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SUMMARY
This paper considers the problem of merging grid maps that have different resolutions. Because
the goal of map merging is to find the optimal transformation between two partially overlapping
grid maps, it can be viewed as a special image registration issue. To address this special issue, the
solution considers the non-common areas and designs an objective function based on the trimmed
mean-square error (MSE). The trimmed and scaling iterative closest point (TsICP) algorithm is then
proposed to solve this well-designed objective function. As the TsICP algorithm can be proven
to be locally convergent in theory, a good initial transformation should be provided. Accordingly,
scale-invariant feature transform (SIFT) features are extracted for the maps to be potentially merged,
and the random sample consensus (RANSAC) algorithm is employed to find the geometrically
consistent feature matches that are used to estimate the initial transformation for the TsICP algorithm.
In addition, this paper presents the rules for the fusion of the grid maps based on the estimated
transformation. Experimental results carried out with publicly available datasets illustrate the
superior performance of this approach at merging grid maps with respect to robustness and accuracy.

KEYWORDS: Multi-robot systems; Grid map merging; Scaling transformation; Iterative closest
point; Image registration.

1. Introduction
Simultaneous localization and mapping (SLAM) is one of the most important and fundamental issues
in robotics, and has been the object of much attention since the seminal work presented in ref. [1].

In previous literature,2 most related studies have focused on the problem of building a single map
for small- or medium-scale environments only. To build large scale maps, many researchers have
taken an approach that uses cooperative mapping by multi-robot systems3–11 because they have a
superior performance in terms of mission efficiency and robustness. Therefore, it is necessary to
merge the maps produced by different robots that explore various parts of the same environment.

A grid map is a kind of probabilistic map2,12 that does not need to extract any special environmental
features and can model arbitrary types of environments. Consequently, a grid map is one of the most
popular map representations. So far, most merging approaches can only merge grid maps at the same
resolution and are unable to determine whether one of the two maps needs to be magnified in order to
be merged with the other. However, grid maps could be built at different resolutions by various robots
in multi-robot systems. Suppose, for example, it is necessary to build a grid map for an abandoned
mine.35 Because a mine belongs to a large environment, multi-robot systems could be adopted to
build the grid map. In general, some areas of the mine may include more details than others. For
reasons of compactness, the map could be built at a fine resolution in the area with more details and
at a coarse resolution in the area with fewer details. Thus, it is necessary to consider the problem of
merging grid maps at different resolutions.
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In fact, grid maps can be seen as images and the merging problem can be viewed as an image
registration issue that can also be solved by the iterative closest point (ICP) algorithm or its
variants.13–19 For a pair of grid maps at different resolutions, edge points are extracted and the
merging problem is transformed into a scaling registration of partially overlapping 2D point sets. For
this particular registration issue, a trimmed mean-square distance function14 is designed by introducing
the backward distance measurement. Subsequently, the scaling transformation16–18 involved in this
objective function is calculated by the proposed TsICP algorithm, which converges monotonically
to a local minimum from any given initial transformation. To obtain the optimal transformation, it is
necessary to provide an initial scaling transformation for the TsICP algorithm. Accordingly, a good
initial transformation can be estimated by geometrically consistent feature matches that are picked
out by the RANSAC algorithm20 from all the SIFT features21,22 extracted and matched for the grid
maps to be merged. In addition, this paper also presents the rules for the fusion of grid maps based on
the obtained scaling transformation. In this way, the proposed approach merges grid maps of different
resolutions.

The remainder of this paper is organized as follows. After reviewing the methods for merging maps
that have the same resolution in Section 2, Section 3 presents a novel scaling registration approach
for merging grid maps that have different resolutions. Section 4 then provides the implementation
details of the proposed approach. In Section 5, the proposed approach is tested and evaluated on real
robot datasets. Finally, the conclusion is drawn in Section 6.

2. Merging Grid Maps of the Same Resolution
As map merging is a good solution for building large scale maps, it has attracted increasing
attention. Subsequently, different merging approaches have been proposed for the corresponding
map representations.3–11

For maps represented by occupied cells, Carpin et al.4 viewed map merging as an optimization
problem and proposed a stochastic search approach to obtain a suitable rigid transformation to align
two grid maps. In a subsequent work, Birk and Carpin6 introduced a more sophisticated method
to guide the search and presented some mechanisms to detect failures. Both of these approaches
acquire the optimal solution. However, their computational requirements are sizeable because of
the nature of exhaustive search. Researchers later proposed two related approaches7,8 that share
the same basic idea: when two robots meet during the mapping, their relative pose is determined
and the two individual maps are merged into a combined one. The main difference between the
approaches is whether the robots meet randomly or search each other out. The first approach
cannot merge maps until robots can see each other, while the second approach requires robots to
communicate with each other continuously. Meanwhile, Carpin9 proposed an effective method based
on the Hough transform.23 Although this approach is extremely fast, it is not very accurate because
of the discretization phenomena in the Hough transform. Recently, Zhu et al.11 viewed grid map
merging as a point set registration problem13–19 that can be solved by the trimmed ICP algorithm.14,15

In addition, Blanco et al.24 proposed a novel matching method from the perspective of image
registration. This method extracts and matches local features between two grid maps that can be
used to estimate the rigid transformation for merging grid maps.

