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In this study, direct numerical simulation of the flow around a rotating sphere at high
Mach and low Reynolds numbers is conducted to investigate the effects of rotation
rate and Mach number upon aerodynamic force coefficients and wake structures. The
simulation is carried out by solving the three-dimensional compressible Navier–Stokes
equations. A free-stream Reynolds number (based on the free-stream velocity, density
and viscosity coefficient and the diameter of the sphere) is set to be between 100
and 300, the free-stream Mach number is set to be between 0.2 and 2.0, and
the dimensionless rotation rate defined by the ratio of the free-stream and surface
velocities above the equator is set between 0.0 and 1.0. Thus, we have clarified the
following points: (1) as free-stream Mach number increased, the increment of the
lift coefficient due to rotation was reduced; (2) under subsonic conditions, the drag
coefficient increased with increase of the rotation rate, whereas under supersonic
conditions, the increment of the drag coefficient was reduced with increasing Mach
number; and (3) the mode of the wake structure becomes low-Reynolds-number-like
as the Mach number is increased.

Key words: aerodynamics, high-speed flow, low-Reynolds-number flows

1. Introduction
Multiphase flows arise in many situations, such as biology, particle transportation

in air pollution problems, industrial engineering processes and so on. In such flows,
the presence of a disperse phase can affect the flow properties. In space engineering,
for example, a compressible multiphase flow appears in the exhaust jets of rocket

† Email address for correspondence: nagata.takayuki@aero.mech.tohoku.ac.jp
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engines. Also, acoustic waves generated by the exhaust jet are attenuated by the effect
of alumina particles and aluminium droplets released from the solid rocket motor, as
well as water droplets introduced by water injection.

Accurate prediction of the acoustic level generated by the exhaust jet is important
because the acoustic wave may cause critical damage to a payload. Traditionally,
the acoustic level has been predicted by a semi-empirical method such as NASA
SP-8072 by Eldred (1971) and subscale tests (e.g. Ishii et al. 2012). However,
subscale testing is very expensive. Also, the semi-empirical method is not suitable
as a design tool for new launchpads or rockets. Accordingly, in recent years, several
studies predicting acoustic level using computational fluid dynamics (CFD) have been
conducted. For example, Tsutsumi et al. (2015) examined the effects of the launch
facility and the frame deflector plate. Also, Nonomura et al. (2014) examined the
effect of differences in the gas component. However, the exhaust gas from rocket
engines includes alumina particles and aluminium droplets released from solid rocket
motors and water droplets introduced by water injection. Experimental results have
shown that these particles and droplets may possibly attenuate the acoustic wave;
however, this attenuation mechanism is not understood completely (Fukuda et al.
2011; Ignatius, Sathiyavageeswaran & Chakravarthy 2014).

The diameters of the alumina particles are approximately 1.1–300 µm (Shimada,
Daimon & Sekino 2006). On the other hand, the exhaust-gas flow is supersonic.
As a result, the flow around each particle is in a high-Mach-number and low-
Reynolds-number (high-M and low-Re) condition. However, the characteristics of
the flow around those particles and its effects have not been understood in detail
until now. Terakado et al. (2016) conducted numerical simulations of a turbulent
mixing layer using the Euler–Euler formulation with a simple multiphase flow
model. This study suggested that fine-scale vortices are attenuated by particles,
and generation of the noise at the shear layer is suppressed. Hence, if accurate
consideration of the particle effects became possible, highly accurate prediction of
the acoustic environment would be expected. Hence, in our previous study, the flow
properties of a stationary adiabatic and heated/cooled sphere under the high-M and
low-Re condition (0.36M 6 2.0, 506Re6 1000) were examined by direct numerical
simulation (DNS) with a body-fitted grid (Nagata et al. 2016, 2018a,b). Also, a
particle-resolved approach using the immersed boundary method for compressible
viscous particle-laden flow was proposed by Mizuno et al. (2015), Schneiders et al.
(2016), Das et al. (2017) and Riahi et al. (2018).

Kajishima (2004) suggested the influence of wake vortices released from the
particles and the lift force due to the particle rotation on particle distribution by
particle-resolved DNS using immersed boundary method in incompressible flows.
Transversely rotating spheres in incompressible flows have been studied by various
researchers. In particular, the Robins–Magnus lift force in low-Re flow has attracted
attention for the multiphase flow problem because this force is an important factor in
particle transportation.

Rubinow & Keller (1961) derived the lift coefficient, CL, of a transversely rotating
sphere in the Stokes regime at a low rotation rate (Re = ρu∞d/ν 6 0.1 and Ω∗ =

Ωd/2u∞60.1). Here, Re and Ω∗ are the Reynolds number and the rotation rate based
on the diameter of the sphere d, the free-stream velocity u∞, the free-stream density
ρ∞, the free-stream viscosity coefficient µ∞ and the angular velocity Ω . Their results
show that the lift coefficient is expressed as CL = 2Ω∗ in the Stokes regime. Also,
Rubinow & Keller found that the drag coefficient in the Stokes regime under the low-
Ω∗ condition is not a function of Ω∗, and its value is equal to the Stokes drag on a
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stationary sphere. In the range Re> 1, an empirical CL model for a rotating sphere at
Re6 120 is derived by force measurement experiments in uniform flow by Bui Dinh,
Oesterle & Deneu (1990) and Tanaka, Yamagata & Tsuji (1990).

Numerical simulations have also been used to investigate the flow properties of
transversely rotating spheres. Kurose & Komori (1999) examined the drag and lift
coefficients of a rotating sphere at 1 6 Re 6 500 and 0 6 Ω∗ 6 0.25 using DNS
(they also examined the effects of a linear shear using DNS and experiments). They
provided the hydrodynamic forces, flow structures and variation frequency of the
hydrodynamic force coefficient. Their result shows that the lift coefficient at Re = 1
is only half of that theoretically determined by Rubinow & Keller (1961). The lift
coefficient at Re> 1 provided by Niazmand & Renksizbulut (2003) is also only half
of the theoretical value by Rubinow & Keller (1961). Moreover, You, Qi & Xu
(2003) examined this problem at 0.5 6 Re 6 68.4 and 0 6 Ω∗ 6 5. In contrast to
Kurose & Komori (1999) and Niazmand & Renksizbulut (2003), the lift coefficient
obtained by You et al. (2003) at Re < 1 shows good agreement with the theoretical
value obtained by Rubinow & Keller (1961), and the lift coefficient decreases as Re
increases for Re> 100. Giacobello, Ooi & Balachandar (2009) and Poon et al. (2014)
comprehensively provided the flow properties over wide ranges of Re and Ω∗, namely
100 6 Re 6 300, 0 6Ω∗ 6 1.0 and 500 6 Re 6 1000, and 0 6Ω∗ 6 1.2, respectively.
Their results show that unsteady vortex shedding is suppressed at medium Ω∗ around
Re = 300, and Kelvin–Helmholtz type instability of the shear layer appears at high
Ω∗. Also, at high Re, the vortex structures become more complex compared with
those up to Re = 300. Dobson, Ooi & Poon (2014) provided the flow properties at
further high-Ω∗ conditions (1.25 6Ω∗ 6 3 and 100 6 Re 6 300).

