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COMBINING RESURRECTION ANDMAXIMALITY

KAETHE MINDEN

Abstract. It is shown that the resurrection axiom and the maximality principle may be consistently

combined for various iterable forcing classes. The extent to which resurrection and maximality overlap is

explored via the local maximality principle.

§1. Introduction. The maximality principle (MP) was originally defined by Stavi
and Väänänen [15] for the class of ccc forcings. Maximality principles were defined
in full generality by Hamkins [7], and expanded upon for different classes of forcing
notions by Fuchs [2, 3], and Leibman [13]. The axiom MP states that if a sentence
may be forced in such a way that it remains true in every further forcing extension,
then it must have been true already, in the original ground model. The resurrection
axiom (RA) is due to Hamkins and Johnstone [8]. Very roughly speaking, RA posits
that no matter how you force, it is always possible to force again to “resurrect”
the validity of certain sentences—meaning a statement may not be true after some
forcing, but there is always a further forcing which will undo this harm. In fact the
axiom grants a bit more than this, and posits an amount of elementarity between
the two-step extension and the ground model.
A forcing class Γ is generally meant to be definable, closed under two-step

iterations, and to contain trivial forcing. Resurrection and maximality may hold
for more forcing classes than forcing axioms can, while they tend to imply their
relevant bounded forcing axiom counterparts. In order for a forcing axiom to make
sense for a particular class of forcing notions, the forcings should preserve stationary
subsets of ù1. However, this restriction does not exist for the resurrection axiom or
the maximality principle.
A question reasonable to ask about any forcing class is whether or not the

resurrection axiom and the maximality principle may consistently both hold for
that class. I answer the question positively and show that the consistency strength
of the combined boldface principles together is that of a strongly uplifting fully
reflecting cardinal.
Perhaps many forcing classes are ignored in this paper. The focus is on forcing

classes containing forcing notions which may potentially either collapse cardinals
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398 KAETHEMINDEN

(to ℵ1 or larger), add reals, or both. I also want to look at forcing classes which have
a corresponding forcing axiom. Thus the focus is on proper, ccc, countably closed,
subcomplete1 , and the class of all forcing notions. The results stated here for proper
forcing should work similarly for semiproper and subproper forcing. Future work
may certainly flesh out important distinctions.
In Section 2 the definition of the maximality principle is given for various classes

of forcing, and the relevant equiconsistency result is stated. The same is done for
the resurrection axiom in Section 3. In Section 4, it is shown that the two may
consistently be combined. In Section 5, the local maximality principle is introduced
as a natural axiom similar to a bounded forcing axiom but stronger, which both
the maximality principle and the resurrection axiom imply. The consistency of local
maximality is established at the end of the section.

§2. The maximality principle. One motivation behind maximality principles is
their connection to modal logic. In modal logic, necessary (✷) and possible (♦) are
modal operators. In our context we interpret “possible” as forceable, or true in some
forcing extension, and “necessary” as true in every forcing extension.

Definition 2.1. Let Γ be a forcing class defined by a formula (to be evaluated in
the forcing extensions in cascaded modal operator uses).
We say that a sentence ϕ(Ea) is Γ- forceable if there is P ∈ Γ such that for every

q ∈ P, we have that q  ϕ(Ea). In other words, a statement is Γ-forceable if it is forced
to be true in an extension by a forcing from Γ.
A sentenceϕ(Ea) is Γ- necessary if for allP∈Γ and all q ∈P, we have that q ϕ(Ea).

So a sentence is Γ-necessary if it holds in any forcing extension by a forcing notion
from Γ. If Γ contains the trivial forcing then a statement being Γ-necessary implies
that it is true.
If S is a term in the language of set theory, then theMaximality Principle for Γ

with parameters from S, which we denoteMPΓ(S), is the scheme of formulae stating
that every sentence with parameters Ea from S that is Γ-forceably Γ-necessary is true.
That is, if the sentence “ϕ(Ea) is Γ-necessary” is Γ-forceable, then ϕ(Ea) is true. In
brief, the maximality principle posits ♦✷ϕ =⇒ ϕ.

Write MPsc to stand for MPΓ where Γ = {P | P is subcomplete}, MPc in the case
where Γ is countably closed forcings,MPp for the class of proper forcings, andMPccc

for the class of ccc forcings. We leave out Γ if we are considering all forcing notions.
Since all of these classes of forcing notions Γ are closed under two-step iterations
and contain trivial forcing, it follows that MPΓ is equivalent to the statement that
every sentence that is Γ-forceably Γ-necessary is Γ-necessary.
Before moving on, it should be noted that it of course does not technically make

sense to write MPΓ =⇒ P for some proposition P in the language of set theory,
sinceMPΓ is a scheme. When something like this is written, it should be interpreted
as saying instead ZFC+MPΓ ⊢ P.
First we analyze the parameter set S that may be allowed in the definition. Since

being hereditarily countable is forceably necessary [7, Observation 3], it is clear that

1See [12] and [14] for the definition of subcomplete forcing and its properties.
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COMBINING RESURRECTION ANDMAXIMALITY 399

S = Hù1 is the natural parameter set for the maximality principle for the class of
all forcing notions. We will write MP for the boldface version of the maximality
principle for all forcing, i.e.,MP=MP(Hù1). For the case where we consider MPc

as in [2], the natural parameter set to use is Hù2 . The same is true for MPsc . The
next lemma follows Fuchs [2, Theorem 2.6].

Lemma 2.2. Let Γ be a forcing class containing forcing notions which collapse
arbitrarily large cardinals to ù1. Then MPΓ cannot be consistently strengthened by
allowing parameters that aren’t inHù2 . In particular,

MPΓ(S) =⇒ S ⊆Hù2 .

Proof. The point is that for any set a, it is Γ-forceably Γ-necessary that a ∈Hù2 .
Indeed, after forcing to collapse |TC({a})| toù1, we have that a ∈Hù2 in the forcing
extension. This must remain true in every further forcing extension. So, ifMPsc({a})
holds, it follows that a ∈Hù2 . ⊣

WriteMPsc forMPsc(Hù2) andMPc forMPc(Hù2).

Lemma 2.3. Let Γ be a forcing class which may add an arbitrary amount of reals
but cannot collapse cardinalities. Then

MPΓ(S) =⇒ S ⊆Hc.

Proof. The point is that “2ù is greater than the hereditary size of a” is Γ-forceably
Γ-necessary. ⊣

Thus writeMPccc forMPccc(Hc). Note that by Lemma 2.2,MPp(Hc) =⇒ Hc ⊆
Hù2 . In this paper,we choose to have the boldface versionof themaximality principle
for proper forcing to beMPp =MPp(Hù2).
Assuming there is a regular cardinal ä satisfyingVä ≺V , the maximality principle

is consistent. The proof of this uses a technique that adapts arguments of Hamkins
[7]. Hamkins has described the proof as “running through the house and turning
on all the lights”, in the sense that the posets that are forced are those that push
“buttons”, sentences that can be “switched on” and stay on, in all forcing extensions.
A button in our case is a sentence ϕ(Ea) that is Γ-forceably Γ-necessary. As Hamkins
discusses in detail, the existence of a regular cardinal ä such thatVä ≺V is a scheme
of formulae sometimes referred to as the “Lévy scheme.” We refer to the Lévy
scheme as positing the existence of what we refer to as a fully reflecting cardinal.