All of the above mentioned approaches can only merge grid maps that have the same resolution.
However, the representation of multiple resolutions is necessary for building large scale maps.25

Therefore, it is required to merge grid maps that have different resolutions.

3. Merging Grid Maps of Different Resolutions
In this section, the grid map merging problem is stated and transformed into an image registration
issue that can be solved by the proposed approach.

3.1. Problem definition
According to ref. [9], the goal of grid map merging is to find a rigid transformation T such that
two given maps P and Q can be correctly overlapped. Usually, transformation T is the combination
of a rotation matrix R, followed by a translation �t along the x and y axes of magnitudes �tx and �ty ,
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Fig. 1. Edge extraction from a grid map: (a) grid map and (b) extracted edges.

respectively. More specifically, rotation matrix R is determined by the rotation angle θ as follows:

R =
[

cos θ − sin θ

sin θ cos θ

]
. (1)

In practice, each mobile robot in a multi-robot system explores different parts of the same
environment and could independently produce grid maps at different resolutions. To address the
resolution issue, a scale factor should be introduced to represent the resolution ratio of two grid maps
to be merged. More exactly, the goal of map merging18–20 is to determine a scaling transformation
T = (s,R,�t) that is a combination of a scale factor s, 2D rotation matrix R, and 2D translation vector
�t . After determining T , it should be applied to map P to obtain the transformed map P ′ indicated
by P ′ = T P . To obtain the correct merging results, map Q and transformed map P ′ should be fused
appropriately.

3.2. Mathematical model
During robot mapping, the environment is divided into a large number of regular cells. Each cell in a
grid map contains an occupied probability to indicate its status. The value of the occupied probability
is stored in a matrix that can be displayed in the form of image. In other words, one cell of a grid map
can be viewed as an image pixel. Accordingly, the problem of grid map merging can be viewed as an
image registration issue. Given two overlapping grid maps, non-reference map P , and reference map

Q, the corresponding edge point sets P
�= { �pi}Np

i=1 and Q
�= {�qj }Nq

j=1 can be obtained by applying an
edge detection algorithm, where Np and Nq denote the number of edge points extracted from P and
Q, respectively. Here, the value of point p̄i or q̄j can be measured by the row and column number of
the corresponding edge point in the grid map. Figure 1 illustrates the edge point set extracted from a
grid map that has the following relationship:

�qc(i)
�= sR �pi + �t, (2)

where �qc(i) indicates the correspondence to edge point �pi in the reference map.
Similarly to the method of rigid registration,13 the issue of grid map merging can be formulated as

a least squares (LS) problem based on the forward distance measurement

min
s,R,�t

c(i)∈{1,2,..,Nq }

∥∥sR �pi + �t − �qc(i)

∥∥2
2 s.t. s > 0, RT R = I2×2, det(R) = 1. (3)

However, this formulation is impractical for real grid map merging. Because the goal of map merging
is to find the minimum of the objective function, it is easy to obtain the results shown in Fig. 2(a). As
shown in this figure, when the scale factor s tends towards zero, all edge points in the non-reference
map P gather together and find the same correspondence in the reference map Q. This means that the
above LS formulation is an ill-posed problem18 that can result in unexpected results. In addition, the
grid maps being merged are produced by robots exploring different parts of the same environment,
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Fig. 2. Change in different objective functions as s → 0, where the small red circles denote edge points of Q
and the blue crosses indicate edge points of P : (a) Eq. (3) based on the forward distance measurement and (b)
Eq. (4) based on the backward distance measurement.

hence these two point sets only partially overlap, and the non-common areas should be discarded to
obtain an accurate scaling transformation for map merging.

To avoid an ill-posed problem, the grid map merging issue should be viewed as a scaling registration
problem, where the backward distance measurement can be introduced into the objective function as
follows:

min
s,R,�t

c(j )∈{1,2,..,Np}

∥∥sR �pc(j ) + �t − �qj

∥∥2
2 s.t. s > 0, RT R = I2×2, det(R) = 1. (4)

In Eq. (4), when s tends towards zero, its numerator increases because of the backward distance
measurement. The effectiveness of Eq. (4) is displayed in Fig. 2(b), where the proposed objective
function increases as s tends towards zero. Accordingly, the ill-posed problem inherited in Eq. (3)
can be avoided by the backward distance measurement.