On the other hand, there are a few cases on the study of the Robins–Magnus
lift force within compressible flow. Teymourtash & Salimipour (2017) examined the
flow around a rotating cylinder under subsonic conditions. Their results show that
the compressibility effects appear in the lift coefficient and flow structure behind
the cylinder. Volkov (2011) studied the three-dimensional transitional flow of a
rarefied monotonic gas over a spinning sphere using the direct simulation Monte
Carlo (DSMC) method at 0.03 6 M 6 2 and 0.01 6 Kn 6 20. Here, Kn denotes the
Knudsen number based on the ratio of mean free path and the characteristic length.
They found that the direction and magnitude of the transverse Magnus effect in
rarefied flow depend upon Kn and M. Also, the torque is a function of M and Ω∗.
However, the flow properties of a transversely rotating sphere in compressible and
low-Re continuum flow have not been studied even though the Robins–Magnus lift
force has a large impact on particle-laden flow. Therefore, the examination on the
Robins–Magnus lift force in a compressible flow is necessary for modelling of the
compressible particle-laden flow such as the exhaust gas of a rocket engine.

In this study, we used DNS of the Navier–Stokes equation to investigate the effects
of M, Ω∗ and Re upon the hydrodynamic force coefficients and the wake structure
of the flow around a transversely rotating sphere, with the aim of constructing an
accurate compressible multiphase flow model. The isolated rigid sphere transversely
rotates up to Ω∗ = 1.0 under conditions at 100 6 Re 6 300 and 0.2 6 M 6 2.0. The
effects of compressibility upon wake structures and hydrodynamic force coefficients
are investigated by comparison with the previous incompressible flow studies by
Kurose & Komori (1999), Niazmand & Renksizbulut (2003) and Giacobello et al.
(2009). Also, the wake structure under supersonic conditions is very similar to the
low-Re pattern in incompressible flows. This effect is described in § 3. Also, the
effects of compressibility upon hydrodynamic force and moment coefficients are
discussed in § 5 by visualizing the fluid stress distributions on the surface of a
sphere.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

75
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.756


DNS of flow past a rotating sphere up to Re of 300 in compressible flow 881

2. Methodology
2.1. Governing equations

The three-dimensional compressible Navier–Stokes equations are employed as the
governing equations. The Navier–Stokes equations in Cartesian coordinates have the
following form:

∂Q
∂t
+
∂E
∂x
+
∂F
∂y
+
∂G
∂z
=
∂Ev

∂x
+
∂Fv

∂y
+
∂Gv

∂z
, (2.1)

where Q contains conservative variables, E, F and G are the x, y and z components
of an inviscid flux, respectively, and Ev, Fv and Gv are the x, y and z components of
a viscous flux, respectively. These vectors are defined as follows:

Q= (ρ ρu ρv ρw e)T,
E= (ρu ρu2

+ p ρuv ρuw (e+ p)u)T,
F= (ρv ρvu ρv2

+ p ρvw (e+ p)v)T,
G= (ρw ρwu ρwv ρw2

+ p (e+ p)w)T,

 (2.2)

Ev = (0 τxx τxy τxz βx)
T,

Fv = (0 τyx τyy τyz βy)
T,

Gv = (0 τzx τzy τzz βz)
T,

 (2.3)

βx = τxxu+ τxyv + τxzw− qx,

βy = τyxu+ τyyv + τyzw− qy,

βz = τzxu+ τzyv + τzzw− qz.

 (2.4)

Here, ρ is the density; u, v and w are the x, y and z components of velocity,
respectively; τ is the component of a viscous stress tensor; and q is the heat flux.
The total energy per unit volume e is written as follows, constituting an equation of
state for ideal gases in this study:

e=
p

γ − 1
+

1
2
ρ(u2
+ v2
+w2). (2.5)

Here, p and γ are the pressure and specific heat ratio, respectively.
The three-dimensional Navier–Stokes equations in the curvilinear coordinate system

are expressed as

∂Q̃
∂t
+
∂Ẽ
∂ξ
+
∂F̃
∂η
+
∂G̃
∂ζ
=
∂Ẽv

∂ξ
+
∂F̃v

∂η
+
∂G̃v

∂ζ
, (2.6)

where

Q̃=
Q
J
,

Ẽ=
1
J

(
∂ξ

∂x
E+

∂ξ

∂y
F+

∂ξ

∂z
G
)
,

F̃=
1
J

(
∂η

∂x
E+

∂η

∂y
F+

∂η

∂z
G
)
,

G̃=
1
J

(
∂ζ

∂x
E+

∂ζ

∂y
F+

∂ζ

∂z
G
)
,


(2.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

75
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.756


882 T. Nagata, T. Nonomura, S. Takahashi, Y. Mizuno and K. Fukuda

Ẽv =
1
J

(
∂ξ

∂x
Ev +

∂ξ

∂y
Fv +

∂ξ

∂z
Gv

)
,

F̃v =
1
J

(
∂η

∂x
Ev +

∂η

∂y
Fv +

∂η

∂z
Gv

)
,

G̃v =
1
J

(
∂ζ

∂x
Ev +

∂ζ

∂y
Fv +

∂ζ

∂z
Gv

)
.


(2.8)

Here, J is the Jacobian and ξ , η and ζ are curvilinear coordinates. Also, the
temperature dependence of the viscosity coefficient, µ, is considered using Sutherland’s
law (Sutherland 1893):

µ=µ∞

(
T

T∞

)3/2 ( 1+C/T∞
(T +C)/T∞

)
, (2.9)

where T is the temperature of the gas and C = 110.4 is the constant for air in
Sutherland’s law.

2.2. Computational methods
The calculation is carried out by solving the Navier–Stokes equations on a boundary-
fitted grid that is non-dimensionalized by the free-stream density, the speed of sound
and the diameter of the sphere. The convection and viscous terms are evaluated by the
sixth-order adaptive central and upwind-weighted essentially non-oscillatory scheme
(WENOCU6-FP) proposed by Nonomura et al. (2015) and the sixth-order central
difference method, respectively. The time integration is conducted by the third-order
total-variation-diminishing Runge–Kutta method proposed by Gottlieb & Shu (1998).
In this study, the central difference component of WENOCU6-FP is replaced by
one of the splitting type proposed by Pirozzoli (2011), in order to stabilize the
calculation. In particular, the WENO numerical flux, Fweno, for the convective term
can be rewritten as follows:

Fweno = Fcentral-div + Fweno-dissipation. (2.10)

Here, Fcentral-div is the numerical flux corresponding to the sixth-order central difference
and Fweno-dissipation is the sixth-order dissipation term for the sixth-order WENOCU.
Even though Fcentral is usually written in the form of a divergence, here it is replaced
by the splitting form, Fcentral-split, of Pirozzoli (2011). The detailed description of this
replacement and computational results by the original WENOCU6-FP are shown in
the Appendix. Note that the computation using the original WENOCU6-FP blows up.
Therefore, replacing to the splitting form is necessary for this study.

