions shown as coloured symbols, i.e. 1282, 2562 and
5122, compare favourably with the surface integral values based on the original mesh
in OpenFOAM. Therefore, re-sampled fields on the 128 × 128 grid are used in the deep
learning framework and optimisation unless otherwise noted.
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Figure 2. Pressure coefficient and wall shear stress distributions. (a) Pressure coefficient distribution and
(b) wall shear stress distribution.

2.2. Shape parameterisation

2.2.1. Level-set method
The level-set method proposed by Osher & Sethian (1988) is a technique that tracks
an interface implicitly and has been widely used in fluid physics, image segmentation,
computer vision as well as shape optimisation (Sethian 1999a; Sethian & Smereka
2003; Baeza et al. 2008). The level-set function φ is a higher-dimensional auxiliary
scalar function, the zero-level-set contour of which is the implicit representation of a
time-dependent surface Γ (t) = {x : φ(x) = 0}. Here, let D ∈ RN be a reference domain,
x ∈ D and Ω is a body created by the enclosed surface Γ . Specifically in the present study,
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the domain D is referred to the sampled Cartesian grid in the rectangular region, and N
is 2 as we focus on two-dimensional problems. The level-set function φ is defined by a
signed distance function:

φ =

⎧⎪⎨
⎪⎩

−d(Γ (t)) x ∈ Ω

0 x ∈ ∂Ω (on Γ )

d(Γ (t)) x ∈ D − Ω,

(2.1)

where d(Γ (t)) denotes the Euclidean distance from x to Γ .
The arc length c and area S of the body are formulated as c = ∫

D δε(φ)|∇φ| ds
and S = ∫

D Hε(−φ) ds. To make the operators differentiable, in the above, we
use smoothed Heaviside and Dirac delta functions Hε(x) = 1/(1 + e−x/ε) and
δε(x) = ∂x(1/(1 + e−x/ε)), respectively. Here ε is a small positive number and chosen
as twice the grid size (Zahedi & Tornberg 2010). Then, the aerodynamic forces due to
pressure distribution and viscous effect are described as

F pressure =
∫

∂Ω

(pn) dl =
∫
D

( pn)δε(φ)|∇φ| ds, (2.2)

F viscous =
∫

∂Ω

(μn × ω) dl =
∫
D

(μn × ω)δε(φ)|∇φ| ds. (2.3)

Here, n is the unit normal vector, n = ∇φ/|∇φ|, p is the pressure, μ is the dynamic
viscosity and ω = ∇ × v is the vorticity with v being the velocity. A nearest-neighbour
method is used to extrapolate values of pressure and vorticity inside the shape Ω . Then,
the drag force is considered as the loss in the optimisation, i.e.

L = F pressure · îx + F viscous · îx, (2.4)

where îx is the unit vector in the direction of the x axis.
The minimisation of (2.4) is solved by the following equation:

∂φ

∂τ
+ Vn|∇φ| = 0. (2.5)

Here, the normal velocity is defined as Vn = ∂L/∂φ. At every iteration, the Eikonal
equation is solved numerically with the fast marching method to ensure |∇φ| ≈ 1.0
(Sethian 1999b). Then, we have ∂φ/∂τ ∝ −∂L/∂φ, which is a gradient flow that
minimises the loss function L and drives the evolution of the profile (He, Kao & Osher
2007). For a more rigorous mathematical analysis we refer to Kraft (2017). In the present
work, the automatic differentiation functionality of PyTorch is utilised to efficiently
minimise (2.4) via gradient descent. Note that the level-set-based surface representation
and optimisation algorithm are relatively independent modules, and can be coupled with
any flow solver, such as OpenFOAM and SU2, so long as the solver provides a re-sampled
flow field on the Cartesian grid (e.g. 128 × 128) at an iteration in the optimisation. We
will leverage this flexibility by replacing the numerical solver with a surrogate model
represented by a trained neural network below.

2.2.2. Bézier-curve-based parameterisation
Bézier-curve-based parametric shape parameterisation is a widely accepted technique
in aerodynamic studies (Gardner & Selig 2003; Yang et al. 2018; Zhang et al. 2020).
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This work utilises two Bézier curves, representing upper and lower surfaces of the profile
denoted with superscript k = {u, l}. Control points Pk

i ∈ D are the parameters of the
optimisation framework. The Bézier curves are defined via the following equation:

Bk(t) =
n∑

i=0

(
n
i

)
ti(1 − t)n−iPk

i , (2.6)

where t ∈ [0, 1] denotes the sample points along the curves. The first and last control
points of each curve share the same parameters to construct the closure Ω of the profile.