As edge point sets extracted from grid maps partially overlap, the overlap percentage ξ should be
considered in the objective function. Suppose Qξ denotes a subset of edge points Q that are extracted
from the common area between the two given grid maps. The overlap percentage is calculated as
follows:

ξ =
∣∣Qξ

∣∣
|Q| , (5)

where |·| represents the cardinality of a set that is equal to the number of elements in the set.
Subsequently, we propose the following objective function to merge two grid maps that have different
resolutions:

min
s,R,�t,ξ,Qξ

c(j )∈{1,2,..,Np}

1∣∣Qξ

∣∣ (ξ )1+λ

∑
�qj ∈Qξ

∥∥sR �pc(j ) + �t − �qj

∥∥2
2s.t. RT R = I2×2, det(R) = 1

ξ ∈ [ξmin, 1], Qξ ⊆ Q,
∣∣Qξ

∣∣ = ξ |Q| , (6)

where λ is the control parameter and ξmin denotes the allowed minimum value of ξ .
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Fig. 3. Typical shape of the objective function ψ(ξ ) and MSE e(ξ ).

To show how the non-common areas can be rejected by introducing ξ , Eq. (6) can be represented
as follows:

ψ(ξ ) = e(ξ )

(ξ )1+λ
, (7)

where e(ξ ) denotes the MSE

e(ξ ) = 1∣∣Qξ

∣∣ ∑
�qj ∈Qξ

∥∥sR �pc(j ) + �t − �qj

∥∥2
2. (8)

Suppose the correspondence �pc(j ) for edge point �qj has been established and all the established point
pairs have been sorted in ascending order by their distances. The typical shape of the objective function
ψ(ξ ) and MSE e(ξ ) is shown in Fig. 3, where e(ξ ) increases gradually until ξ passes the true overlap
percentage. Accordingly, ψ(ξ ) first decreases and then increases when the true overlap percentage is
exceeded. Therefore, the true overlap percentage can be obtained by finding the minimum of ψ(ξ ).
After the optimal overlap percentage has been determined, the non-common areas are easily rejected
using the sorted order of point pairs. The above process is implemented in the TsICP algorithm.

3.3. TsICP algorithm
The solution of Eq. (6) is clearly important for grid map merging. In practice, it can be solved
by the TsICP algorithm, a variant of the original ICP algorithm. Given the initial transformation
T0 = (s0, R0, �t0), one iteration of this algorithm consists of three steps

Step 1: Assign the correspondence for edge point �qj using the (k−1)th transformation

ck(j ) = arg min
i∈{1,2,...,Np}

∥∥sk−1Rk−1 �pi + �tk−1 − �qj

∥∥
2 (j = 1, 2, ..., Nq). (9)

In fact, Eq. (9) represents the nearest neighbor search problem that can be solved by many
efficient methods.26–29 In this paper, the nearest neighbor search method based on the k-d tree is
adopted to assign correspondence �pck(j ) to edge point �qj . In addition, the distance between �qj and
(sk−1Rk−1 �pck(j ) + �tk−1) should be preserved for subsequent processing.

Step 2: Update the kth overlapping parameter ξk and its corresponding subset Qξk

(ξk, Qξk
) = arg min

ξmin≤ξ≤1

∑
�qj ∈Qξ

∥∥sk−1Rk−1 �pck(j ) + �tk−1 − �qj

∥∥2
2/(|Qξ |(ξ )1+λ). (10)
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(a)                                                                         (b)  

Fig. 4. SIFT features extracted from the potentially merging maps: (a) reference map and (b) non-reference
map.

According to ref. [15], Eq. (10) can be solved in a sequence processing manner by sorting the edge
point pairs {�qj , (sk−1Rk−1 �pck(j ) + �tk−1)}Nq

j=1 by their distances in ascending order and letting

ψ(ξ ) =
∑

�qj ∈Qξ

∥∥sk−1Rk−1 �pck(i) + �tk−1 − �qj

∥∥2
2 /(|Qξ |ξ 1+λ). (11)

At each iteration, a pair of sorted points is added to compute the corresponding value of ψ(ξ ). By
traversing all sorted edge point pairs, it is easy to obtain the minimum value ψ(ξk) that corresponds
to the optimal overlap percentage ξk . The points involved in the front ξkNq sorted point pairs are then
selected to update the corresponding point subset Qξk

Step 3: Calculate the current scaling transformation Tk = (sk, Rk, �tk)

(sk, Rk, �tk) = arg min
s,R,�t

∑
�pj ∈Qξk

∥∥sR �pck(j ) + �t − �qj

∥∥2
2. (12)

Although the calculation of the rigid transformation between two point sets is a well-studied
problem,30 the calculation of the scaling transformation is more difficult. To solve Eq. (12), the
singular value decomposition technique16 is utilized.