2.3. Computational grid
The coordinate system and the computational grid are shown in figures 1 and 2. In
this study, calculations are conducted on a boundary-fitted grid. The grid size in the
ζ direction is increased by 1.03 times from the minimum grid size. When the grid
size becomes 0.05d, it is constant until 15d. Also, the computational grid is refined in
the downstream region of the sphere for the diameter of 4d. The region of 0.56 x6 15
and (y2

+ z2)0.5 6 4 is the high-resolution region to capture the wake structures. From
15d outwards, the grid size increases by 1.2 times towards the outer boundary as
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x

y

z

≈

Ω
˙

Sphere

FIGURE 1. Coordinate system: x, y and z are Cartesian coordinates; ξ , η and ζ are
curvilinear coordinates.

(a) (b)

FIGURE 2. Computational grid: (a) close-up view; (b) far view.

a buffer region to prevent pressure wave reflection. Note that the distance from the
sphere to the outer boundary is much larger (the diameter of the analytical region is
100d) than that in previous incompressible simulations to attenuate the reflection of
pressure waves. Here, the minimum grid width is calculated by the following formula
used in the previous incompressible study by Johnson & Patel (1999):

drmin =
1.13

√
Re× 10.0

. (2.11)

Note that the minimum grid width is fixed to the size Re = 300. The details of the
computational grid are provided in Nagata et al. (2018a,b). Also, grid resolution and
domain size independence were confirmed as shown in the Appendix.

2.4. Boundary conditions and computational conditions
At the boundaries in the ξ and η directions, the periodic boundary conditions are
imposed on the six overlapped grid points. The boundary condition at the surface of
the sphere is adiabatic; also, the velocity on the surface is given as follows to simulate
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Equator of sphere

Flow

z

Uœ

x
O

œ

r = d/2

FIGURE 3. Velocity and position coordinates along the equator of the sphere.

a rotating sphere:

usurf =Ω
∗u∞

2z
d
,

vsurf = 0,

wsurf =−Ω
∗u∞

2x
d
,

 (2.12)

where usurf , vsurf and wsurf are the x, y and z components of surface velocity,
respectively, and x and z are the position vectors of the x and z components. In
this study, the axis of rotation is the y direction. Also, the position and velocity
coordinates in polar coordinates along the equator of the sphere are defined in the
x–z plane at y= 0 as shown in figure 3 and the flow properties are investigated there.
Here, θ and Uθ denote the angle from the x axis of upstream and the velocity along
the equator of the sphere, respectively.

Analysis conditions that are simulated in this study are shown in table 1. In this
study, the free-stream Re based on the quantities at the far field and the diameter of
the sphere is set between 100 and 300, the free-stream M is set between 0.2 and 2.0,
and Ω∗ defined by the ratio of the free-stream velocity and the surface velocity above
the equator is set between 0.0 and 1.0.

3. Far-field structure

Under incompressible flows for Re 6 300, wake structures are classified into four
types (Giacobello et al. 2009), namely the steady wake, the steady double-threaded
wake, the hairpin wake and the one-sided �-shaped wake. The flow patterns are
changed along with Re and Ω∗. For low-Re and low-Ω∗ conditions, the flow pattern
is the steady wake (e.g. Re = 100 and Ω∗ = 0.0). As Re or Ω∗ increases, the flow
pattern transitions to the steady double-threaded wake (e.g. Re= 100 and Ω∗ = 0.3).
In this flow pattern, two streamwise vortices are generated around the rotation axis of
the sphere. For Re > 250, the hairpin wake appears. In this flow pattern, the hairpin
vortices are periodically released from the recirculation region behind the sphere
(e.g. Re= 250 and Ω∗ = 0.3, and Re= 300 and Ω∗ = 0.3). As Ω∗ further increases,
vortex shedding is reduced, and the flow pattern transitions back to the steady
double-threaded wake (e.g. Re= 300 and Ω∗ = 0.6). For Re= 300 and Ω∗ = 0.8 and
1.0, the flow pattern transitions to the one-sided �-shaped wake. In this flow pattern,
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M
0.2 0.3 0.8 1.2 2.0

Ω∗

0.0 Re= 300 Re= 250 Re= 250 Re= 300 Re= 300Re= 300 Re= 300

0.2 Re= 300 Re= 250 Re= 250
Re= 300 Re= 300

0.3 Re= 300

Re= 100 Re= 100 Re= 100 Re= 100
Re= 200 Re= 200 Re= 200 Re= 200
Re= 250 Re= 250 Re= 250 Re= 250
Re= 300 Re= 300 Re= 300 Re= 300

0.6 Re= 300

Re= 100 Re= 100 Re= 100 Re= 100
Re= 200 Re= 200 Re= 200 Re= 200
Re= 250 Re= 250 Re= 250 Re= 250
Re= 300 Re= 300 Re= 300 Re= 300

0.8 Re= 300 Re= 250 Re= 250
Re= 300 Re= 300

1.0 Re= 300

Re= 100 Re= 100 Re= 100 Re= 100
Re= 200 Re= 200 Re= 200 Re= 200
Re= 250 Re= 250 Re= 250 Re= 250
Re= 300 Re= 300 Re= 300 Re= 300

2.0, 3.0 Re= 300 Re= 300

TABLE 1. Analytical conditions.

�-shaped vortices are generated in the downstream side of the sphere. Figures 4–7
visualize wake structures according to the isosurface of the second invariant value
of a velocity gradient tensor (Q-criterion). Here, the Q-criterion is calculated by the
definition of incompressible flows for visualization except for the shock-wave region,
and it is normalized by the free-stream velocity. The Q-criterion threshold is set at
Q/u2

= 5.0× 104. For these figures, the wake structure is influenced not only by Re
and Ω∗, but also by M. Also, a map of flow pattern type is shown in figure 8.

At Re= 300 and M= 0.2, the type of flow pattern shows a trend similar to that for
incompressible flows. In the case of the one-sided �-shaped wake, �-shaped vortices
form downstream of the sphere, and their generation position approaches the sphere
as Ω∗ increases. The flow pattern clearly transitions from low mode to high mode in
the order of the steady flow, the steady double-threaded wake, the hairpin wake, the
steady double-threaded wake and the one-sided �-shaped wake as Re and Ω∗ increase
for each M.

For Re = 300 and M = 0.3, the type of flow pattern is similar to that of an
incompressible flow for Ω∗ 6 0.6. However, the flow pattern does not transition to
the one-sided �-shaped wake for Ω∗ > 0.8. This is thought to be caused by the
compressibility effect due to rotation. For high-Ω∗ cases, the fluid velocity at the
retreating side (y < 0) and the relative velocity between the free stream and the
surface of the sphere at the advancing side (y> 0) are larger than in stationary cases.
Hence, the compressibility effect appears in rotating cases, even in low-M flows. Also,
for Re= 300 and M = 0.8, the hairpin wake appears for Ω∗ 6 0.8, and transitions to
the steady double-threaded wake for Ω∗ = 1.0. From this result, we believe that the
transition of the wake structure to the high mode is suppressed by compressibility
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Ø* = 0 Ø* = 0.2 Ø* = 0.3 Ø* = 0.6 Ø* = 0.8 Ø* = 1.0

M = 0.2

M = 0.3

M = 0.8

M = 1.2

M = 2.0

FIGURE 4. Isosurfaces of the second invariant value of the velocity gradient tensor
(Q/u2

∞
= 5.0× 104) at Re= 300.

effects. This trend has already been reported in the study of the flow past a rotating
cylinder under compressible low-Re flows (40 6 Re 6 200, 0.05 6 M 6 0.4 and
0 6Ω∗ 6 12) by Teymourtash & Salimipour (2017).