Theorem 2.4 [7, Theorem 31]. The following consistency results hold.

(1) MP =⇒ ℵV1 is fully reflecting in L.
(2) MPccc =⇒ c

V is fully reflecting in L.
(3) MPp =⇒ ℵV2 is fully reflecting in L.
(4) MPc =⇒ ℵV2 is fully reflecting in L.
(5) [14, Lemma 4.1.4]MPsc =⇒ ℵV2 is fully reflecting in L.

It follows that for all of these classes Γ,MPΓ cannot hold in L, since otherwise L
would think that ℵ2 or c is inaccessible in L, a contradiction. Of course,MPΓ fails
in L whenever Γ has any nontrivial forcing in it, since then “V 6= L” is Γ-forceably
Γ-necessary.
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400 KAETHEMINDEN

Theorem 2.5 [7, Theorem 32]. Let ä be a fully reflecting cardinal. Then there are
forcing extensions in which the following hold:

(1) MP and ä = c= ℵ1.
(2) MPccc and ä = c.
(3) MPp and ä = c= ℵ2.
(4) MPc and ä = ℵ2 and CH.
(5) [14, Theorem 4.1.3]MPsc and ä = ℵ2 and CH.

Here a least-counterexample lottery sum iteration, which takes lottery sums at
each stage, is favored. Hamkins’ proofs make use of a book-keeping function.
Overall, the two methods follow the same “running through the house” method.We
define the lottery sum poset below.

Definition 2.6. For a familyP of forcing notions, the lottery sum poset is defined
as follows:

⊕

P = {1P}∪{〈P,p〉 | P ∈ P ∧ p ∈ P}

with1P weaker than everything and 〈P,p〉 ≤ 〈P′,p′〉 if and only ifP=P′ andp≤P p
′.

For two forcing notions, P and Q, write P⊕Q for
⊕

{P,Q}.
One major difference encountered using a lottery sum is that ccc forcing notions

are not closed under lottery sums. So in the case of the ccc forcing class, Hamkins’
method must be used more directly.

§3. The resurrection axiom. The idea behind the resurrection axiom is to look at
the model-theoretic concept of existential closure in the realm of forcing, because,
as is pointed out by Hamkins and Johnstone [8], the notions of resurrection and
existential closure are tightly connected in model theory. A submodelM ⊆ N is
existentially closed in N if existential statements in N using parameters fromM
are already true inM, i.e.,M is a Σ1-elementary substructure of N . Many forcing
axioms can be expressed informally by stating that the universe is existentially
closed in its forcing extensions, since forcing axioms posit that generic filters, which
normally exist in a forcing extension, exist already in the ground model. Hamkins
and Johnstone consider resurrection for forcing extensions to be a more “robust”
formulation of forcing axioms for various forcing classes. Resurrection axioms imply
the truth of their associated bounded forcing axiom, but not the other way around.

Definition 3.1. Let Γ be a class of forcing notions closed under two-step
iterations. Let ô be a term for a cardinal to be computed in various models, e.g., c,
ℵ1, etc. TheResurrection Axiom RAΓ(Hô) asserts that for every forcing notionQ∈Γ
there is a further forcing Ṙ with Q Ṙ ∈ Γ such that if g ∗ h ⊆ Q ∗ Ṙ is V -generic,

thenHVô ≺HV [g∗h]ô .

Hamkins and Johnstone [8] examined RAΓ(Hc) for Γ such as proper, ccc,
countably closed, and the class of all forcing notions. The reason Hc is required
in general is that if some forcing notion in Γ adds new reals, then Hκ, where
κ > c in V, simply cannot be existentially closed in the forcing extension; the added
real itself is witnessing the lack of existential closure. So certainly for κ > c and
any class of forcing notions Γ which potentially add new reals, RAΓ(Hκ) cannot

https://doi.org/10.1017/jsl.2021.8 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.8


COMBINING RESURRECTION ANDMAXIMALITY 401

hold. For proper forcing and ccc forcing, we write RAp for RAp(Hc) and RAccc for
RAccc(Hc). However, by the following result we see that RAc(Hc) and RAsc(Hc) are
both equivalent to CH.

Proposition 3.2 [8, Theorem 8]. Suppose Γ contains a forcing which forces CH
but no forcing in Γ adds new reals. Then CH ⇐⇒ RAΓ(Hc).

Proof. For the forward implication, suppose that CH holds. Then since no new
reals are added,Hù1 is unaffected by each forcing in Γ, and moreover, c remains ù1
in every extension by a forcing in Γ.
For the backward direction, assume RAΓ(Hc) holds. Let P force CH. Then there is

a further forcing Ṙ satisfying P Ṙ ∈ Γ̇ such that letting g ∗h ⊆ P∗ Ṙ be generic, we

haveHc ≺H
V [g∗h]
c .We know that CH has to hold still in V [g ∗h] since no new reals

are added to make c larger. Thus CH holds in V by elementarity, as desired. Indeed,
CH is equivalent to the statement thatHc contains only one infinite cardinal, which
can be expressed in Hc. ⊣

Perhaps RAsc(Hc), or indeed RAc(Hc), is not necessarily the right axiom to look
at. Sowhat is the correct axiom to examine? I will discuss two reasonable possibilities
for the hereditary sets: Hù2 and H2ù1 . Let’s see what RAsc(H2ù1 ) and RAc(H2ù1 )
imply about the size of 2ù1 .

Proposition 3.3. Suppose Γ contains forcing to collapse to ù1. Then
RAΓ(H2ù1 ) =⇒ 2ù1 = ù2.

Proof. We show the contrapositive. Let 2ù1 ≥ ù3. Let κ = ù
V
2 . Then H2ù1 |=

“κ =ù2”. But after forcing to collapse κ to ù1 we have that κ <ù2 in the extension.
Moreover, if R is any further forcing in Γ, we will still have that for h ⊆ R generic,

H
V [g][h]
2ù1

|= “κ < ù2”. So RAΓ(H2ù1 ) must fail. ⊣

The next proposition gives a relationship between RAc(H2ù1 ) and RAc(Hù2) as
well as between RAsc(H2ù1 ) and RAsc(Hù2). However, the answer to the following
question is unknown.

Proposition 3.4. Let Γ be a forcing class containing forcing notions which collapse
arbitrarily large cardinals to ù2 and to ù1. Then

RAΓ(H2ù1 ) ⇐⇒ 2ù1 = ù2+RAΓ(Hù2).