The TsICP algorithm can be proven to be locally convergent in theory and a detailed proof is
presented in the Appendix.

3.4. Analysis of the initial transformation
Because the TsICP algorithm is locally convergent, it requires a good initial transformation to
obtain the desired global minimum. Hence, an effective method is presented to provide the initial
transformation for the TsICP algorithm. This method first extracts local features from the grid maps
and then matches these features between map pairs to estimate the initial transformation. To do
this, the local features should satisfy the two following conditions: (1) the same features can be
independently detected in both grid maps, and (2) for a feature in one map, the corresponding feature
can be correctly recognized in the other map.

As the grid maps to be merged are built in different resolutions and coordinate systems, the extracted
features should be invariant to scale, rotation, and translation changes. Therefore, we decided to adopt
the SIFT feature, which is geometrically invariant under different scaling transformations. As Fig. 4
shows, a large number of SIFT features can be extracted from the pair of grid maps to be merged.
For a pair of such maps, it is easy to find a set of feature matches. Because of sensor noise and the
precision of the SLAM algorithm, it is inevitable that some feature matches will be geometrically
inconsistent. Accordingly, the RANSAC algorithm is used to choose the inliers from all the feature
matches.

Suppose N pair-wise features {Fi,Q, Fi,P }Ni=1 have been extracted and matched for two grid maps
to be merged, where �fi,Q and �fi,P represent the positions of SIFT features Fi,Q and Fi,P , respectively.
As two SIFT features involved in one consistent match correspond to the same position in the
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environment, it is obvious that

‖s0R0 �fi,P + �t − �fi,Q‖2 ≈ 0, (13)

where T0= (s0, R0, �t0) denotes the best initial scaling transformation. According to Eq. (12), there
are at least two feature matches required to estimate the initial transformation. Setting r = 0 and
Nbest = 0, the RANSAC algorithm can be used to estimate the initial transformation as follows:

Step 1: Let r = r + 1, and choose two feature matches {Fi,Q, Fi,P }i=m,n at random from all feature
matches;

Step 2: Substitute { �fi,Q, �fi,P }i=m,n into Eq. (12) and obtain the scaling transformation Tr= (sr , Rr , �tr );
Step 3: Apply Tr= (sr , Rr , �tr ) to all SIFT features {Fi,P }Ni=1 of map P and calculate the distance

di,r = ‖srRr
�fi,P + �t − �fi,Q‖2 for all feature matches;

Step 4: Given threshold dthr , find the number Nr of geometrically consistent feature matches that
satisfy di,r ≤ dthr . If Nr > Nbest, set Nbest = Nr and store these feature matches;

Step 5: Repeat Steps 1–4, until r = 200. The Nbest geometrically consistent feature matches can then
be used to estimate the initial scaling transformation using Eq. (12).

Theoretically, the calculation of the initial transformation only requires two consistent feature
matches. However, if the number of matches is less than three, there is no way to check and obtain
the correct initial transformation.

3.5. Fusion of grid maps
The proposed approach is a convenient means to obtain an accurate scaling transformation for two
grid maps to be merged. The scaling transformation can then be applied to the non-reference map to
produce the transformed map. To obtain a suitable merging result, the reference map and transformed
map should be correctly fused. Before map fusion, it is necessary to define an empty map M with its
size determined by the superposition of the reference map and the transformed map. In addition, the
origin of the empty map should be attached to the origin of the reference map. Because the merging
map is a fusion of the reference and transformed maps, the occupied probability pM

ij of pixel (i, j ) in
M can be determined by

pM
ij = h

(
p

Q
ij , pP

i ′j ′
)
, (14)

where h(·, ·) represents the fusion function, p
Q
ij denotes the status of cells in Q with index (i, j ), and

pP
i ′j ′ denotes the status of cells in P with index (i ′, j ′), which can be calculated as follows:

(
i ′
j ′

)
=

⌊
(sR)−1 ·

((
i

j

)
− �t

)⌋
. (15)

In the grid map, the value of occupied probability pij can be used to judge the status for each cell.
The corresponding fusion rules are displayed in Table I. Suppose pij < 0.495 indicates that the cell
at (i, j ) is free, pij ∈ [0.495, 0.505] denotes an unknown status, and pij > 0.505 indicates that it is
occupied. Accordingly, the fusion function h(·, ·) can be formulated as:

h
(
p

Q
ij , pP

i ′j ′
) =

{
max(pQ

ij , pP
i ′j ′) max(pQ

ij , pP
i ′j ′) > 0.5

min(pQ
ij , pP

i ′j ′) max(pQ
ij , pP

i ′j ′) ≤ 0.5.
(16)

In this way, it is easy to obtain suitable merging maps.