For Re= 300 and M = 1.2 and 2.0 in all cases calculated in this study, the steady
wake or steady double-threaded wake appears. In other words, no periodic vortex
shedding occurs under supersonic conditions despite Re = 300. This trend is similar
to that of low-Re and low-M or incompressible flows. It seems that the flow pattern
mode is significantly lower than that in the incompressible or subsonic cases due to
the strong compressibility effects. Also, the mode of the flow pattern for M = 2.0 is
lower than that of M = 1.2 for the same Re. This trend is similar in the case for
Re 6 250 as shown in figures 5–7.

Figure 9 shows the distribution of volume-averaged turbulent kinetic energy (TKE)
normalized by free-stream kinetic energy in the wake. The TKE is calculated in the
high-resolution region (0.5 6 x 6 15 and

√
y2 + z2 6 4) by the following formula:

u′ =
√∣∣∣u2 − ū2

∣∣∣, (3.1)

TKE=
1
2

u′2 + v′2 +w′2

u2
∞

. (3.2)

Here, an over-line means time-averaged quantity. It is also volume-averaged for
every dx= 0.05. In figure 9, the TKE is large in cases that have an unsteady wake.
Furthermore, the TKE peak is significantly large in the case of an unsteady wake with
rotating cases, even though the wake structure is similar to that of the stationary cases
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FIGURE 5. Isosurfaces of the second invariant value of the velocity gradient tensor
(Q/u2

∞
= 5.0× 104) at Re= 250.

Ø* = 0 Ø* = 0.2 Ø* = 0.3 Ø* = 0.6 Ø* = 0.8 Ø* = 1.0

M = 0.3

M = 0.8

M = 1.2

M = 2.0

FIGURE 6. Isosurfaces of the second invariant value of the velocity gradient tensor
(Q/u2

∞
= 5.0× 104) at Re= 200.

(the hairpin wake). On the other hand, the TKE for the rotating case asymptotically
becomes the stationary case in the far field (x ≈ 15). Moreover, the TKE for an �-
shaped wake (e.g. M=0.2 and Ω∗=1.0) is relatively small compared with the hairpin
wake, even though the wake is unsteady and the TKE peak position occurs farther
from the sphere than the hairpin wake. This is due to the difference between the vortex
generation processes of the wake in each case. In the case of the hairpin wake, such
vortices are generated in the vicinity of the sphere (boundary layer and recirculation
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FIGURE 7. Isosurfaces of the second invariant value of the velocity gradient tensor
(Q/u2

∞
= 5.0× 104) at Re= 100.
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FIGURE 8. Classification of types of flow pattern: (a) Re= 100; (b) Re= 200; (c) Re=
250; (d) Re = 300. Results from Giacobello et al. (2009) (open symbols) and present
study (closed symbols). Steady axisymmetric wake (squares); steady double-threaded wake
(circles); hairpin wake (triangles); one-sided �-shaped wake (diamonds).
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FIGURE 9. Normalized TKE distribution behind the sphere at Re = 300: (a) M = 0.2;
(b) M = 0.3; (c) M = 0.8.

region). Therefore, the TKE peak occurs in the vicinity of the sphere. Conversely, for
an �-shaped wake, vortices are generated due to the instability of the shear layer.
Hence, the TKE peak occurs relatively far downstream compared with the hairpin
wake. Furthermore, the TKE peak moves upstream as Ω∗ increases. In terms of Mach
number, for rotating cases of M = 0.8, the peak of TKE is larger than M = 0.2 and
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FIGURE 10. (Colour online) Pressure coefficient distributions and streamlines of a time-
averaged field at Re= 300 (x–z plane).

0.3. It seems that this is due to the effect of the disturbance caused by the attached
shock wave formed at the retreating side, as will be discussed in the next section.

4. Near-field structure

Figure 10 shows the pressure coefficient distributions and streamlines in the
time-averaged fields obtained over durations longer than 10 vortex-shedding periods
in unsteady cases. In stationary cases, the recirculation region in the subsonic and
supersonic flows is asymmetric and symmetric, respectively, in the x–z plane. This
asymmetry in the time-averaged field is caused by vortex shedding and the steady
non-axisymmetric recirculation region. On the other hand, the symmetric recirculation
region appears in supersonic flows because no vortex shedding occurs. Also, the
size of the recirculation region expands (shrinks) as M increases under subsonic
(supersonic) flows. This trend has already been reported by Nagata et al. (2016). For
example, for the stationary sphere at Re= 300, the recirculation region expands as M
increases for M 6 0.95. On the other hand, it shrinks as M increases for M > 1.05.

In the rotating cases, in subsonic flows, an attached shock wave is formed at the
retreating side, and its strength increases along with M. As a result, the recirculation
region expands as M increases. By the effect of rotation, the flow structure behind the
sphere becomes asymmetric under all conditions calculated in this study. For M= 0.3,
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FIGURE 11. Schlieren-like images over a time-averaged field at Re= 300 (x–z plane).

the recirculation region disappears for Ω∗ > 0.3. However, at M = 0.8, this region is
retained for Ω∗ 6 0.6. This difference is caused by the encouragement of separation
due to the disturbance induced by the attached shock wave formed at the retreating
side. This effect also appears for M=1.2 and Ω∗=0.3. However, for supersonic cases,
the recirculation region disappears for M = 1.2 and Ω∗ > 0.6, and for M = 2.0 and
Ω∗ > 0.3, even though the attached shock wave is formed, because the recirculation
region in the supersonic flow at the same Re is smaller than that in subsonic cases due
to the influence of the expansion wave behind the sphere. It seems that the occurrence
of the attached shock has a large impact on the change of the flow properties. Owing
to the effect of the attached shock, the flow induced by rotation is decelerated by
the shock, and particularly affects the recirculation region. It means that the effect of
the rotation is attenuated by the attached shock. For this effect, the transition of the
type of flow pattern due to rotation is suppressed by increasing M as discussed in
§ 3. In addition, as will be discussed in §§ 5.1 and 5.2, the increment of drag and lift
coefficients by rotation becomes small as M increases.

Figure 11 shows snapshots of the divergences of velocity vectors, u, in the time-
averaged field. These snapshots are normalized by the free-stream velocity and the
diameter of the sphere. For figure 11, the configuration of attached shock waves is
significantly influenced by Ω∗ for each M. For stationary cases, the attached shock
wave appears symmetric under supersonic conditions. For rotating cases, the strength
of the attached shock wave formed at the retreating (advancing) side becomes strong
(weak) as Ω∗ increases. Also, the angle of the attached shock wave formed at the
retreating side becomes similar to that under high-M conditions as Ω∗ increases. This
is due to acceleration and deceleration of fluid on the retreating and advancing sides,
respectively. Also, for M= 0.8, a normal shock wave is formed at the retreating side
and its strength increases along with Ω∗.
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FIGURE 12. Time-averaged CL at Re = 300 as a function of Ω∗. Results for
incompressible flows: , Kurose & Komori (1999); , Niazmand & Renksizbulut
(2003); , Giacobello et al. (2009); , Dobson et al. (2014). Results from present
study: , M = 0.3; , M = 0.8; , M = 1.2; , M = 2.0.