A binary labelling of the Cartesian grid D is performed as

χ =
{

1 x ∈ Ω

0 x ∈ D − Ω,
(2.7)

where χ is the binary mask of the profile and x is the coordinate of a point on the Cartesian
grid. The normal vector n is obtained via applying a convolution with a 3 × 3 Sobel
operator kernel on χ . Then, forces are calculated as

F pressure =
∑

i∈D−Ω

( pn)iΔli, (2.8)

F viscous =
∑

i∈D−Ω

(μn × ω)iΔli, (2.9)

where i is the index of a point outside the profile and Δli is the grid size at the point i.
Thereby, drag L is calculated using (2.4). As for the level set representation, the shape
gradient ∂L/∂Pk

i is computed via automatic differentiation in order to drive the shape
evolution to minimise L.

3. Neural network architecture and training procedure

3.1. Architecture
The neural network model is based on a U-net architecture (Ronneberger, Fischer & Brox
2015), a convolutional network originally used for the fast and precise segmentation of
images. Following the methodology of previous work (Thuerey et al. 2018), we consider
the inflow boundary conditions (i.e. u∞, v∞) and the shape of profiles (i.e. the binary
mask) on the 128 × 128 Cartesian grid as three input channels. In the encoding part, 7
convolutional blocks are used to transform the input (i.e. 1282 × 3) into a single data point
with 512 features. The decoder part of the network is designed symmetrically with another
7 layers in order to reconstruct the outputs with the desired dimension, i.e. 1282 × 3,
corresponding to the flow-field variables [p, u, v] on the 128 × 128 Cartesian grid. Leaky
ReLU activation functions with a slope of 0.2 are used in the encoding layers, and regular
ReLU activations in the decoding layers.

In order to assess the performance of the deep learning models, we have tested three
different models with varying weight counts of 122 000, 1.9 × 106 and 30.9 × 106,
respectively, which are later referred to as small-, medium- and large-scale networks.
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(a) (b)

Figure 3. Shape generation using two Bézier curves. The region of interest is divided into four columns,
and each column-wise region is further split into five subregions. (a) Bézier control points and (b) randomly
generated shapes.

3.2. Dataset generation
For the training dataset, it is important to have a comprehensive coverage of the space of
targeted solutions. In the present study, we utilise the parametric Bézier curve defined by
(2.6) to generate randomised symmetric shape profiles subject to a fixed area constraint S.

To parameterise the upper surface of the profile, two points at the leading and trailing
edges are fixed and four control points are positioned in different regions. As depicted
in figure 3(a), the region of interest is divided into four columns separated by the
border lines, and each control point of the upper Bézier curve is only allowed to be
located within its corresponding column-wise region. Each column-wise region is further
split into five subregions to produce diversified profiles. The subregions give 54 = 625
possible permutations, with control points being placed randomly in each subregion. This
procedure is repeated for four times, in total producing 4 × 625 = 2500 Bézier curves.
Figure 3(b) shows some examples from this set.

Based on these 2500 geometries, we then generate three sets of training data, as
summarised in table 1.

(1) We run OpenFOAM with fixed ReD = 1 for all of the 2500 profiles to obtain 2500
flow fields, denoted as Dataset-1.

(2) The second dataset is similar but all of the 2500 simulations are conducted at ReD =
40 (Dataset-40).

(3) The third dataset is generated to cover a continuous range of Reynolds numbers, in
order to capture a space of solutions that not only varies over the immersed shapes,
but additionally captures dimensions of varying flow physics with respect to a chosen
Reynolds number. For this, we run a simulation by randomly choosing a profile Ω∗

i
among 2500 geometries and a Reynolds number in the range Re∗

D ∈ [0.5, 42.5].
As we know that drag scales logarithmically with respect to Reynolds number,
we similarly employ a logarithmic sampling for the Reynolds number dimension.
We use a uniform distribution random variable κ ∈ [log 0.5, log 42.5], leading to a
Re∗

D = 10κ uniformly distributed in log scale. In total we have obtained 8640 flow
fields, which we refer to as Dataset-Range. With this size of the training dataset,
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Name No. of flow fields Re Neural network model

Dataset-1 2500 1 Small, medium and large
Dataset-40 2500 40 Small, medium and large
Dataset-Range 8640 0.5–42.5 Large

Table 1. Three datasets for training the neural network models.