4. Implementation
In practical application, the overlap percentage between two grid maps should be larger than a certain
value. Otherwise, there is no guarantee that enough consistent feature matches for estimating the
initial transformation will be obtained, and the TsICP algorithm may become trapped in a local
minimum. In practice, we found that setting ξmin = 0.35 in Eq. (6) guarantees enough matches to
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Table I. Rules for grid map fusion.

�������Q
P

Unknown Free Occupied

Unknown Unknown Free Occupied
Free Free Free Occupied
Occupied Occupied Occupied Occupied

 

Fig. 5. SIFT features extracted and matched for a pair of grid maps, where solid red lines denote the geometrically
consistent feature matches and dashed blue lines indicate the inconsistent feature matches.

acquire robust merging results. From the above discussion, we outline the proposed approach to
merge grid maps of different resolutions in Algorithm 1.

Algorithm 1. Merging grid maps of different resolutions.
Input: Reference map Q and non-reference map P

(1) Extract SIFT features from Q and P and acquire feature matches {Fi,Q, Fi,P }Ni=1;
(2) Estimate initial transformation Tbest by the method in Section 3.4;

(3) Extract the edge point sets P
�= { �pi}Np

i=1 and Q
�= {�qj }Nq

j , set T0= Tbest, and calculate the
optimal transformation by the method in Section 3.2;

(4) Based on this transformation, obtain the merged map M by the method in Section 3.5;

Output: Merged map M

5. Experimental Results
To verify the performance of the proposed approach, experiments were performed on two public
datasets: “Fr079.log”31 and “Loop25.log,”32 which were recorded by mobile robots equipped with a
laser range finder and odometer. Both were recorded in indoor environments. To simulate multi-robot
systems, one dataset can be divided into two parts that can then be utilized to build the corresponding
grid maps for testing the proposed approach. The proposed approach was compared with two other
related approaches that appeared in refs. [9] and [24]. For simplicity, these two approaches are
abbreviated as “Carpin” and “Blanco,” respectively. All code was written in MATLAB and run on
the same PC.

5.1. Validation
To verify its validity, the proposed approach was tested on Fr079.log. By dividing this dataset into
two parts, the SLAM algorithm was utilized to build two grid maps at different resolutions. To merge
this pair of grid maps, SIFT features were extracted and matched. Figure 5 displays the matched SIFT
features extracted from the pair of grid maps, where the resolution of the reference (left) map is 5
cm and the resolution of the non-reference (right) map is 8 cm. As shown in Fig. 5, there are many
geometrically inconsistent feature matches between these two maps because of sensor noise and the
precision of the SLAM algorithm. To estimate the initial transformation, geometrically consistent
feature matches were chosen from all the feature matches. Subsequently, the RANSAC algorithm
was used.
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Fig. 6. Map fusion results for different scaling transformations: (a) scaling transformation estimated by all
geometrically consistent SIFT matches and (b) scaling transformation obtained by the TsICP algorithm.

As enough consistent feature matches were obtained from the RANSAC algorithm, it was easy
to estimate the initial transformation by solving Eq. (12). Subsequently, the TsICP algorithm was
used to calculate an accurate scaling transformation. Based on the obtained scaling transformation,
the fusion rule was applied to produce the merged grid maps. Figure 6 displays the map fusion
results for different scaling transformations for the pair of grid maps. As Fig. 6(a) shows, the scaling
transformation estimated by some geometrically consistent SIFT matches was not very accurate
because of the noise in the SIFT positions. The TsICP algorithm used this transformation as an initial
scaling transformation to obtain a better one. As Fig. 6(b) shows, the scaling transformation obtained
by the TsICP algorithm is very accurate. In addition, Fig. 6 also depicts that the proposed fusion
rule can lead to reasonable merging results for maps that have different resolutions, verifying the
effectiveness of the proposed approach.

To illustrate its convergence domain, the TsICP algorithm can be tested on the pair of grid maps
displayed in Fig. 5 at different initial scaling transformations that can be obtained by applying synthetic
noise to the scaling transformation estimated from all geometrically consistent SIFT matches. During
the experiments, rotation and scale was disturbed by values uniformly drawn from the interval
[−8◦, 8◦] and [0.92, 1.08], respectively. Consequently, the TsICP algorithm was used to minimize
the objective function denoted by Eq. (6). The final value of the objective function for different initial
scaling transformations is displayed in Fig. 7. As this figure shows, the TsICP algorithm is locally
convergent over a wide domain. When the disturbance falls into the wide area close to (0◦, 1), the
TsICP algorithm always converges to the desired global minimum. Thus, the proposed approach can
obtain the optimal solution when it is provided with a good initial scaling transformation.