5. Hydrodynamic force coefficients
5.1. Lift coefficient

Figure 12 shows the relationship between Ω∗ and CL. In the case of the rotating
sphere in incompressible flow, it is well known that the lift force is mainly generated
by the pressure difference between the retreating and advancing sides caused by the
velocity difference. In figure 12, the results for incompressible flows given by Kurose
& Komori (1999), Niazmand & Renksizbulut (2003), Giacobello et al. (2009) and
Dobson et al. (2014) are shown as grey symbols. From figure 12, CL increases as
Ω∗ increases, and the CL dependence for M = 0.3 agrees with the result for the
incompressible flows. However, the increment of CL due to rotation decreases as
M increases. This trend is similar even though Re < 300, but the increment of CL
becomes larger at low-Re conditions. Those M and Re effects on CL are similar to the
results for a cylinder under compressible flow reported by Teymourtash & Salimipour
(2017). In addition, according to the results for incompressible flow at 1.0<Ω∗6 3.0
by Dobson et al. (2014), CL due to rotation saturates at approximately Ω∗ = 1.0
and CL = 0.6. However, in the case of the supersonic conditions, CL continuously
increases for 1.0 < Ω∗ 6 3.0. It is considered that the upper bound of CL due to
rotation and its critical Ω∗ are influenced by M.

The normalized lift coefficient CL/CLincomp is shown in figure 13, where CL
monotonically decreases as M increases. The Ω∗ dependence on CL/CLincomp is changed
around M = 0.8. Under rotating highly subsonic conditions, M > 0.8 and Ω∗ > 0.2,
the normal shock wave is formed on the retreating side because the flow velocity
surpasses the sonic speed in a limited region on the retreating side due to rotation.
Hence, the lift force caused by the rotation becomes smaller than in incompressible
cases because of the decrease of the velocity difference (pressure difference) between
the retreating and advancing sides.

Figure 14 shows the hydrodynamic stress distribution for the lift force direction in
the time-averaged field. For M = 0.3, the lift force is generated over a wide area of
the retreating side, and its area shrinks and the position moves to the downstream
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FIGURE 13. Dependence of M on the increment of CLY at Re= 300: ,
Ω∗ = 0.3; , Ω∗ = 0.6; , Ω∗ = 1.0.
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FIGURE 14. Distribution of the hydrodynamic stress coefficient in the lift force direction
for a time-averaged field at Re= 300 (view from −y).

side as M increases. On the other hand, the distribution of the hydrodynamic stress
in the lift force direction hardly changes with rotation at M = 2.0. The lift force by
rotation is mainly due to the pressure component. To quantify and analyse the lift
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FIGURE 15. Pressure coefficient distribution at the surface of the sphere above the equator
at Re= 300: (a) Ω∗ = 0.0; (b) Ω∗ = 1.0.

force distribution, the pressure coefficient distributions on the surface of the sphere
above the equator for Ω∗ = 0.0 and 1.0 in each M are shown in figure 15. For this
figure, the pressure coefficient distribution is drastically changed by rotation, and its
variation along the equator becomes small as M increases. In the case of M = 0.3,
a peak of negative pressure at around θ/π = 0.25 becomes large as Ω∗ increases.
On the other hand, the negative pressure region around θ/π = 0.75 moves towards
θ/π = 0.6 as Ω∗ increases. Also, a stagnation point moves slightly towards the
advancing side, and the pressure coefficient around θ/π = 0.75–1.0 increases as Ω∗
increases. Thus, the lift force increases due to rotation. For M = 0.8 and 1.2, the
negative pressure region around θ/π= 0.3 moves to the downstream side and sharply
recovers compared with the M = 0.3 case due to the influence of the attached shock
wave. Also, the negative pressure becomes small as M increases. In addition, there
is no large impact of rotation on the pressure coefficient distribution at M = 2.0. For
this effect, the increased amount of the lift coefficient due to rotation decreases under
high-M conditions.

Kajishima (2004) suggested that a particle cluster is formed by the influence of
the wake vortices released from particles. On the other hand, the lift force due to
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FIGURE 16. Comparison of the time variation of lift coefficients with the incompressible
flow results at Re = 300: (a) Strouhal number; (b) r.m.s. amplitude. Incompressible: ,
Kurose & Komori (1999); , Niazmand & Renksizbulut (2003); , Giacobello et al.
(2009). Present: , M = 0.3; , M = 0.8.

particle rotation suppresses the formation of particle clusters. The particle rotation is
caused by the relative velocity difference inside and outside of the particle cluster at
the cluster’s edge. However, for the DNS result, the lift force caused by the particle
rotation in the compressible flow is smaller than that of the incompressible flows.
Therefore, the particle cluster breakdown due to the particle rotation is suppressed
by the compressibility effects. On the other hand, the wake vortices released from
the particle are reduced as M increases, so that the formation of a particle cluster is
suppressed by the compressibility effects. Hence, the effect of the compressibility on
the lift force due to the particle rotation and wake vortices released from particles
are opposite regarding the formation of a particle cluster. The particle distribution is
possibly influenced by the relative M of the particles and fluid, but flow simulation
using particle-resolved DNS is necessary to discuss the compressibility effect on a
particle cluster.

Figures 16(a) and 17(b) show the Strouhal number, St, and the root-mean-square
(r.m.s.) amplitude of CL at Re= 300, respectively. The results under the compressible
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FIGURE 17. The Re dependence of the time variation of CL with (a) Strouhal number and
(b) r.m.s. amplitude: , M= 0.3; , M= 0.8; dotted line, Re= 250; solid line, Re= 300.

flows are compared with the results under the incompressible flows by Kurose &
Komori (1999), Niazmand & Renksizbulut (2003) and Giacobello et al. (2009). For
figure 16(a), the Strouhal number under incompressible flows and M 6 0.3 increases
with Ω∗ for Ω∗ 6 0.3. As Ω∗ further increases, the Strouhal number becomes
temporarily zero because the flow regime becomes the steady double-threaded wake
(i.e. steady). For Ω∗> 0.8, the flow pattern becomes the one-sided �-shaped wake in
incompressible flow and M = 0.2. In this flow pattern, vortex shedding occurs more
frequently than in the case of the hairpin wake. The Strouhal number ranges from
double to four times that for the hairpin wake. On the other hand, in compressible
flows, a different trend can be seen. In the case of M = 0.3 and Ω∗ = 0.6, the
Strouhal number is zero, as in incompressible flows. However, it remains zero even
if Ω∗ = 0.8 and 1.0. Also, for M= 0.8, the Strouhal number is not zero at Ω∗ = 0.6
and 0.8. These different trends are caused by differences in the flow pattern due to
compressibility effects. For figure 16(b), the r.m.s. amplitude of CL for M = 0.3 has
a peak at Ω∗ = 0.2 similar to incompressible flow. On the other hand, for M = 0.8,
the peak r.m.s. amplitude of CL appears at Ω∗ = 0.6 and its value is approximately
1.5 times that of the incompressible cases.
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Figure 17 compares the Strouhal number and r.m.s. of CL calculated at Re = 250
and 300 and M = 0.3 and 0.8. For figure 17, the Strouhal number is almost the
same for each M except Ω∗= 0.0. In other words, for the same flow pattern, Re has
no effect upon the Strouhal number of the vortex shedding. On the other hand, the
r.m.s. amplitude of CL becomes small as Re decreases. Thus, the frequency of vortex
shedding is barely not affected by Re, but its strength weakens as Re decreases.