Proof. For the forward direction, we already have thatRAΓ(H2ù1 ) =⇒ 2
ù1 =ù2

by the previous proposition.Moreover, ifRAΓ(H2ù1 ) holds, so doesRAΓ(Hù2), since
Hù2 =H2ù1 in the extension by elementarity.
For the backward direction, suppose that RAΓ(Hù2) holds and 2

ù1 = ù2. We
would like to show that RAΓ(H2ù1 ) holds. Toward that end, suppose that Q is in
Γ and let g ⊆ Q be generic. Then we have that there is some forcing R with h ⊆ R

generic over V [g], such that HV
2ù1
=HVù2 ≺H

V [g∗h]
ù2

. So if in V [g ∗h] we have that
2ù1 = ù2, then we are done. If not, let G collapse 2

ù1 to be ù2 over V [g][h]. Then

H
V [g∗h]
ù2

=HV [g∗h∗G ]ù2
=HV [g∗h∗G ]

2ù1
, so we are done. ⊣

Question 3.5. Is it the case that RAsc(H2ù1 ) ⇐⇒ RAsc(Hù2)? Indeed, is it the
case that RAc(H2ù1 ) ⇐⇒ RAc(Hù2)?
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In comparison to Proposition 3.2, the lack of any obvious restraints for the size
of 2ù1 lends credibility to Hù2 being the right parameter set to consider for forcing
notions which do not add reals, but do contain the relevant collapses. So this is what
we will be using. Write RAsc for RAsc(Hù2) and RAc for RAc(Hù2).
Hamkins and Johnstone [8] determined that the consistency strength of

resurrection is an uplifting cardinal.

Definition 3.6. We say that κ is uplifting so long as κ is è-uplifting for every
ordinal è. This means that there is an inaccessible cardinal ã ≥ è such that Vκ ≺Vã .

Since we are focusing our attention to the boldface maximality principle in this
paper, we should also look at the boldface version of resurrection, in which we carry
around a kind of parameter set.

Definition 3.7. Let Γ be a fixed, definable class of forcing notions. Let ô be a
term for a cardinality to be computed in variousmodels, e.g., c,ù1, etc. TheBoldface
Resurrection AxiomRAΓ(Hô) asserts that for every forcing notionQ∈Γ andA⊆Hô
there is a further forcing Ṙ with Q Ṙ ∈ Γ such that if g ∗ h ⊆ Q ∗ Ṙ is V -generic,

then there is an A∗ ∈ V [g ∗h] such that 〈HVô , ∈ ,A〉 ≺ 〈HV [g∗h]ô , ∈ ,A∗〉.

Again, it doesn’t make too much sense to talk about the resurrection axiom at
the continuum for forcing classes which can’t add new reals. Thus as in the lightface
versions, the notion we will be looking at for the boldface version is RAsc(Hù2)
which we will just refer to as RAsc , RAp for RAp(Hc), RAccc for RAccc(Hc), and RA
for RA(Hc). Hamkins and Johnstone [9] determined that the consistency strength
of boldface resurrection is a strongly uplifting cardinal.

Definition 3.8. We say that κ is strongly uplifting so long as κ is è-strongly
uplifting for every ordinal è. Thismeans that for everyA⊆Vκ there is an inaccessible
cardinal ã ≥ è and a set A∗ ⊆ Vã such that 〈Vκ, ∈ ,A〉 ≺ 〈Vã, ∈ ,A

∗〉 is a proper
elementary extension.2

If κ is strongly uplifting then κ is inaccessible.

Theorem 3.9 [9, Theorem 19]. Let κ be strongly uplifting. Then there are forcing
extensions in which the following hold:

(1) RA and κ = c= ℵ1.
(2) RAccc and κ = c.
(3) RAp and κ = c= ℵ2.
(4) RAc and κ = ℵ2 and CH.
(5) [14, Theorem 4.2.12] RAsc and κ = ℵ2 and CH.

Theorem 3.10 [9, Theorem 19]. We have the following implications:

(1) RA =⇒ ℵV1 is strongly uplifting in L.
(2) RAccc =⇒ c

V is strongly uplifting in L.
(3) RAp =⇒ c

V = ℵV2 is strongly uplifting in L.
(4) RAc =⇒ ℵV2 is strongly uplifting in L.
(5) [14, Theorem 4.2.13] RAsc =⇒ ℵV2 is strongly uplifting in L.

2As described by Hamkins and Johnstone in the comments on page 5 of their paper, we may let ã be
regular, uplifting, weakly compact, etc.
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§4. Combining resurrection and maximality. Hamkins and Johnstone [8, Section
6] combine the resurrection axiom with forcing axioms, like PFA for example, and
show that they both hold after a forcing iteration. Fuchs explores combinations of
maximality principles for closed forcing notions [2] combinedwith those for collapse
and directed closed forcing notions [3] and hierarchies of resurrection axioms with
an emphasis on subcomplete forcing [4]. Ikegami and Trang [10] studied classes
of maximality principles combined with forcing axioms. This section focuses on a
different question in a similar vein: is it possible for the resurrection axiom and the
maximality principle to hold at the same time? The axioms do not imply each other
directly, andMP surely does not imply RA, since the consistency strength ofMP is
that of a fully reflecting cardinal, while RA has the consistency strength a strongly
uplifting cardinal. These two cardinals are consistently different, they certainly don’t
imply each other: if κ is fully reflecting, take the least ã such that Vκ ≺ Vã . If there
isn’t such a ã, then κ isn’t uplifting anyway. But inVã , we have that κ is not uplifting.
There is no implication in the other direction as well. This is because working in a
minimal model of

ZFC + “V = L” + “there is an uplifting cardinal”

(i.e., no initial segment of the model satisfies this theory), we may force over this
minimal model to obtain RA. Now MP can’t hold in the extension, since letting
κ be the ù2 of the extension, if MP were true, then that would imply that Lκ is
elementary in L—contradicting the minimality of the model we started with.
This section is dedicated to showing that it is possible for maximality and

resurrection to both hold, by combining the techniques showing the consistency
of each principle, all in one minimal counterexample iteration.
An inaccessible cardinal κ is strongly uplifting fully reflecting so long as it is both

strongly uplifting and fully reflecting.
Combining these two large cardinal notions is almost natural. If κ is uplifting

then there are unboundedly many ã such that Vκ ≺ Vã , and if on top of that κ is
fully reflecting, we add thatVκ ≺V as well, whereV is in some sense the limit of the
Vã ’s. Moreover, strongly uplifting fully reflecting cardinals are guaranteed to exist
in some set-sized transitive model if there are subtle cardinals.

Definition 4.1. A cardinal ä is subtle so long as for any club C ⊆ ä and for any
sequence A= 〈Aα | α ∈ C 〉 with Aα ⊆ α, and there is a pair of ordinals α < â in C
such that Aα =Aâ ∩α.

Fact 4.2. If a cardinal ä is subtle, then ä is inaccessible.

Proposition 4.3. If ä is subtle, then it is consistent that there is a strongly uplifting
fully reflecting cardinal. Namely, the set {κ < ä | Vä |= “κ is strongly uplifting and
Vκ ≺ V ”} is stationary in ä.