For the proposed approach, more than two geometrically consistent feature matches are required
to estimate the initial scaling transformation. Otherwise, there is no guarantee that a good initial
scaling transformation will be obtained. Therefore, the proposed approach should be tested on two
potentially mergeable grid maps both at different resolutions and rotations.

For the second experiment, Fr079.log was divided into two parts that were used to build two grid
maps at different resolutions that varied within the interval2,10 cm. To view the two parts of Fr079.log
in a more intuitive way, one corresponding map at 5 cm and another map at 8 cm are displayed in
Fig. 5. For each pair of grid maps, geometrically consistent feature matches were detected by the
proposed approach. The merged results for grid map pairs at different resolutions are illustrated in
Fig. 8. As this figure shows, the proposed approach is susceptible to the resolution. To merge two
grid maps that have a large resolution difference, the proposed approach is probably unable to detect
enough geometrically consistent feature matches to estimate the initial scaling transformation. To
address this issue, it is reasonable to set the reference map to a medium resolution (such as 5 cm) to
enable the grid maps to merge for small- or medium-resolution differences.

In fact, a homogeneous transformation can include all three elements in the scaling transformation,
hence the method can also use a homogeneous transformation to merge grid maps. Because a
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Fig. 7. Objective value obtained by the TsICP algorithm for different scaling transformations.
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(a)                                                                              (b)  

Fig. 8. Merged results of the grid map pairs at different resolutions, where the numbers in the vertical and
horizontal directions denote the resolutions of the reference and non-reference maps, respectively: (a) number
of geometrically consistent feature matches between grid map pairs and, (b) merge results for grid map pairs,
where light cells indicate a successful merge and dark cells indicate a failed merging.

homogeneous transformation includes eight free parameters, this method requires four consistent
feature matches to estimate the initial transformation. However, a scaling transformation includes
four free parameters, and the proposed approach only needs two consistent feature matches to estimate
the initial transformation. As there may not be enough matches to merge grid maps that have different
resolutions, the proposed approach can improve the robustness of map merging.

In addition, the proposed approach was applied to merge the reference map with the rotated non-
reference maps at different resolutions. Figure 9 displays the merging results for all grid map pairs
that were merged, indicating whether the proposed approach can successfully merge a map pair or
not. As depicted in Figs. 9 and 10, the proposed approach is robust to rotation.

5.2. Comparison
In this section, the proposed approach is compared with two other merging approaches. As few
approaches can merge grid maps at different resolutions, the comparison was implemented in two
ways: (1) merging grid maps that have the same resolution, and (2) merging grid maps that have
different resolutions. In the following experiments, the resolution of all the reference maps was 5 cm.

5.2.1. Grid maps of the same resolution. Here, the proposed approach was tested on four pairs of
grid maps at the same resolution and compared with the results of the other two approaches. For each
of the data sets, the SLAM algorithm was utilized to build two pairs of grid maps to be merged at
the same resolution (5 cm): one pair with a low overlap percentage and the other with a high overlap
percentage. These pairs of grid maps were then merged by different approaches. To compare these
approaches, the runtime, value of the objective function, and other related information are listed in
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 2 3 4 5 6 7 8 9 10 

2 √ √ √ × × √ × × √ 

3 √ √ √ √ √ √ √ √ √ 

4 √ √ √ √ √ √ √ √ √ 

5 √ √ √ √ √ √ √ √ √ 

6 √ √ √ √ √ √ √ √ √ 

7 √ √ √ √ √ √ √ √ √ 

8 × √ √ √ √ √ √ √ √ 

9 × × √ √ √ √ √ √ √ 

10 × √ × √ √ √ √ √ √ 
  

 2 3 4 5 6 7 8 9 10 

2 √ √ √ √ × × × × × 

3 √ √ √ √ √ √ √ √ √ 

4 √ √ √ √ √ √ √ √ √ 

5 √ √ √ √ √ √ √ √ √ 

6 √ √ √ √ √ √ √ √ √ 

7 √ √ √ √ √ √ √ √ √ 

8 × √ √ √ √ √ √ √ √ 

9 × √ √ √ √ √ √ √ √ 

10 × √ √ √ √ √ √ √ √ 
  

 2 3 4 5 6 7 8 9 10 

2 √ √ √ √ × √ × √ × 

3 √ √ √ √ √ √ √ √ √ 

4 √ √ √ √ √ √ √ √ √ 

5 √ √ √ √ √ √ √ √ √ 

6 √ √ √ √ √ √ √ √ √ 

7 √ √ √ √ √ √ √ √ √ 

8 × √ √ √ √ √ √ √ √ 

9 × × √ √ √ √ √ √ √ 

10 × × √ × √ √ √ √ √  
                (c)               (b)               (a)  

Fig. 9. Merge results for the reference map and rotated non-reference map: (a) rotated by 90◦ , (b) rotated by
180◦ , and (c) rotated by 270◦.