5.2. Drag coefficient
Figure 18 shows the relationship between Ω∗ and drag coefficient, CD, at Re= 300.
From figure 18, CD at M= 0.3 shows a very similar trend to previous incompressible
studies. The total drag coefficient basically increases as Ω∗ increases. Also, this
increment of CD with Ω∗ becomes small as M increases. This trend is similar to
the result of a cylinder under compressible flow by Teymourtash & Salimipour
(2017). Also, at M = 0.8, the increment of the drag coefficient starts to level off at
0.86Ω∗6 1.0. It seems that the increment of the drag coefficient is attenuated when
the shock becomes strong enough by Ω∗ increases. Hence, the occurrence of the
attached shock has a large impact on CD.

For figure 18(b), the pressure drag coefficient, CDP, increases as Ω∗ increases
except for the case of M = 2.0. A low-pressure region behind the sphere expands
and its pressure further decreases at high-Ω∗ conditions because of the formation
of the streamwise vortices. Owing to this behaviour, the pressure drag coefficient
becomes large at high-Ω∗ conditions. On the other hand, the pressure around the
stagnation point on the upstream side decreases and its position moves towards
the advancing side due to the stream generated by the rotation of the sphere. This
behaviour contributes to a decrease of the pressure drag. Under the subsonic flow,
CDP increases along with Ω∗. Conversely, under supersonic conditions, the stream
generated by rotation is more effective than in the subsonic cases because the main
free stream around the sphere is decelerated by the detached shock wave. Therefore,
the stream generated by rotation of the sphere becomes relatively effective at high-M
conditions. In particular, at M = 2.0, CDP becomes small as Ω∗ increases because
the phenomenon on the upstream side is more effective than that on the downstream
side. Additionally, the decrement of the pressure drag caused by the stream generated
due to rotation increases at low-Re conditions because the velocity boundary layer
thickness becomes thicker.

Figure 19 shows the hydrodynamic stress distribution for the drag force direction
in the time-averaged field. For figure 19, the drag force generated on the downstream
side increases as Ω∗ increases, and its increment decreases as M increases. On the
other hand, the drag force generated on the upstream side decreases as Ω∗ increases,
and its increment increases as M increases. These trends reflect the pressure coefficient
distribution shown in figure 15. For supersonic flows, the free stream is decelerated
at the detached shock wave. Hence, the effective rotation rate considered in the fluid
velocity behind the detached shock wave and the rotation speed of the sphere are
relatively fast compared with shock-free flows. The flow in the drag force direction
is strongly reduced due to the stream generated by rotation of the sphere under
supersonic flows. Also, the drag coefficient increases as Ω∗ increases due to the
movement of the negative pressure region around θ/π= 0.7. These trends are similar,
even if M increases, but the effect of Ω∗ upon the pressure coefficient distribution
is weaker under high-M conditions. Also, the pressure coefficient distribution itself
drastically changes as M increases. In addition, the decrease (increase) of the pressure

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

75
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.756


898 T. Nagata, T. Nonomura, S. Takahashi, Y. Mizuno and K. Fukuda

0.2 0.4 0.6
Ø*

0.8 1.00

0.2

CD√

CDp

CD

0.4

0.6

0.2

0.4

0.6

0.8

1.0

1.2

0.6

0.8

1.0

1.2

1.4

1.6(a)

(b)

(c)

FIGURE 18. Time-averaged CD with respect to Ω∗ at Re = 300: (a) total;
(b) pressure component; (c) viscous component. Incompressible: , Kurose &
Komori (1999); , Niazmand & Renksizbulut (2003); , Giacobello et al. (2009).
Present: , M = 0.3; , M = 0.8; , M = 1.2; , M = 2.0.

coefficient in the region around the θ/π= 0.0–0.25 (θ/π= 0.5–0.75) side caused by
rotation increases (decreases) as M increases. For this behaviour, the increase of the
drag coefficient due to rotation becomes small under high-M conditions.
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Ø* = 0 Ø* = 0.3 Ø* = 0.6 Ø* = 1.0

M = 0.3

M = 0.8

M = 1.2

M = 2.0

1.06

0

FIGURE 19. Distribution of the hydrodynamic stress coefficient in the drag force direction
of a time-averaged field at Re= 300 (view from −y).

The viscous drag coefficient, CDv, is hardly changed by rotation for subsonic cases.
On the other hand, CDv increases as Ω∗ increases because the friction stress increases
on the advancing side due to change of the velocity gradient and the viscosity
coefficient at the surface of the sphere in the supersonic cases. The viscous drag
coefficient increases as Ω∗ increases under supersonic flow. Figure 20 shows the
velocity gradient distribution of the θ -direction velocity Uθ for the r direction on
the surface of the sphere above the equator, which is normalized by the free-stream
velocity and the diameter of the sphere. For figure 20, the velocity gradient decreases
as Ω∗ increases in most areas of the retreating and advancing sides. This trend is
similar between subsonic and supersonic flows, but under the supersonic condition,
change in the velocity gradient distribution due to rotation is affected by shock waves.
For example, the sign of the velocity gradient changes sharply around θ/π = 0.25
by an attached shock wave for M = 0.8 and 1.2. Also, the shock wave moves
downstream as M increases. For M = 0.3, the velocity gradient in most of the
retreating side is positive, so the friction stress at the retreating side acts to promote
rotation. Conversely, for M > 0.8, the region with a negative velocity gradient on
the retreating side is expanded by the effect of attached shock waves. Moreover,
for M > 1.2, the peak velocity gradient on the retreating side becomes small as
M increases. This trend is caused by the influence of the detached shock wave,
which decelerates the fluid around the sphere. For this influence, the relative velocity
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FIGURE 20. Normalized velocity gradient distribution at the surface of the sphere above
the equator at Re= 300: (a) Ω∗ = 0.0; (b) Ω∗ = 1.0.

between the surface of the sphere and the free stream becomes small as M increases.
The viscosity coefficient distribution on the surface of the sphere above the equator is
shown in figure 21. Under the influence of rotation, the viscosity coefficient decreases
(increases) at the retreating (advancing) side. Also, the velocity gradient at the surface
of the sphere on the retreating (advancing) side becomes small (large), due to the
influence of rotation. Hence, the viscous drag and moment coefficient are larger
than in stationary cases for high-M and high-Ω∗ conditions. The viscous coefficient
mainly increases around the stagnation point upstream behind the attached shock
wave and the advancing side downstream due to rotation. The effects of the shock
waves become strong as M increases. Also, large aerodynamic heating occurs on the
advancing side because the relative velocity on the advancing side between fluid and
surface is larger than that of the retreating side. Thus, the viscosity coefficient on the
advancing side increases remarkably under the high-M condition for rotating cases.

5.3. Moment coefficient around the rotation axis
Figure 22 shows moment coefficients around the rotation axis: compressibility effects
appear in the moment coefficient. In rotating cases, the moment coefficient has a
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FIGURE 21. Normalized viscosity coefficient distribution at the surface of the sphere
above the equator at Re= 300: (a) Ω∗ = 0.0; (b) Ω∗ = 1.0.

negative value, meaning that moment opposes the rotation of the sphere and its
strength increases along with Ω∗. Also, the increment of the moment coefficient by
rotation becomes large as M increases, and this effect increases along with Re.