Proof. Hamkins and Johnstone [9, Theorem 7] show that if ä is subtle, then the
set of cardinals κ below ä that are strongly uplifting in Vä is stationary. But since
ä is subtle, it must also be inaccessible by Fact 4.2. Thus in Vä , by the proof of the
downward Lowenheim–Skolem theorem, there is a club C ⊆ ä of cardinals κ such
that Vκ ≺ Vä , meaning that κ is fully reflecting in Vä . This means that there is some
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α< κ that is both strongly uplifting and fully reflecting in Vä , giving us the required
consistency. ⊣

We can immediately see that if resurrection and maximality both hold, we must
have a strongly uplifting fully reflecting cardinal, by combining the results of
Theorems 2.4 and 3.10.

Observation 4.4. The following consistency results hold.

(1) MP+RA =⇒ ℵV1 is strongly uplifting fully reflecting in L.
(2) MPccc +RAccc =⇒ c

V is strongly uplifting fully reflecting in L.
(3) MPp+RAp =⇒ ℵV2 is strongly uplifting fully reflecting in L.
(4) MPc +RAc =⇒ ℵV2 is strongly uplifting fully reflecting in L.
(5) MPsc +RAsc =⇒ ℵV2 is strongly uplifting fully reflecting in L.

For the other direction of the consistency result, we restate here a restricted version
of the lifting lemma [9, Lemma 17], using the comments following it, to allow the
lifting of certain embeddings to generic extensions.

Fact 4.5 (Lifting lemma). Suppose that 〈M, ∈ A〉 ≺ 〈M ∗, ∈ ,A∗〉 are transitive
models of ZFC and P is an OrdM -length forcing iteration without any condition with
full support in M. If G ⊆ P is an M-generic filter and G∗ ⊆ P∗ is M ∗-generic with
G =G∗∩P, then 〈M [G ], ∈ ,A,G〉 ≺ 〈M ∗[G∗], ∈ ,A∗,G∗〉.

Theorem 4.6. Let κ be a strongly uplifting fully reflecting cardinal. Then there is
a forcing extension in which both RA andMP hold, and κ = c= ℵ1.

Proof. Let κ be strongly uplifting fully reflecting. Below we define P to be the
least-counterexample to RA+MP lottery sum finite support iteration of length κ.
We generically pick, using the lottery sum, whether at each stage to force with a least-
rank counterexample to the maximality principle or a least-rank counterexample to
the boldface resurrection axiom.
In particular, define the poset P= Pκ = 〈(Pα,Q̇α) | α < κ〉 as follows:
At stage α, consider all of the sentences with parameters having names in V Pα

κ

that are not true in V Pα
κ , but can be forced by some poset Q̇ to be necessary. Let

M be the collection of such possible forcing notions Q̇ in V Pα
κ of minimal rank in

V Pα
κ . In other words,M contains the current minimal rank counterexamples to the
boldface maximality principle, as seen by Vκ. Since κ is fully reflecting, Vκ and V
are in agreement on which posets are counterexamples to maximality,M can be
thought of as the collection of current minimal rank counterexamples toMP.
Similarly we take R to contain all of the current minimal rank counterexamples

to RA. To be precise, let R be the collection of forcing notions Q̇ of minimal rank

such that there is Ȧ⊆HV
Pα

c
where after any further forcing R̈, it is not the case that

〈HV
Pα

c
, ∈ ,Ȧ〉 ≺ 〈HV

Pα∗Q̇∗R̈

c
, ∈ ,Ȧ∗〉 for any Ȧ∗.

Then take Pα+1 = Pα ∗ Q̇α where Q̇α is a term for the lottery sum
⊕

R⊕
⊕

M.
Limit stages are taken care of via finite support.
Let G ⊆ P be generic.
Since it is dense in this iteration for sets of size less than κ to be collapsed to be

countable (indeed, for any a ∈Vκ, the statement positing a is countable is forceably
necessary) it follows that κ ≤ ù1 in V [G ]. It is straightforward to show that the
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iteration has the κ-cc. Thus κ remains a cardinal, so κ = ℵ1 in the extension.
Additionally, a density argument shows that unboundedly often in the iteration,
a new real is added. (Alternatively, the finite support will itself add a new real at
every limit stage of cofinality ù.) Either way, this means that κ = ℵ1 = c in V [G ] as
claimed.
We need to show that both RA andMP hold in V [G ].

Claim 4.6.1. MP holds in V [G ].

Proof. Assume it fails; the sentence ϕ(Ea), where Ea ∈HV [G ]ù1
is a parameter set,

has the property that: V [G ] |= “ϕ(Ea) is forceably necessary but ϕ(Ea) is false.”
Choose a condition p ∈ G that forces the above statement. P has the κ-cc, since
all of the forcing notions are small—so at no stage in the iteration is κ collapsed.
This means that there has to be some stage where Ea appears. So there is some stage
in the iteration beyond the support of p, say α < κ, where Ea ∈ Vκ[Gα]. Specifically
ϕ(Ea) is an available button at stage α, since after the rest of the iteration, Ptail where
P = Pα ∗Ptail, we have that ϕ(Ea) is forceably necessary. Indeed, this is reasoning
available in V [Gα], which thus sees that ϕ(Ea) is a button. By elementarity, as κ is
fully reflecting, it follows that Vκ[Gα] |= “ϕ(Ea) is forceably necessary”. From that
point on, ϕ(Ea) continues to be a button, since we have that α is beyond the support
of p ∈ G . Thus it is dense, in P, for ϕ(Ea) to be “pushed” at some point after
stage α, say â . So we have â < κ such that there is some Q forcing ϕ(Ea) to be
necessary in Vκ[Gâ ]. Let H ⊆ Q be generic over V [Gâ ] so that there is some Gtail
generic for the rest ofP satisfyingV [Gâ ][H ][Gtail] =V [G ]. The sentenceϕ(Ea) is now
necessary inVκ[Gâ ][H ]. But then sinceVκ[Gâ ][H ]≺V [Gâ ][H ], as we are still in an
initial segment of the full iteration, we have that ϕ(Ea) is necessary in V [Gâ ][H ], by
elementarity. Therefore since the rest of the iteration is a forcing notion in its own
right, ϕ(Ea) is true in V [Gâ ][H ][Gtail] = V [G ], contradicting our assumption that
ϕ(Ea) is false in V [G ]. ⊣

Claim 4.6.2. RA holds in V [G ].