101

100

0 500 1000 1500

Re∗
D

2000 2500

Ω∗

Figure 4. Distribution of flow-field samples from Dataset-Range on the Ω∗
i –Re∗

D map. The indices of
geometries Ω∗

i are from 0 to 2499. The red symbols denote the flow-field samples with Re∗
D ∈ [0.5, 1.5],

the green ones with Re∗
D ∈ [8, 12] and the blue ones with Re∗

D ∈ [38, 42].

the model performance converges to a stable prediction accuracy for training and
validation losses, as shown in the Appendix.

Shown in figure 4 is the distribution of all the flow-field samples from Dateset-Range on
the Ω∗

i –Re∗
D map, with Re∗

D in log scale. It is worth noting that there are 2053 flow-field
samples in the range Re∗

D ∈ [0.5, 1.5] which are shown in red, 819 samples with Re∗
D ∈

[8, 12] shown in green and 195 samples with Re∗
D ∈ [38, 42] shown in blue.

3.3. Preprocessing
Proper preprocessing of the data is crucial for obtaining a high inference accuracy from
the trained neural networks. Firstly, the non-dimensional flow-field variables are calculated
using

p̂i = ( pi − pi,mean)/U2
∞,i,

ûi = ui/U∞,i,
v̂i = vi/U∞,i.

⎫⎬
⎭ (3.1)
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Numerical investigation of drag profiles in laminar flow

Here, i denotes the ith flow-field sample in the dataset, pmean the simple arithmetic mean
pressure and U∞ = √

u2∞ + v2∞ the magnitude of the free-stream velocity.
As the second step, all input channels and target flow-field data in the training dataset

are normalised to the range [−1, 1] in order to minimise the errors from limited precision
in the training phase. To do so, we need to find the maximum absolute values for each flow
variable in the entire training dataset, i.e. |p̂|max, |û|max and |v̂max|. Similarly, the maximum
absolute values of the free-stream velocity components are |u∞|max and |v∞|max. Then we
get the final normalised flow-field variables in the following form:

p̃i = p̂i/|p̂|max,
ũi = ûi/|û|max,
ṽi = v̂i/|v̂|max,

⎫⎬
⎭ (3.2)

and the normalised free-stream velocities used for input channels are

ũi = ui/ max(|u∞|max, 1 × 10−18),

ṽi = vi/ max(|v∞|max, 1 × 10−18).

}
(3.3)

The free-stream velocities appear in the boundary conditions, on which the solution
globally depends, and should be readily available spatially and throughout the different
layers. Thus, free-stream conditions and the shape of the profile are encoded in a 1282 × 3
grid of values. The magnitude of the free-stream velocity is chosen such that it leads to a
desired Reynolds number.

3.4. Training details
The neural network is trained with the Adam optimiser in PyTorch (Kingma & Ba 2014).
A difference L1 = |ytruth − yprediction| is used for the loss calculation. For most of the cases,
the training runs converge after 100 000 iterations with a learning rate 6 × 10−4 and a
batch size of 10 (unless otherwise mentioned). An 80 % to 20 % split is used for training
and validation sets, respectively. The validation set allows for an unbiased evaluation of the
quality of the trained model during training, for example, to detect overfitting. In addition,
as learning rate decay is used, the variance of the learning iterations gradually decreases,
which lets the training process fine-tune the final state of the model.

Figure 5 shows the training and validation losses for three models that are trained
using Dataset-1, i.e. small-scale, medium-scale and large-scale models. All three models
converge at stable levels of training and validation loss after 500 epochs. Looking at the
training evolution for the small-scale model in figure 5(a), numerical oscillation can be
seen in the early stage of the validation loss history, which is most likely caused by the
smaller number of free parameters in the small-scale network. In contrast, the medium-
and large-scale models show a smoother loss evolution, and the gap between validation
and training losses indicates a slight overfitting as shown in figures 5(b) and 5(c). Although
the training of the large-scale model exhibits a spike in the loss value at an early stage due
to an instantaneous pathological configuration of mini-batch data and learned state, the
network recovers, and eventually converges to lower loss values. Similar spikes can be seen
in some of the other training runs, and could potentially be removed via gradient-clipping
algorithms, which, however, we did not find necessary to achieve reliable convergence.