Figure 23 shows the local moment coefficient distribution. This coefficient is
calculated as the product of hydrodynamic stress tangential to the surface for the
ξ direction and the moment arm, and is normalized by the diameter of the sphere
and the dynamic pressure based on the free-stream quantities. In stationary cases, the
moment around the rotation axis acts symmetrically on the retreating and advancing
sides. However, as Ω∗ increases, the local moment coefficient distribution becomes
asymmetric. Thus, the relative fluid velocity between the vicinity of the sphere and
the surface of the sphere on the retreating (advancing) side becomes small (large) as
Ω∗ increases. Also, the difference between the absolute value of the local moment
coefficient on the retreating and advancing sides becomes large as M increases. On
the retreating side, the local moment coefficient in supersonic flows is smaller than
that of subsonic flows for the same Ω∗, because the relative velocity between the
surface of the sphere and the fluid in its vicinity is smaller than under subsonic
conditions. This is due to the deceleration of the fluid velocity at the detached shock
wave. Conversely, on the advancing side, the local moment coefficient for high-M flow
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FIGURE 22. Moment coefficients around the rotation axis at Re= 300: ,
M = 0.3; , M = 0.8; , M = 1.2; , M = 2.0.
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FIGURE 23. Distribution of the y-direction local moment coefficient of hydrodynamic
stress in a time-averaged field at Re= 300 (view from −y).
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CL CD CMY St
When Ω∗ increases Increases Increases Increases Increases (except steady cases)

(a) Effect of Ω∗ on each parameter.

1CL 1CD 1CMY 1St
When M increases Decreases Decreases Increases Not effective

(b) Effect of M on increment of each parameter due to rotation.

TABLE 2. Summary of effect of Ω∗ and M on each parameter.

is larger than that of the low-M flow due to the increase of the viscosity coefficient,
as shown in figure 21. Also, the negative local moment coefficient appears on the
retreating side for M = 0.8 and 1.2 under the influence of the attached shock wave.
By forming this shock wave on the retreating side, the fluid in the vicinity of the
sphere is decelerated. Therefore, the friction stress on the surface behind the attached
shock wave increases due to the increase of the velocity gradient and the viscosity
coefficient, and its effect becomes large as M and Ω∗ increase. Thus, the attached
shock wave formed on the retreating side has a braking effect on particle rotation.
From the above results, in the case of compressible flow, particle rotation is easy to
stop compared with incompressible flows.

A summary of the effects of Ω∗ on CL, CD, CMY and St and the effects of M on the
increment of CL, CD, CMY and St due to rotation is shown in table 2. The Ω∗ effect
on each parameter is the same between the incompressible and compressible flows.
The increment of CL and CD becomes small as M increases. On the other hand, the
increment of CMY becomes small as M increases. Also, the increment of St is not
influenced by M.

6. Conclusions
In this study, direct numerical simulation of flow around a rotating sphere in

the subsonic to supersonic regime at 100 6 Re 6 300 is undertaken by solving the
three-dimensional compressible Navier–Stokes equations. As a result, we clarified the
differences in flow properties between the incompressible and compressible flows.
The vortex structure behind the sphere is influenced by Re, Ω∗ and M. In particular,
vortex shedding is significantly reduced in supersonic flows. Also, under the subsonic
and high-Ω∗ conditions, the compressibility effect on the vortex structure appears
strongly compared with stationary cases, because the fluid velocity and the relative
velocity between the fluid and the surface of the sphere is large on the retreating and
advancing sides, respectively.

The lift force caused by rotation becomes large as Ω∗ increases for each M.
However, the increment of the lift coefficient becomes small as M increases. This is
caused by deceleration of the fluid velocity by attached shock waves formed on the
retreating side. Also, the position of the stagnation point formed at the advancing
side is influenced by M, and moves downstream as M increases. Hence, the lift force
caused by rotation becomes small as M increases. In addition, the moment coefficient
around the rotation axis, which brakes rotation, increases along with M due to the
effect of the attached shock wave formed on the retreating side. These results mean
that the effect of the particle rotation on the lift coefficient under compressible flows
is smaller than that of the incompressible flows.
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t · u∞/d

100 120 140 1600
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Blow up

Baseline
Original WENOCU6-FP

CL

0.6

0.8

FIGURE 24. Comparisons of CL time history of modified WENOCU6-FP and original
WENOCU6-FP (Re= 300, M = 0.3 and Ω = 1.0).

Baseline Fine grid Wide domain WENOCU6-FP
(before blowing up)

M = 0.3
CL 0.56951 0.58423 0.56955 0.54950
CD 0.94177 0.94727 0.94179 0.88885
CMY −0.085754 −0.085308 −0.085750 −0.073502

M = 2.0
CL 0.14502 0.14618 0.14493 0.146156
CD 1.4764 1.4903 1.4764 1.4369
CMY −0.18108 −0.18277 −0.18107 −0.15906

TABLE 3. Comparison of hydrodynamic force coefficient.
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Appendix. Validation and verification
The results of the validation and verification studies are shown in table 3. In

the grid-size- and domain-size-independent tests, the number of grid points in each
direction and the size of the computational domain are 1.29 and 1.5 times the baseline
grid, respectively. As a result, the hydrodynamic force coefficients are not influenced
by the grid and domain sizes.

In addition, in this study, the central difference component of WENOCU6-FP
is replaced by one of the splitting type proposed by Pirozzoli (2011), in order to
stabilize the calculation. In the replaced WENOCU6-FP, the numerical viscosity is
introduced only by the dissipation term for the sixth-order WENOCU, and such an
approach is originally used by Yee, Sandham & Djomehri (1999). Also, it has been
confirmed that this splitting-type scheme gives an accurate and stable solution over
conventional central discretization by numerical tests using the central difference
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1.0

-1.3

CP

(a) (b)

FIGURE 25. Comparisons of CP distribution of modified WENOCU6-FP and original
WENOCU6-FP (before blowing up) for Re= 300, M = 0.3 and Ω = 1.0.

scheme (Pirozzoli 2011). To confirm that influence, the hydrodynamic force
coefficients by the original WENOCU6-FP is also shown in table 1. In addition,
the time history of CL and instantaneous CP distribution are shown in figures 24
and 25, respectively. Note that the simulation using the original WENOCU6-FP
blows up as shown in figure 24. Therefore, the hydrodynamic force coefficients
shown in table 3 might not be reliable. However, the CP distribution before blowing
up is very similar.

REFERENCES

BUI DINH, T., OESTERLE, B. & DENEU, F. 1990 Premiers résultats sur la portance d’une sphère en
rotation aux nombres de Reynolds intermédiaires. C. R. Acad. Sci. Paris II 311, 27–31.

DAS, P., SEN, O., JACOBS, G. & UDAYKUMAR, H. S. 2017 A sharp interface Cartesian grid method
for viscous simulation of shocked particle-laden flows. Intl J. Comput. Fluid Dyn. 31, 269–291.

DOBSON, J., OOI, A. & POON, E. K. W. 2014 The flow structures of a transversely rotating sphere
at high rotation rates. Comput. Fluids 102, 170–181.