Proof. Assume toward a contradiction that RA fails. This means we can choose
a least rank counterexample, a forcing Q in V [G ] which supposedly cannot be
resurrected. Let A ⊆ HV [G ]c be its associated predicate. Let Q̇ be a name for Q of
minimal rank. Since P has the κ-cc, there must be a name for the predicate in the
extension such that Ȧ⊆Hκ with A= Ȧ

G .
We will argue that Q̇ appears at stage κ of the same exact iteration, except defined

in some larger Vã [G ] = V
V [G ]
ã where ã is inaccessible. Use the strong uplifting

property of κ, and code the iteration P as a subset of κ, to find a sufficiently
large inaccessible cardinal ã so that 〈Vκ, ∈ ,P,Ȧ〉 ≺ 〈Vã, ∈ ,P∗,Ȧ∗〉, where P∗ is
the least-counterexample to RA+MP lottery sum iteration of length ã as defined
in Vã . Obtaining a large enough ã involves a process of closing under least-rank
counterexamples.Not only doesVã need to agreewithV about the rankof least-rank
counterexamples to the resurrection axiom throughout the iteration P, it must also
compute the least-rank counterexamples to the maximality principle appropriately
as well. Since Vκ ∈ Vã , and the ranks throughout the maximality iteration were
computed in Vκ, the minimal ranks are guaranteed to be computed properly in Vã .
Indeed we have argued above that P∗ is defined the same way as P below stage κ, so
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we may assume below a condition in G that Q̇ may be picked at stage κ. So below
a condition that opts for Q̇ at the stage κ lottery we may say that P∗ factors as
P∗ Q̇∗ ˙P∗

tail. LetH ∗G∗
tail ⊆Q∗P∗

tail be V [G ]-generic. LettingG
∗ =G ∗H ∗G∗

tail, this
means that G∗ ⊆ P∗ is generic over V.
Thus by the lifting lemma (Fact 4.5) the strongly uplifting embedding 〈Vκ, ∈

,P,Ȧ〉 ≺ 〈Vã, ∈ ,P
∗,Ȧ∗〉 lifts to 〈Vκ[G ], ∈ ,P,Ȧ,G〉 ≺ 〈Vã [G

∗], ∈ ,P∗,Ȧ∗,G∗〉 in
V [G∗]. In particular, 〈Vκ[G ], ∈ ,P,A〉 ≺ 〈Vã [G

∗], ∈ ,P∗,A∗〉.We have that Vκ[G ] =

H
V [G ]
κ =HV [G ]c , since κ is inaccessible and P has the κ-cc. We can argue the same

way as above, replacing κ with ã, to get that Vã [G
∗] = HV [G

∗]
ã = HV [G

∗]
c . This

establishes 〈HV [G ]c , ∈ ,A〉 ≺ 〈HV [G
∗]

c , ∈ ,A∗〉. ⊣

Therefore RA andMP both hold as desired. ⊣

Theorem 4.7. Let κ be a strongly uplifting fully reflecting cardinal. Then there are
forcing extensions in which we have the following:

(1) RAp+ MPp+ κ = c= ℵ2.
(2) RAc + MPc + κ = ℵ2+ CH.
(3) RAsc + MPsc + κ = ℵ2+ CH.

Proof. For all of these arguments, use Theorem 4.6 as a blueprint. The definition
of the iteration is always the same, with the caveat that the forcing notions are always
taken to be in the relevant class we are thinking about (where Γ is the class of proper
forcing notions when we show (1), and so on). Let’s repeat the description of the
iteration as before, relativized to a forcing class Γ.
Each time we define an iteration P= Pκ = 〈(Pα,Q̇α) | α < κ〉 as follows:
At stage α, consider all of the sentences with parameters having names in V Pα

κ

that are not true in V Pα
κ , but can be forced by some poset Q̇ ∈ ΓV

Pα
κ to be necessary.

LetM be the collection of such possible forcing notions of minimal rank inV Pα
κ for

which the above holds. SoM contains the minimal rank counterexamples toMPΓ.

Additionally, letR be the collection of forcing notions Q̇ ∈ ΓV
Pα
of minimal rank

such that there is Ȧ⊆HV
Pα

c
where after any further forcing R̈ ∈ ΓV

Pα∗Q̇
and for all

Ȧ∗, it is not the case that 〈HV
Pα

c
, ∈ ,Ȧ〉 ≺ 〈HV

Pα∗Q̇∗R̈

c
, ∈ ,Ȧ∗〉. So R contains the

minimal rank counterexamples to RAΓ.
Then take Pα+1 = Pα ∗ Q̇α where Q̇α is a term for the lottery sum

⊕

R⊕
⊕

M.
The argument for each forcing class follows the above template, granted a

useful support is used. For (1) and (2), use countable support. For (3), revised
countable support works, after seeing that such iterations of subcomplete forcing
are subcomplete [12].
All of the forcing classes considered here contain the forcing to collapse the size

of sets to ù1, and in each iteration, it is dense to do so. This means that κ ≤ ù2 in
each of these extensions. It is also not difficult to show that each of these iterations
has the κ-cc. Thus κ = ℵ2 in each of these forcing extensions. With proper forcing,
a density argument similar to that of the proof of Theorem 4.6 tells us κ = c in the
extension. For countably closed and subcomplete forcing, in factMPc , RAc , RAsc ,
andMPsc all imply CH, so CH will hold in these extensions. ⊣
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The iteration as defined is clearly ill-suited for ccc forcings, since ccc forcings are
not closed under lottery sums. To resolve this let’s combine the arguments from [9]
and [7]. This method could also be used for other forcing classes.

Definition 4.8 [9]. A Laver function ℓ for a strongly uplifting cardinal κ is a
partial function from κ to Vκ satisfying that for every A ⊆ κ, every ordinal è, and
every set x, there is a proper elementary extension 〈Vκ, ∈ ,A,ℓ〉 ≺ 〈Vã, ∈ ,A

∗,ℓ∗〉
where ã ≥ è is inaccessible and ℓ∗(κ) = x.

By [9, Theorems 2 and 11] every strongly uplifting cardinal has such a Laver
function in L.

Theorem 4.9. Let κ be a strongly uplifting fully reflecting cardinal. Then there is
a forcing extension of L in which both RAccc andMPccc hold, and κ = c.

Proof. Letκ be strongly uplifting fully reflecting. By [9, Theorem2],κ is strongly
uplifting in L. Since L |= Vκ = Lκ, it follows that κ is fully reflecting in L as well.
Work in L.
Let ℓ be a strongly uplifting Laver function for κ. Let Eϕ = 〈ϕα(Ėa) | α < κ〉

enumerate, with unbounded repetition, all sentences in the language of set theory
with names for parameters in Vκ coming from a forcing extension by a forcing of
size less than κ.
Define a finite support κ-iteration of ccc forcing so that at successor stages α =

â+1, the forcing Qα is least rank forcing ϕâ to be necessary over V
Pα
κ , if possible.

Otherwise, do trivial forcing at that stage. At limit stages, force with ℓ(α), provided
that this is a Pα-name for a ccc forcing. Otherwise, do trivial forcing at that stage.
Unboundedly often, the forcing will not be trivial in this iteration. Forcing to

make c arbitrarily large below κ will happen periodically at successor stages. At
limits, the Laver function will choose Cohen forcing unboundedly often.
Let G ⊆ P be generic. We have that κ = c

V [G ], which follows from the above (and
also since P is a finite support iteration of ccc forcings, a Cohen real will be added in
the forcing up to limit stages of countable cofinality). Since there are κ-many such
stages, κ-many Cohen reals are added.

Claim 4.9.1. MPccc holds in V [G ].