Tabel II. Comparison result of different merging approaches tested on grid maps at the same resolution.

Carpin9 Blanco24 Our method

Dataset ξ Res. (cm) Obj. T (s) Suc. Obj. T (s) Suc. Obj. T (s) Suc.

Fr079 Low 5/5 35.3365 5.9895 N 12.2950 8.4938 Y 4.9409 2.9248 Y
High 5/5 5.7399 9.4423 Y 3.0650 7.6949 Y 1.8167 4.6624 Y

Loop25 Low 5/5 77.1152 6.8712 N 3.6602 6.3585 Y 0.7914 3.8805 Y
High 5/5 16.4362 10.1076 Y 1.2788 11.4999 Y 0.7538 7.2926 Y

Table III. Comparison of different merging approaches tested on grid maps that have different resolutions.

Carpin9 Blanco24 Our method

Dataset ξ Res. (cm) Obj. T (s) Suc. Obj. T (s) Suc. Obj. T (s) Suc.

Fr079 Low 5/2 1.4949 × 104 14.2515 N 2.3590 × 104 33.6656 N 4.2264 10.4738 Y
High 5/2 8.2760 × 104 16.8074 N 1.2601 × 104 16.1521 N 1.2701 10.9501 Y

Loop25 Low 5/10 93.5330 5.0153 N 618.4076 3.7298 N 12.0835 2.8694 Y
High 5/10 251.7081 6.1079 N 487.0942 4.7689 N 4.2348 3.4103 Y

Table II. To visualize the results in a more intuitive way, two examples are displayed in Figs. 10 and
11, where the pair of maps depicted in Fig. 10 have a low overlap percentage and the pair of maps
shown in Fig. 11 have a high overlap percentage.

As these results show, Carpin’s approach is not very robust and is less accurate than the other
two approaches because of the discretization phenomenon inherent in the Hough transformation.
Because the other two approaches take an image registration approach and share similar principles,
they perform almost the same when merging grid maps that have the same resolution. Compared
with Blanco’s approach, the proposed approach is more accurate because it accounts for the overlap
percentage in the objective function.

5.2.2. Grid maps of different resolutions. Here, the proposed approach was tested on four pairs of
grid maps that have different resolutions and compared with the results of the other two approaches.
These four pairs of grid maps are similar to those used in Section 5.2.1, except for the resolution
of the non-reference maps. Accordingly, these pairs of grid maps were merged by the different
approaches. To compare these approaches, the runtime, the value of the objective function, and other
related information are also listed in Table III. Note that the map resolutions are not the input for
any merging approaches. To visualize the results in a more intuitive way, two examples of the map
merging results are displayed in Figs. 12 and 13, where the pair of maps depicted in Fig. 12 has a
high overlap percentage and the pair of maps shown in Fig. 13 has a low overlap percentage.
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Fig. 10. Merge results of two maps generated from Fr079.log: (a) reference map (5 cm), (b) non-reference map
(5 cm), (c) result of Carpin, (d) result of Blanco, and (e) result of the proposed method with enlarged detail.

Fig. 11. Merge results of two maps generated from Loop25.log: (a) reference map (5 cm), (b) non-reference
map (5 cm), (c) result of Carpin, (d) result of Blanco, and (d) result of the proposed method with enlarged detail.
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Fig. 12. Merge results of two grid maps generated from Loop25.log: (a) model grid map (5 cm), (b) data grid
map (10 cm), (c) result of Carpin, (d) result of Blanco, and (d) result of the proposed method with enlarged
detail.

Fig. 13. Merge results of the proposed approach applied to two grid maps that have different resolutions: (a)
reference map (5 cm), (b) non-reference map (2 cm), and (d) result of the proposed method with enlarged detail.

As these results show, both the other approaches failed to merge all pairs of grid maps even when
they had a high overlap percentage. By introducing the scale factor into the objective function, the
proposed approach can merge all pairs of grid maps, even those at different resolutions. Because
the non-reference map should be amplified or reduced to align well with the reference map, the
corresponding merged map may appear to be artificial, where the width of the edge represented by
the occupied cells may be inconsistent over different areas.

In a word, the proposed approach is superior for merging grid maps than the other approaches.