Figure 6 presents the training and validation losses for the three models trained with
Dataset-40. Similarly, convergence can be achieved after 500 epochs. Compared with the
training evolution at ReD = 1, the models for ReD = 40 have smaller gaps between training
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Figure 5. Training (in blue) and validation (in orange) losses of three different scales of models trained
with Dataset-1. (a) Small-scale neural network, (b) medium-scale neural network and (c) large-scale neural
network.

and validation losses, indicating that the overfitting is less pronounced than for ReD = 1.
We believe this is caused by the smoother and more diffusive flow fields at ReD = 1 (close
to Stokes flow), in contrast to the additional complexity of the solutions at ReD = 40,
which already exhibit separation bubbles.

We use Dataset-Range to train the model for a continuous range of Reynolds numbers.
As this task is particularly challenging, we directly focus on the large-scale network that
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Figure 6. Training (in blue) and validation (in orange) losses of three different scales of models trained
with Dataset-40. (a) Small-scale neural network, (b) medium-scale neural network and (c) large-scale neural
network.

has 30.9 × 106 weights. To achieve better convergence for this case, we run 800 000
iterations with a batch size of 5, which leads to more than 485 epochs. As shown in
figure 7, training and validation losses converge to stable levels, and do not exhibit
overfitting over the course of the training iterations. The final loss values are 1.01 × 10−3

and 1.31 × 10−3, respectively.
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Figure 7. Training (in blue) and validation (in orange) losses of large-scale model trained with
Dataset-Range.

To summarise, having conducted the above-mentioned training, we obtain seven neural
network models, i.e. models of three network sizes each for Dataset-1 and Dataset-40 and
a ranged model trained with Dataset-Range, as listed in table 1. These neural networks
are used as surrogate models in the optimisation in the next section. We also compare the
results from neural network models with corresponding optimisations conducted with the
OpenFOAM solver, and evaluate the performance and accuracy of the optimisation runs.

4. Shape optimisation results

The initial shape for the optimisation is a circular cylinder with a diameter D ≈ 0.39424 m.
The integral value of the drag force using (2.4) is adopted as the objective function. The
mathematical formula of the optimisation for the shape Ω bounded by curve Γ , the surface
of the profile, is expressed as

min Drag(Ω)

subject to area S(Ω) = S0

barycentre b(Ω) = 1
S(Ω)

∫
Ω

x ds = (0, 0).

⎫⎪⎬
⎪⎭ (4.1)

For the level-set representation, the profile Ω is the region where φ ≤ 0 and the
constrained optimisation problem is solved as follows:

(1) Initialise level-set function φ such that the initial shape (i.e. a circular cylinder)
corresponds to φ = 0.

(2) For a given φ, calculate drag (i.e. loss L) using (2.2)–(2.4). Terminate if the
optimisation converges, e.g. drag history reaches a statistically steady state.

(3) Calculate the gradient ∂L/∂φ. Consider an unconstrained minimisation problem and
solve (2.5) as follows:

φn+1 ⇐= φn − Δτ
∂L
∂φ

|∇φ|. (4.2)

In practice, we update φ using the second-order Runge–Kutta method, and discretise
the convection term with a first-order upwind scheme (Sethian & Smereka 2003).
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Numerical investigation of drag profiles in laminar flow

We assume derivatives of the flow-field variables (i.e. pressure and velocity) are
significantly smaller than those with respect to the shape. Hence, we treat both
fields as constants for each step of the shape evolution. To ensure the correct search
direction for optimisation, we use a relatively small pseudo time step Δτ , which is
calculated with a Courant number of 0.8.

(4) To ensure |∇φ| ≈ 1, a fast marching method is used to solve the Eikonal equation
(Sethian 1999b).

(5) The area of the shape Ω is obtained by S = ∫
D Hε(−(φ + η)) ds, where η is

an adjustable constant. We optimise η such that |S − S0| < ε. Then, we update
φn+1 ⇐= φn+1 + η.

(6) Check if the barycentre is at the origin: |b − o| < ε. If not, solve (2.5) to update
φn+1 by replacing Vn with a translating constant velocity so that the barycentre of
the shape Ω moves towards the origin. Continue with step (2).

While our main focus lies on level-set representations, the Bézier curve parameterisation
with reduced degrees of freedom is used for comparison purposes. This highlights how
differences in the shape parameterisation can influence the optimisation results. Thus,
we include the Bezier parameterisation with very few control points and the level-set
representation with a dense grid sampling as two extremes of the spectrum of shape
representations. When Bézier curves are used, the constrained optimisation differs from
the above-mentioned loop in the following way. In (1)–(3), the coordinates of Bézier curve
control points are used as the design variables to be initialised and updated. In (5) and (6),
the area of Ω and barycentre are calculated based on the region enclosed by the Bézier
curve, where the binary mask of inner region is 1 and of outer region is 0.