Proof. Let ϕ(Ea) be ccc-forceably ccc-necessary over V [G ] with Ea ∈ HV [G ]c =
H
V [G ]
κ . Since P is ccc, Ea has a Pα-name Ėa, where â +1 = α < κ is some successor
ordinal and ϕ(Ėa) = ϕâ(Ėa). Since ϕ(Ea) is ccc-forceably ccc-necessary in V [G ] it
must have also been ccc-forceably ccc-necessary in such a V [Gα] (by adding the
rest of the iteration to the beginning of whatever forcing notion makes the sentence
ccc-necessary in V [G ]). Since Vκ[Gα] ≺ V [Gα], the sentence must have been ccc-
forceably ccc-necessary in Vκ[Gα]. Thus ϕ(Ea) was forced to be ccc-necessary, and
so it is ccc-necessary in V [Gα+1]. Since the rest of the iteration is ccc, it is true
in V [G ]. ⊣

Claim 4.9.2. RAccc holds in V [G ].

Proof. Suppose that A ⊆ κ and Q is a ccc forcing in V [G ]. Let Ȧ and Q̇ be
P-names forA andQ, respectively. Let è be an ordinal. Since ℓ is a strongly uplifting
Laver function for κ, there is an extension 〈Vκ, ∈ ,Ȧ,P, Eϕ,ℓ〉 ≺ 〈Vã, ∈ ,Ȧ

∗,P∗, Eϕ∗,ℓ∗〉
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with ã ≥ è inaccessible and ℓ∗(κ) = Q̇. Note that P is definable from Eϕ and ℓ.
Thus P∗ is the corresponding ã-iteration defined from ℓ∗ and Eϕ∗. Furthermore
P∗ = P∗ Q̇∗ ˙P∗

tail, where
˙P∗
tail is the rest of the iteration after stage κ up to ã, which is

ccc inV [G ][H ] (H ⊆Q generic overV [G ]) since it is a finite support iteration of ccc
forcing. Let G∗ ⊆ P∗ be generic over V, containing G ∗H . By Fact 4.5, we may lift
the elementary extension to 〈Vκ[G ], ∈ ,Ȧ,P, Eϕ,ℓ,G〉 ≺ 〈Vã [G

∗], ∈ ,Ȧ∗,P∗, Eϕ∗,ℓ∗,G∗〉.

As ã = c
V [G∗], the desired result follows. ⊣

Therefore RAccc andMPccc hold in an extension of L as desired. ⊣

§5. Local maximality. The local maximality principle is a natural axiom which
elucidates somewhat how the resurrection axiom and the maximality principle
intersect. It is one kind of intermediate step between the maximality principle and
bounded forcing axiom.
In the local version of the maximality principle, the truth of a forceably necessary

sentence will be checked not in V but in a much smaller structure. This should be
compared to one of the equivalent ways of defining the bounded forcing axiom,
namely generic absoluteness.
For the appropriate definition of the bounded forcing axiom BFAκ(Γ) refer to [1,

Definition 2].

Definition 5.1. Let n be a natural number, Γ be a class of forcing notions, and
M be a transitive set (usually eitherù1 orHù1). Then Γ-generic Σn(M )-absoluteness
with parameters in S ⊆P(M ) is the statement that for any Σn-sentence ϕ(Ea) where

Ea ∈ S ∩M and predicate symbols ĖA, the following holds: Whenever EA ∈ S ∩P(M ),
P ∈ Γ, and G is P-generic over V, then

(〈M, ∈ , EA〉 |= ϕ(Ea))V ⇐⇒ (〈M, ∈ , EA〉 |= ϕ(Ea))V [G ],

where ĖA is meant to be interpreted inM as EA, and the satisfaction is first order.

Fact 5.2 [1]. Let κ be an infinite cardinal of uncountable cofinality and let Γ be a
class of forcing notions. Then the following are equivalent:

(1) BFAκ(Γ).
(2) For every P ∈ Γ and generic G ⊆ P, Hκ+ ≺Σ1 H

V [G ]
κ+
.

(3) Γ-generic Σ1(Hκ+)-absoluteness.

The bounded forcing axiomBFAκ(Γ)whereκ=2
ù andΓ is the class of ccc forcing

notions is equivalent to MAκ. We look at κ = ù1. The bounded forcing axiom for
the class of countably closed forcing is a theorem of ZFC. We write BSCFA for when
Γ = {P | P is subcomplete}, and BPFA for proper forcing. The consistency strength
of each of these bounded forcing axioms is exactly that of a reflecting cardinal (as is
shown by Goldstern and Shelah [6] for proper forcing and the subcomplete version
is shown by Fuchs [5]).
In the following, we write ϕM (Ea) or ϕ(Ea)M for the sentenceM |= ϕ(Ea).

Definition 5.3. Let Γ be a class of forcing notions, and let S be a set of
parameters. Let M be a defined term for a structure to be reinterpreted in forcing
extensions, and S ⊆M . The Local Maximality Principle relative toM (MP

M
Γ (S)) is
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the statement that for every parameter set Ea ∈ S and every sentence ϕ(Ea), if ϕM (Ea)
is Γ-forceably Γ-necessary, then ϕM (Ea) is true.

Write LMP for the local version ofMP, and LMPΓ for the local version ofMPΓ

with forcing classes Γ. As before and as discussed in Lemmas 2.2 and 2.3, the choice
of Hù2 makes sense for the parameter set for the boldface subcomplete, countably
closed, and proper maximality principles, and the choice of Hc makes sense for the
boldface ccc maximality principle. Additionally, the smallest modelM that makes
sense to use for the local version has to at least contain the parameter set, so S =M
is what we will work with here.
Clearly for forcing classes Γ,MPΓ(Hκ) =⇒ MP

Hκ
Γ (Hκ).

Proposition 5.4. For Γ a class of forcing notions, RAΓ(Hκ) =⇒ MP
Hκ
Γ (Hκ).

Proof. Suppose that RAΓ(Hκ) holds. To see that the local maximality principle
holds, suppose that ϕ(Ea) is a sentence such that the sentence “Hκ |= ϕ(Ea)” is Γ-
forceably Γ-necessary. So there is a forcing notion P ∈ Γ such that after any further
forcing, we have that “Hκ |= ϕ(Ea)” holds in the two-step extension. By resurrection,
there is a further Ṙ such that P “Ṙ ∈ Γ” and letting G ∗ h ⊆ P ∗ Ṙ be generic we

have Hκ ≺H
V [G∗h]
κ . Since “Hκ |= ϕ(Ea)” in the two-step extension V [G ][h] by our

assumption, this means thatHκ |= ϕ(Ea) holds by elementarity, soMP
Hκ
Γ (Hκ) holds

as desired. ⊣

Proposition 5.5. For Γ a class of forcing notions,MP
H
κ+

Γ (Hκ+) =⇒ BFAκ(Γ).