ELDRED, K. M. 1971 Acoustic loads generated by the propulsion system. NASA Special Publication.
NASA SP-8072.

FUKUDA, K., TSUTSUMI, S., SHIMIZU, T., TAKAKI, R. & UI, K. 2011 Examination of sound
suppression by water injection at lift-off of launch vehicles. AIAA Paper 2011–2814.

GIACOBELLO, M., OOI, A. & BALACHANDAR, S. 2009 Wake structure of a transversely rotating
sphere at moderate Reynolds numbers. J. Fluid Mech. 621, 103–130.

GOTTLIEB, S. & SHU, C.-W. 1998 Total variation diminishing Runge–Kutta schemes. Math. Comput.
67 (221), 73–85.

IGNATIUS, J. K., SATHIYAVAGEESWARAN, S. & CHAKRAVARTHY, S. R. 2014 Hot-flow simulation
of aeroacoustics and suppression by water injection during rocket liftoff. AIAA J. 53 (1),
235–245.

ISHII, T., TSUTSUMI, S., UI, K., TOKUDOME, S., ISHII, Y., WADA, K. & NAKAMURA, S. 2012
Acoustic measurement of 1 : 42 scale booster and launch pad. In Proceedings of Meetings on
Acoustics, vol. 18, 040009. Acoustical Society of America.

JOHNSON, T. A. & PATEL, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid
Mech. 378, 19–70.

KAJISHIMA, T. 2004 Influence of particle rotation on the interaction between particle clusters and
particle-induced turbulence. Intl J. Heat Fluid Flow 25 (5), 721–728.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

75
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.756


906 T. Nagata, T. Nonomura, S. Takahashi, Y. Mizuno and K. Fukuda

KUROSE, R. & KOMORI, S. 1999 Drag and lift forces on a rotating sphere in a linear shear flow.
J. Fluid Mech. 384, 183–206.

MIZUNO, Y., TAKAHASHI, S., NONOMURA, T., NAGATA, T. & FUKUDA, K. 2015 A simple immersed
boundary method for compressible flow simulation around a stationary and moving sphere.
Math. Problems Engng 2015, 438086.

NAGATA, T., NONOMURA, T., TAKAHASHI, S., MIZUNO, Y. & FUKUDA, K. 2016 Investigation on
subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300
by direct numerical simulation. Phys. Fluids 28 (5), 056101.

NAGATA, T., NONOMURA, T., TAKAHASHI, S., MIZUNO, Y. & FUKUDA, K. 2018a Direct numerical
simulation of flow around a heated/cooled isolated sphere up to a Reynolds number of 300
under subsonic to supersonic conditions. Intl J. Heat Mass Transfer 120, 284–299.

NAGATA, T., NONOMURA, T., TAKAHASHI, S., MIZUNO, Y. & FUKUDA, K. 2018b Direct numerical
simulation of flow past a sphere at a Reynolds number between 500 and 1000 in compressible
flows. In Proceedings of 2018 AIAA Aerospace Science Meeting. AIAA Paper 2018-0381.
American Institute of Aeronautics and Astronautics.

NIAZMAND, H. & RENKSIZBULUT, M. 2003 Surface effects on transient three-dimensional flows
around rotating spheres at moderate Reynolds numbers. Comput. Fluids 32 (10), 1405–1433.

NONOMURA, T., MORIZAWA, S., OBAYASHI, S. & FUJII, K. 2014 Computational prediction of
acoustic waves from a subscale rocket motor. Trans. JSASS Aerospace Tech. Japan 12 (ists29),
Pe_11–Pe_17.

NONOMURA, T., TERAKADO, D., ABE, Y. & FUJII, K. 2015 A new technique for freestream
preservation of finite-difference WENO on curvilinear grid. Comput. Fluids 107, 242–255.

PIROZZOLI, S. 2011 Stabilized non-dissipative approximations of Euler equations in generalized
curvilinear coordinates. J. Comput. Phys. 230 (8), 2997–3014.

POON, E. K. W., OOI, A. S. H., GIACOBELLO, M., IACCARINO, G. & CHUNG, D. 2014 Flow
past a transversely rotating sphere at Reynolds numbers above the laminar regime. J. Fluid
Mech. 759, 751–781.

RIAHI, H., MELDI, M., FAVIER, J., SERRE, E. & GONCALVES, E. 2018 A pressure-corrected
immersed boundary method for the numerical simulation of compressible flows. J. Comput.
Phys. 374, 361–383.

RUBINOW, S. I. & KELLER, J. B. 1961 The transverse force on a spinning sphere moving in a
viscous fluid. J. Fluid Mech. 44, 447–459.

SCHNEIDERS, L., GÜNTHER, C., MEINKE, M. & SCHRÖDER, W. 2016 An efficient conservative
cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys.
311, 62–86.

SHIMADA, T., DAIMON, Y. & SEKINO, N. 2006 Computational fluid dynamics of multiphase flows
in solid rocket motors. JAXA Special Publication. JAXA-SP-05-035E.

SUTHERLAND, W. 1893 The viscosity of gases and molecular force. Phil. Mag. Series 5 36, 507–531.
TANAKA, T., YAMAGATA, K. & TSUJI, Y. 1990 Experiment on fluid forces on a rotating sphere

and spheroid. In Proceedings of the 2nd KSME–JSME Fluids Engineering Conference, pp.
366–369. The Korean Society of Mechanical Engineers.

TERAKADO, D., NAGATA, Y., NONOMURA, T., FUJII, K. & YAMAMOTO, M. 2016 Computational
analysis of compressible gas-particle-multiphase turbulent mixing layer in Euler–Euler
formulation. Trans. JSASS Aerospace Tech. Japan 14 (ists30), Po_2_25–Po_2_31.

TEYMOURTASH, A. R. & SALIMIPOUR, S. E. 2017 Compressibility effects on the flow past a
rotating cylinder. Phys. Fluids 29 (1), 016101.

TSUTSUMI, S., ISHII, T., UI, K., TOKUDOME, S. & WADA, K. 2015 Study on acoustic prediction
and reduction of Epsilon launch vehicle at liftoff. J. Spacecr. Rockets 52 (2), 350–361.

VOLKOV, A. N. 2011 Transitional flow of a rarefied gas over a spinning sphere. J. Fluid Mech.
683, 320–345.

YEE, H. C., SANDHAM, N. D. & DJOMEHRI, M. J. 1999 Low-dissipative high-order shock-capturing
methods using characteristic-based filters. J. Comput. Phys 150 (1), 199–238.

YOU, C. F., QI, H. Y. & XU, X. C. 2003 Lift force on rotating sphere at low Reynolds numbers
and high rotational speeds. Acta Mechanica Sin. 19 (4), 300–307.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

75
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.756

	Direct numerical simulation of flow past a transversely rotating sphere up to a Reynolds number of 300 in compressible flow
	Introduction
	Methodology
	Governing equations
	Computational methods
	Computational grid
	Boundary conditions and computational conditions

	Far-field structure
	Near-field structure
	Hydrodynamic force coefficients
	Lift coefficient
	Drag coefficient
	Moment coefficient around the rotation axis

	Conclusions
	Acknowledgements
	Appendix. Validation and verification
	References