In the optimisation experiments, the flow-field solvers used are OpenFOAM (as
baseline) and small-, medium- and large-scale neural network models. As additional
validation for the optimisation procedure, we also compare with additional runs based on
the Bézier curve parameterisation with a large-scale neural network model. If the flow
solver is OpenFOAM, Gmsh is automatically called to generate an unstructured mesh
based on the curve φ = 0 at every iteration. To update φ and calculate drag in step (2),
as mentioned in §2.1, the flow-field variables are re-sampled on the 128 × 128 Cartesian
grid.

4.1. Optimisation experiment at ReD = 1
Figure 8 presents the drag coefficients over 200 optimisation iterations using OpenFOAM
solver and the three neural network models. Here, the drag coefficient Cd is defined as
drag divided by the projected length of the initial cylinder and dynamic head. The same
definition is used for all other experiments in the present paper. As the ground truth,
figure 8(a) shows the case which uses the OpenFOAM solver in the optimisation. The
history of drag values, shown in blue, is calculated based on the re-sampled data on the
Cartesian grid (i.e. 1282). For comparison, the drag values obtained from the surface
integral in the OpenFOAM native postprocessing code are shown with red markers. As
can be seen in figure 8(a), after convergence of the optimisation, the total drag drops
6.3 % from 10.43 to 9.78. To further break it down, the inviscid part decreases significantly
from 5.20 to 2.50 (∼ 51.8 %) while the viscous part gradually increases from 5.23 to 7.27
(∼ 31.0 %). This is associated with the elongation of the shape from a circular cylinder to
an ‘oval’, eventually becoming a rugby-ball shape as shown in figure 9(b).
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Figure 8. Optimisation histories at ReD = 1. The black solid lines denote the results using neural network
models trained with Dataset-1 and the blue solid lines denote the results from OpenFOAM. Results calculated
with the re-sampled flow fields on the 128 × 128 Cartesian grid are denoted by 1282. The red cross symbols
represent the OpenFOAM results obtained with its native postprocessing tool. (a) OpenFOAM, (b) small-scale
neural network, (c) medium-scale neural network and (d) large-scale neural network.
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Figure 9. The converged shapes at ReD = 1 (a) and the intermediate states at every 10th iteration predicted
by the large-scale neural network (NN) model (b).
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Numerical investigation of drag profiles in laminar flow

From figures 8(b) and 8(c), one can observe the histories of the drag values are
reasonably well predicted by the neural network models and agree with the OpenFOAM
solution in figure 8(a). Despite the small-scale model exhibiting noticeable oscillations in
the optimisation procedure, the medium- and large-scale neural network models provide
smoother predictions, and the drag of both initial and final shapes agrees well with that
from re-sampled data (blue lines) and that from the OpenFOAM native postprocessing
code (red symbols).

Figure 9(a) depicts the converged shapes of all four solvers. The ground truth result
using OpenFOAM ends up with a rugby-ball shape which achieves a good agreement
with the data of Kim & Kim (2005). The medium- and large-scale neural network models
collapse and compare favourably with the ground truth result. In contrast, the small-scale
neural network model’s prediction is slightly off, which is not surprising as one can
observe oscillation and offset of the drag history in figure 8(b) as discussed before. A
possible reason is that the small-scale model has fewer weights so that the complexity of
the flow evolution cannot be fully captured. It is worth noting that the reduced performance
of the Bézier representation in the present work is partly due to the discretisation errors
when calculating the normal vectors in combination with a reduced number of degrees of
freedom.

The x-component velocity fields with streamlines for the optimised shapes are shown
in figure 10. The flow fields and the patterns of streamlines in all three cases with
neural networks show no separation, which is consistent with the ground truth result
in figure 10(a). Considering the final shape obtained using the three neural network
surrogates, the medium- and large-scale models give satisfactory results that are close
to the OpenFOAM result.

4.2. Optimisation experiment at ReD = 40
As the Reynolds number increases past the critical Reynolds number ReD ≈ 47, the
circular cylinder flow configuration loses its symmetry and becomes unstable, which is
known as the Karman vortex street. We consider optimisations for the flow regime at
ReD = 40 which is of particular interest because it exhibits a steady-state solution, yet is
close to the critical Reynolds number. The steady separation bubbles behind the profile
further compound the learning task and the optimisation, making it a good test case for
the proposed method.