Proof. Assume thatMP
H
κ+

Γ (Hκ+) holds.Weuse characterization (3) ofBFAκ(Γ)
from Fact 5.2. To show that Γ-generic Σ1(Hκ+)-absoluteness holds, let ϕ( Ex) be a Σ1-

formula, Ea ∈Hκ+ , and P ∈ Γ, satisfying P ϕ(Ěa). Let G ⊆ P be generic. Since ϕ( Ex)

is Σ1 andHκ+ ≺Σ1 V as κ
+ is regular, we have that ϕHκ+ (Ea) = ϕHκ+ ((Ěa)G ) holds in

all future forcing extensions. Thus ϕHκ+ (Ea) is Γ-forceably Γ-necessary, whichmeans
that ϕHκ+ (Ea) is true (in V) by the local maximality principle. Thus ϕ(Ea) holds in V
as desired. ⊣

Proposition 5.6. LMPsc(and LMPc) implies:

(1) There is a Suslin tree.
(2) ♦ holds.
(3) CH holds.

Proof. Firstly, Hù2 is enough to verify each of these properties.
For (1), note that the forcing to add a Suslin tree is countably closed and thus is

subcomplete as well. But any particular Suslin tree will continue to be a Suslin tree
after any subcomplete (or countably closed) forcing [11, Chapter 3, p. 10]. Thus the
existence of a Suslin tree is sc-forceably sc-necessary, and hence true by LMPsc (and
likewise for countably closed forcing).
For (2) note that Jensen [11, Chapter 3, p. 7] shows that ♦ will hold after

performing subcomplete forcing if it held in the ground model. Since forcing to add
a ♦-sequence is countably closed, and ♦ will continue to hold after any subcomplete
(or countably closed) forcing, so must be true by the relevant boldface maximality.
Of course then (3) follows, since ♦ implies CH. ⊣
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Proposition 5.7. LMPp(and LMPccc) implies:

(1) There are no Suslin trees.
(2) All Aronszajn trees are special.

Proof. Forcing with a Suslin tree is proper (indeed, ccc), and adds a branch
through the tree making it fail to be Suslin. Additionally specializing Aronszajn
trees are proper, in fact ccc, and kill Suslin trees, but also once a specializing
function is added it can’t be removed by further proper (or ccc) forcing. ⊣

5.1. Consistency of the local maximality principle. We will now introduce the
large cardinal property that is equiconsistent with the local maximality principle.
When showing the consistency of the resurrection axiom in Section 3, we defined
the notion of an uplifting cardinal, of which the following property is the suitable
“local” version.

Definition 5.8. An inaccessible cardinal ä is locally uplifting so long as for every
è we have that ä is è-locally uplifting, meaning that for every formula ϕ(x) and
a ∈ Vä , there is an inaccessible ã > è such that Vä |= ϕ(a) ⇐⇒ Vã |= ϕ(a).

Clearly if κ uplifting or fully reflecting, then κ is locally uplifting.
Note that if a regular cardinal ä has the property of being locally uplifting,

without necessarily being inaccessible, then ä must be inaccessible, since otherwise
if 2α ≥ ä for some α < ä, this is seen by some larger Vã , i.e., Vã |= ∃â [2α = â]. So
by elementarity there is some â ′ = 2α in Vä , a contradiction.
It is not hard to see that if ä is locally uplifting, then it is locally uplifting in L: for

any formula ϕ(x) and a ∈ Lä , we would have that Vä |= ϕ
L(a) ⇐⇒ Vã |= ϕ

L(a),
which implies that Lä |= ϕ(a) ⇐⇒ Lã |= ϕ(a).
We have the following relationship between locally uplifting and reflecting

cardinals.

Definition 5.9. We say that a cardinal κ is reflecting so long as for any regular
cardinal è and for any formula ϕ(x), if Ea ∈Hκ and Hè |= ϕ(Ea), then there is ä < κ
satisfyingHä |= ϕ(Ea).

Proposition 5.10. If κ is locally uplifting then κ is reflecting.

Proof. Suppose that κ is locally uplifting. To show that κ is reflecting, let ϕ(x)
be a formula and let Ea ∈ Hκ, and assume that there is è > κ where Hè |= ϕ(Ea).
Define ø as follows:

ø(Ea) : ∃ä
[

Hä |= ϕ(Ea)
]

.

Then if we take ã > è satisfying Hè ∈Hã , we have that Hã |= ø(Ea). As κ is locally
uplifting, this implies that Hκ |= ø(Ea). Thus there is ä < κ such that Hä |= ϕ(Ea) as
desired. ⊣

The local maximality principle is equiconsistent with the existence of a locally
uplifting cardinal, using the same method as with the proof of the maximality
principle but with some care in relativizing toHù2 .

Theorem 5.11. If LMP holds, then ℵV1 is locally uplifting in L.

https://doi.org/10.1017/jsl.2021.8 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.8


COMBINING RESURRECTION ANDMAXIMALITY 411

Proof. Let κ = ℵV1 and suppose that the local maximality principle holds.
Firstly, κ is a limit cardinal in L, since for ã < κ, the statement Hù1 |= “there is a

cardinal in L greater than ã” is forceably necessary (by taking Coll (ù,κ)) and thus
true in Hù1 . So we have that κ is inaccessible in L.
Assume Lκ |= ϕ(Ea). In other words,H

V
ù1

|= ϕL(Ea). We need to show that there is

a larger ã such that Lã |= ϕ(Ea). In order to do this, let’s work in L and first see that
the following is necessarily forceable:

Hù1 |= (ϕ
L(Ea)∧ “there are unboundedly many cardinals in L”). (1)

This holds since otherwise it is forceably necessary that Hù1 |= ¬ϕL(Ea), so HVù1 |=

¬ϕL(Ea) holds, a contradiction.
So, given some è>κ, wemay force overL to collapse è toù. Then as Equation (1)

is necessarily forceable, there is further forcing to reach a model V [G ][H ] such that
H
V [G ][H ]
ù1

|= ϕL(Ea). Thus in V [G ][H ], ϕLù1 (Ea) holds. Since ùV [G ][H ]1 = ã > è > κ in
this extension now, and furthermore by Equation (1)

Lã |= ϕ(Ea)∧ “there are unboundedly many cardinals”,

we now have a suitable ã that is inaccessible in L and Lã |= ϕ(Ea) as desired. ⊣

Observation 5.12. The following consistency results hold.

(1) LMPccc =⇒ c
V is locally uplifting in L.

(2) LMPp =⇒ ℵV2 is locally uplifting in L.
(3) LMPc =⇒ ℵV2 is locally uplifting in L.
(4) LMPsc =⇒ ℵV2 is locally uplifting in L.

Proof. (2)–(4) hold by collapsing to ù1 instead of ù in the proof of Theorem
5.11. For (1) instead of collapsing κ to be as small as desired, blow up the continuum
as needed, like in the comparable proof forMPccc in [7, Theorem 31.2]. ⊣

Theorem 5.13. If ä is locally uplifting, then there is a forcing extension in which
LMP holds and ä = ℵ1.