6. Conclusions
This paper is, to the best of our knowledge, the first that proposes an approach for merging 2D grid
maps at different resolutions. The main contributions of this paper are as follows: (1) The grid map
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merging problem is viewed as a special case of image registration, and the corresponding objective
function is designed taking into account the scaling transformation for merging grid maps that have
different resolutions. (2) To solve the objective function, the TsICP algorithm is proposed and proven
to be locally convergent in theory. (3) To obtain the optimal solution, the TsICP algorithm is given
an initial scaling transformation estimated by the RANSAC algorithm to select the consistent SIFT
feature matches extracted from the map pair. (4) Based on the optimal scaling transformation, the
rules of grid map fusion are presented to acquire the appropriate map merging results. The proposed
approach has been implemented and tested on real robot data sets, and the experimental results
illustrate that it is effective for merging grid maps that have both the same and different resolutions.

The proposed approach includes some limitations. First, the pair of grid maps to be merged must
contain a certain degree of overlap. Otherwise, it is difficult to obtain appropriate merging results.
However, we note that most merging approaches proposed so far share this limitation as well. Second,
if the pair of maps to be merged includes a large resolution difference, the proposed approach may
also fail to estimate the initial merging parameters. To avoid large resolution differences, the host
robot in a multi-robot system can build its reference map at a medium resolution. Our future work
will focus on addressing the second limitation.
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Appendix: Convergence analysis
The convergence of TsICP is similar to that of original ICP. The following theorem explains this
convergence in detail to prove that the TsICP algorithm converges in theory.

Theorem 1. The TsICP algorithm converges monotonically to a local minimum with respect to the
MSE.

The following proof shows that, for each step of the TsICP algorithm, the trimmed MSE can be
no worse than the previous step.

Proof. Given two grid maps P
�= { �pi}Np

i=1 and Q
�= {�qj }Nq

j=1, we use Tk = (sk, Rk, �tk), ξk , and Qξk

to denote the scaling transformation, overlap percentage, and overlapping part of Q, respectively. In
the first step of the kth iteration, the k-d tree method is used to search for the nearest neighbour �pck(j )

of the edge point �qj . Let �pck(j ),k−1 = sk−1Rk−1 �pck(j ) + �tk−1. The trimmed MSE is then defined as:

ek = 1∣∣Qξk−1

∣∣ (ξk−1)1+λ

∑
�qj ∈Qξk−1

∥∥ �pck(j ),k−1 − �qj

∥∥2
2. (A.1)

In the second step of the kth iteration, percentage ξk and corresponding subset Qξk
are updated.

The updated MSE is

ηk = 1∣∣Qξk

∣∣ (ξk)1+λ

∑
�qj ∈Qξk

∥∥ �pck(j ),k−1 − �qj

∥∥2
2. (A.2)

Because ξk and Qξk
are updated by minimizing the trimmed MSE, it is reasonable that ηk ≤ ek .

Otherwise, let ξk = ξk−1 and Qξk
= Qξk−1 . It is obvious that ηk = ek . In the third step of the kth

iteration, {�qj }Qξk

j=1 is registered with { �pck(j ),k−1}Qξk

j=1 and the scaling transformation Tk= (sk,Rk, �tk) is
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optimized. Let �pck(j ),k = skRk �pck(j ) + �tk . The trimmed MSE then becomes

εk = 1∣∣Qξk

∣∣ (ξk)1+λ

∑
�qj ∈Pξk

∥∥ �pck(j ),k − �qj

∥∥2
2. (A.3)

Because transformation Tk= (sk,Rk, �tk) is computed from Eq. (12), it is easy to determine that
εk ≤ ηk . Otherwise, let sk = sk−1, Rk = Rk−1, and �tk = �tk−1. It is obvious that εk = ηk .

In the (k + 1)th iteration, the new nearest neighbour �pck+1(j ) of �qj can be searched for again. Let
�pck+1(j ),k = skRk �pck+1(j ) + �tk . The new trimmed MSE can then be defined as:

ek+1 = 1∣∣Qξk

∣∣ (ξk)1+λ

∑
�qj ∈Pξk

∥∥ �pck+1(j ),k − �qj

∥∥2
2. (A.4)

Because ek+1 is the result of Eq. (9), then

ek+1 = 1∣∣Qξk

∣∣ (ξk)1+λ

∑
�qj ∈Pξk

∥∥ �pck+1(j ),k − �qj

∥∥2
2 ≤ 1∣∣Qξk

∣∣ (ξk)1+λ

∑
�qj ∈Pξk

∥∥ �pck(j ),k − �qj

∥∥2
2 = εk. (A.5)

Hence, repeating the above procedures, the following results are obtained: 0 ≤ ... ≤ ek+1 ≤ εk ≤
ηk ≤ ek ≤ ... for all k.

According to the Monotonic Sequence Theorem,33,34 “Every bounded monotonic sequence of
real numbers is convergent.” Hence, the TsICP algorithm always converges monotonically to a local
minimum with respect to the trimmed MSE.
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