The ground truth optimisation result using OpenFOAM is shown in figure 11(a). The
shape is initialised with a circular cylinder and is optimised to minimise drag over 200
iterations. As a result, the total drag, processed on the Cartesian grid, drops from 1.470 to
1.269 (∼13.7 % reduction). Associated with the elongation of the shape, the inviscid drag
decreases 41.3 % while the viscous drag increases 41.3 %. The initial and the final results
of the OpenFOAM native postprocessing are shown in red, indicating good agreement.
Figure 11(b–d) presents the drag histories over 200 optimisation iterations with three
neural network models that are trained with Dataset-40. Although larger oscillations
are found in the drag history of the small-scale model, the medium- and large-scale
models predict smoother drag history and compare well with the ground truth data using
OpenFOAM.

The final converged shapes are compared to a reference result (Katamine et al. 2005) in
figure 12(a). The evolution of intermediate shapes from the initial circular cylinder towards
the final shape is shown in figure 12(b). The upwind side forms a sharp leading edge while
the downwind side of the profile develops into a blunt trailing edge. Compared with the
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Figure 10. Streamlines and the x-component velocity fields u/U∞ at ReD = 1. (a) OpenFOAM,
(b) small-scale neural network, (c) medium-scale neural network and (d) large-scale neural network.

reference data (Katamine et al. 2005) and the result using the Bézier-curve-based method,
the use of level-set-based method leads to a slightly flatter trailing edge, probably because
more degrees of freedom for the shape representation are considered in level-set-based
method.

Further looking at the details of shapes in figure 13, it can be seen that the more weights
the neural network model contains, the closer it compares with the ground truth result
using OpenFOAM. The large-scale model, which has the largest weight count, is able to
resolve the fine feature of the flat trailing edge as shown in figure 13(d). In contrast, in
figure 13(b), the small-scale model does not capture that and even the the surface of the
profile exhibits pronounced roughness. Nonetheless, all three DNN models predict similar
flow patterns compared with the ground truth result depicted with streamlines, which are
characterised with re-circulation regions downstream of the profiles.

It should be mentioned that the optimised shape at ReD = 40 of Kim & Kim (2005)
differs from the one in the present study and the one of Katamine et al. (2005). In the
former (Kim & Kim 2005), the optimised profile converges at an elongated slender shape
with an even smaller drag force. Most likely, this is caused by an additional wedge angle
constraint being imposed at both leading and trailing edges, which is not adopted in our
work and that of Katamine et al. (2005). As we focus on deep learning surrogates in the
present study, we believe the topic of including additional constraints will be an interesting
avenue for future work. In comparison with the ground truth from OpenFOAM, the current
results are deemed to be in very good agreement.
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Figure 11. Optimisation histories at ReD = 40. The black solid lines denote the results using neural network
models trained with Dataset-40 and the blue solid lines denote the results from OpenFOAM. Results calculated
with the re-sampled flow fields on the 128 × 128 Cartesian grid are denoted by 1282. The red cross symbols
represent the OpenFOAM results obtained with its native postprocessing tool. (a) OpenFOAM, (b) small-scale
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Figure 13. Streamlines and the x-component velocity fields u/U∞ at ReD = 40 obtained with different solvers,
i.e. OpenFOAM and three neural network models trained with Dataset-40. (a) OpenFOAM, (b) small-scale
neural network, (c) medium-scale neural network and (d) large-scale neural network.

4.3. Shape optimisations for an enlarged solution space
The generalising capabilities of neural networks are a challenging topic (Ling, Kurzawski
& Templeton 2016). To evaluate their flexibility in our context, we target shape
optimisations in the continuous range of Reynolds numbers from ReD = 1 to 40, over the
course of which the flow patterns change significantly (Tritton 1959; Sen, Mittal & Biswas
2009). Hence, in order to succeed, a neural network not only has to encode changes of the
solutions with respect to immersed shape but also the changing physics of the different
Reynolds numbers. In this section, we conduct four tests at ReD = 1, 5, 10 and 40 with
the ranged model in order to quantitatively assess its ability to make accurate flow-field
predictions over the chosen change of Reynolds numbers. The corresponding OpenFOAM
runs are used as ground truth for comparisons.