Proof. Let ä be locally uplifting. Define the ä-length lottery sum finite support
iteration P= Pä as follows: for α < ä let Pα+1 = Pα ∗ Q̇α where Q̇α is a Pα-name for
the lottery sum of all minimal rank posets that force some sentence relativized to
the Hù1 of V

Pα
ä
to be necessary. In particular, let Φ be the collection of sentences

ϕ(Ea) where, in Vä , Ea is a Pα-name for an element of Hù1 such that Vä models that
ϕHù1(Ea) is forceably necessary. So Φ is the set of all possible “local buttons” available
at this point in the iteration. Then we let

Q̇α =
⊕

ϕ∈Φ

{Q̇ ∈ V Pα
ä

| Q̇ is least rank, V Pα
ä

|= “Q̇ forces ‘ϕ(Ea)Hù1 is necessary.’”}.

We shall refer to this definition as the least-rank LMP lottery sum iteration of
length ä.
Since we will want the full iteration P to remain relatively small in size and to have

the ä-cc, notice that here we insist that the parameters for our sentences come from

H
V

Pα
ä
ù1
. As ä is inaccessible, it is large enough so thatHVù1 =H

Vä
ù1
, and moreover this

remains true in each subsequent extension in the iteration soHù1 in the subsequent
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extensions gets interpreted the same in V Pα
ä
as in V Pα . This is because ä is locally

uplifting: if Q̇′ ∈ V Pα forces that a sentence ϕ(Ea)Hù1 is necessary, where Ea ∈Hù1 ,

then take è large enough so that Q̇′ ∈ V Pα
è
. Then as ä is locally uplifting we have an

inaccessible ã > è such that

V Pα
ã |= “There is a forcing notion Q̇ which forces ‘ϕ(Ea)Hù1 is necessary.’”

and V Pα
ä
models the above sentence as well. So since each of the iterands of the

forcing P is taken to be of least rank, they are all in Vä anyway. If on the other hand
at stage α+1 we have that Q̇′ ∈V Pα

ä
is of least rank forcing that a sentence ϕ(Ea)Hù1

is necessary, then the only way it could be wrong is that there is some further forcing

Ṙ′ that is not in V Pα∗Q̇
′

ä
that forces the sentence to be false. But then we may take

ã larger than the verification of this forcing Ṙ′, and use the fact that ä is locally
uplifting to see that

V Pα∗Q̇
′

ä
|= “There is a forcing notion Ṙ which forces ¬ϕ(Ea)Hù1 .”

This contradicts the choice of Q̇′ in Vä , which means that Vä is correct. Thus the
iteration is the same as if it were defined over V.
Now suppose that G ⊆ P is generic over V. Let’s see that V [G ] |= LMP. Assume

toward a contradiction that it fails: namely ϕ(Ea) is a sentence with Ea ∈HV [G ]ù1
such

that in V [G ] it is a local button, and also that ϕ(Ea)Hù1 is not true in V [G ]. Let us
also take p ∈G forcing this to be the case.
Note that HV [G ]

ä
=HV [G ]ù1

, since ä is regular and P has the ä-cc, so the length of
the iteration is collapsed to ù1.
Let Q̇ be a name for Q, a least rank poset in V P and Ėa be a name for Ea such that

in V P, we have that “ϕ(Ėa)Hù1 is necessary.”
Since P has the ä-cc, at no stage in the iteration could ä be collapsed. This means

that there is some stage where the parameters Ėa appear. Thus we may find a stage
in the iteration where the parameters Ea are available, past the support of p, say
Ea ∈ Vä [Gα].
Now we let è satisfy P ∈ Vè and Q̇ ∈ V P

è . Then as ä is locally uplifting, we have
that there is an inaccessible ã > è satisfying

Vã [Gα] |= “ϕ(Ea)
Hù1 is forceably necessary.”

Namely, Ptail ∗ Q̇makes ϕ(Ea)
Hù1 necessary. So by the fact that ä is uplifting, we have

that

Vä [Gα] |= “ϕ(Ea)
Hù1 is forceably necessary.”

Moreover, ϕ(Ea)Hù1 must continue to be a local button in later stages, since it is a
local button in V [G ]. So it is dense for the local button to be pushed—ϕ(Ea)Hù1 is
necessary in Vä [Gâ ] for some â < ä. Thus ϕ(Ea)

Hù1 is true in V [G ], after the rest of
the iteration, a contradiction. ⊣

Theorem 5.14. Let ä be a locally uplifting cardinal. Then there are forcing
extensions in which we have the following:

(1) LMPp+ ä = c= ℵ2.
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(2) LMPc + ä = ℵ2+ CH.
(3) LMPsc + ä = ℵ2+ CH.

Proof. For (1)–(3), follow the same blueprint as Theorem (5.13), by defining
a least-rank LMPΓ lottery sum iteration of length ä. Use Hù2 instead of Hù1 and
relativize to the particular forcing class, modifying the support of the iteration as in
Theorem 4.7 for each forcing class. ⊣

Again more should be said about the case of ccc forcing, since ccc forcing notions
are not closed under lottery sums.

Theorem5.15. Let ä be a locally uplifting cardinal. Then there is a forcing extension
in which LMPccc holds and ä = c.

Proof. Let ä be locally uplifting. We need to enumerate all formulas in the
language of set theory, together with elements of Hä , with unbounded repetition.
Let f be such a function taking each α < ä to a formula ϕ(x) together with a
parameter set Ea ∈ Hä . We will use this enumeration as a kind of book-keeping
function for the iteration.
Define the ä-length lottery sum finite-support iteration P= Pä all of whose initial

segments will be elements ofVä . At stageα in the iteration, look atf(α) = 〈ϕ(x), Ea〉.
Check as to whether in Vä , Ea is a Pα-name for an element of Hc and whether ϕ(Ea)
is a local ccc-button, namely whether:

V Pα
ä

|= “ϕHc(Ea) is ccc-forceably ccc-necessary.”

If so, then Pα+1 = Pα ∗ Q̇α where Q̇α is a Pα-name for a ccc poset that forces ϕ
Hc(Ea)

to be ccc-necessary.
We can use the same reasoning as given in the proof of Theorem (5.13) to see that

since ä is locally uplifting, the iteration is the same as if it were defined over V, and
that in this case P is ccc.
Let G ⊆ P be generic over V. In V [G ] we have that ä = c since P is ccc, ä = |P|

is inaccessible, and ä-many reals are added. To see that LMPccc holds in V [G ], let
ϕ(Ea) be a local ccc-button with Ea ∈HV [G ]c . Since P is ccc, there is some stage α < ä
in the iteration where Ea starts to appear as a Pα-name in the iteration. Since the
book-keeping function has unbounded repetition, we may use the locally uplifting
cardinal as in the proof of Theorem (5.13) to see that it is dense for ϕHc(Ea) to
be pushed. This makes ϕHc(Ea) ccc-necessary in Vä [Gâ ] for some α ≤ â < ä. Thus
ϕ(Ea)Hc is true in V [G ], after the rest of the iteration, which is ccc, as desired. ⊣
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