The optimisation histories for the four cases are plotted in figure 14. Despite some
oscillations, the predicted drag values as well as the inviscid and viscous parts agree
well with the ground truth values from OpenFOAM. The total drag force as objective
function has been reduced and reaches a stable state in each case. The performance of the
ranged model at ReD = 40 is reasonably good, although it is slightly outperformed by the
specialised neural network model trained with Dataset-40.

In line with the previous runs, the overall trend of optimisation for the four cases
shows that the viscous drag increases while the inviscid part decreases as shown in
figure 14, which is associated with an elongation of the profile and the formation of a sharp
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Figure 14. Optimisation history for the four cases at ReD = 1, 5, 10 and 40. The black solid lines denote the
results using neural network models (i.e. the ranged model) and the blue solid lines denote the results from
OpenFOAM. Results calculated with the re-sampled flow fields on the 128 × 128 Cartesian grid are denoted
by 1282. The red cross symbols represent the OpenFOAM results obtained with its native postprocessing tool.
(a) ReD = 1, (b) ReD = 5, (c) ReD = 10 and (d) ReD = 40.

leading edge. The final shapes after optimisation for the four Reynolds numbers are
summarised in figure 15. For the four cases, there eventually develops a sharp leading
edge, while the trailing edge shows a difference. At ReD = 1 and 5, the profiles converge
with sharp trailing edges as depicted in figures 15(a) and 15(b). The corresponding flow
fields also show no separations in figures 16(a) and 16(b).

As shown in figure 15(c) at ReD = 10 and figure 15(d) at ReD = 40, blunt trailing
edges become the final shapes and the profile for ReD = 10 is more slender than that
for ReD = 40. The higher Reynolds number leads to a flattened trailing edge, associated
with the occurrence of the recirculation region shown in figures 16(c) and 16(d), and the
gradient of the objective function becoming relatively weak in these regions. In terms of
accuracy, the converged shapes at ReD = 1, 5 and 10 compare favourably with the results
from OpenFOAM. Compared with ground truth shapes, only the final profile at ReD = 40
predicted by the ranged model shows slight deviations near the trailing edge. Thus, given
the non-trivial changes of flow behaviour across the targeted range or Reynolds numbers,
the neural network yields a robust and consistent performance.
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Figure 15. Shapes after optimisation at ReD = 1, 5, 10 and 40. The black solid lines denote the results using
neural network models (i.e. the ranged model), the blue dashed lines denote the results from OpenFOAM
and the symbols denote the corresponding reference data. (a) ReD = 1, (b) ReD = 5, (c) ReD = 10 and
(d) ReD = 40.

4.4. Performance
The performance of trained DNN models is one of the central factors motivating their
use. We evaluate our models in a standard workstation with 12 cores, i.e. Intel® Xeon®

W-2133 CPU at 3.60 GHz, with an NVidia GeForce RTX 2060 GPU. The optimisation
run at ReD = 1 which consists of 200 iterations is chosen for evaluating the runtimes using
different solvers, i.e. OpenFOAM and DNN models of three sizes trained with Dataset-1.
Due to the strongly differing implementations, we compare the different solvers in terms
of elapsed wall clock time. As listed in table 2, it takes 16.3 h using nine cores (or 147
core-hours) for OpenFOAM to complete such a case. Compared with OpenFOAM, the
DNN model using the GPU reduces the computational cost significantly. The small-scale
model requires 97 s and even the large-scale model takes less than 200 s to accomplish
the task. Therefore, relative to OpenFOAM, the speed-up factor is between 600 and 300
times. Even when considering a factor of approximately 10 in terms of GPU advantage due
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Figure 16. Streamlines and the x-component velocity fields u/U∞ at ReD = 1, 5, 10 and 40 using the ranged
model. (a) Re = 1, (b) Re = 5, (c) Re = 10 and (d) Re = 40.

Solver Wall time Platform

OpenFOAM 16.3 h CPU only, 9 cores
Small-scale DNN 97 s CPU, 1 core and GPU
Medium-scale DNN 106 s CPU, 1 core and GPU
Large-scale DNN 196 s CPU, 1 core and GPU

Table 2. Runtimes for 200 optimisation iterations at ReD = 1.

to an improved on-chip memory bandwidth, these measurements indicate the significant
reductions in terms of runtime that can potentially be achieved by employing trained neural
networks.

The time to train the DNN models varies with neural network size and the amount of
training data. Taking Dataset-1 as an example, the time of training starts with 23 min for
the small-scale model, up to 124 min for the large-scale model. When using Dataset-Range
(8640 samples), it takes 252 min to train a large-scale ranged model.

Note that we aim at providing a possible choice rather than downplaying the alternatives,
e.g. optimisation using discrete adjoints (Zhou et al. 2016). Given the potentially large
one-time cost for training a model, learned approaches bear particular promise in settings
where similar optimisation problems need to be solved repeatedly. Considering the cost
of data generation and training, we also believe that hybrid methods that combine
deep learning and traditional numerical methods represent very promising avenues for
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future algorithms. An example would be to employ learned models as fast initialisers for
nonlinear optimisations (Holl et al. 2020).

5. Concluding remarks

In this paper, DNNs are trained to infer flow fields, and used as surrogate models to
carry out shape optimisation for drag minimisation of the flow past a profile with a given
area subjected to a two-dimensional incompressible fluid at low Reynolds numbers. Both
level-set and Bézier curve representations are adopted to parameterise the shape, and the
integral values on the re-sampled Cartesian mesh are used as the optimisation objective.
The gradient flow that drives the evolution of shape profile is calculated by automatic
differentiation in a deep learning framework, which seamlessly integrates with trained
neural network models.

Through optimisation, the drag values predicted by neural network models agree well
with the OpenFOAM results showing consistent trends. Although the total drag decreases,
it is observed that the inviscid drag decreases while the contribution of the viscous part
increases, which is associated with the elongation of the shape. It is demonstrated that
the present DNN model is able to predict satisfactory drag forces and the proposed
optimisation framework is promising for use in general aerodynamic design. Moreover,
the DNN model stands out with respect to its flexibility, as it predicts a full flow field in
a region of interest and, once trained, can potentially be used in other optimisation tasks
with multiple objectives. In conjunction with the low runtime of the trained DNN, we
believe the proposed method showcases the possibilities of using DNNs as surrogates for
optimisation problems in physical sciences.
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Appendix

To assess the effects of the number of samples in the datasets on the training and validation
losses, six training runs are conducted with various amounts of data, which are listed in
table 3. The method to generate those datasets is discussed in §3.2. Note that in table 3
any smaller dataset is a subset of a larger dataset and all follow the same probability
distribution (see figure 4).

We found validation sets of several hundred samples to yield stable estimates, and hence
use an upper limit of 400 as the maximal size of the validation dataset. The typical number
of epochs, Epochmax, for training ranges from 500 to 750.

In figure 17, all models converge to stable levels of training and validation losses,
and do not exhibit overfitting despite the reduced amount of data for some of the runs.
For all graphs, the onset of learning rate decay can be seen in the middle of the plot.
It can be seen that with an increased number of samples, the training and validation
losses follow an overall declining trend, and the variance of training losses noticeably
decreases. Additionally, looking at the models trained with Dataset-Range-5815 and
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Name No. of flow fields Training Validation

Dataset-Range-400 400 320 80
Dataset-Range-800 800 640 160
Dataset-Range-1660 1660 1330 330
Dataset-Range-3315 3315 2915 400
Dataset-Range-5815 5815 5415 400
Dataset-Range-8640 8640 8240 400

Table 3. Different dataset sizes used for training runs with corresponding splits into training and validation
sets.

10–2

10–3

0 0.2 0.4 0.6 0.8 1.0

10–2

10–3

0 0.2 0.4 0.6 0.8 1.0

L
o

ss

Epoch/Epochmax Epoch/Epochmax

Dataset-Range-400
Dataset-Range-800
Dataset-Range-1660
Dataset-Range-3315
Dataset-Range-5815
Dataset-Range-8640

(a) (b)

Figure 17. Comparison of training histories for different amounts of training data. (a) Training loss and
(b) validation loss.
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Figure 18. Training and validation losses for different amounts of training data.

Dataset-Range-8640, the two curves are very close in terms of the loss values, which
implies that further increasing the amount of data does not yield significant improvements
in terms of inference accuracy.

Figure 18 shows the values of training and validation losses (averaged in the last
100 epochs). It can be observed that the models with small amounts of data exhibit
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larger losses. Both training and validation loss curves show notable drops over the course
of the first data points with small amounts of data. This indicates that adding samples leads
to marked improvements when the amount of data is smaller than 3000. The behaviour
stabilises with larger amounts of data being available for training, especially when the
number of samples is greater than 5000.

Based on the above test results, Dataset-Range-8640 is chosen for the optimisation study
at the Reynolds number range Re ∈ [0, 40]. For the sake of brevity, Data-Range is used to
denote this dataset in the main text.
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