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Intermediate scaling and logarithmic invariance
in turbulent pipe flow
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A three-layer asymptotic structure for turbulent pipe flow is proposed revealing, in terms
of intermediate variables, the existence of a Reynolds-number-invariant logarithmic region
for the streamwise mean velocity and variance. The formulation proposes a local velocity
scale (which is not the friction velocity) for the intermediate layer and results in two
overlap layers. We find that the near-wall overlap layer is governed by a power law for
the pipe for all Reynolds numbers, whereas the log law emerges in the second overlap
layer (the inertial sublayer) for sufficiently high Reynolds numbers (Reτ ). This provides a
theoretical basis for explaining the presence of a power law for the mean velocity at low
Reτ and the coexistence of power and log laws at higher Reτ . The classical von Kármán
(κ) and Townsend–Perry (A1) constants are determined from the intermediate-scaled
log-law constants; κ shows a weak trend at sufficiently high Reτ but falls within the
commonly accepted uncertainty band, whereas A1 exhibits a systematic Reynolds-number
dependence until the largest available Reτ . The key insight emerging from the analysis is
that the scale separation between two adjacent layers in the pipe is proportional to

√
Reτ

(rather than Reτ ) and therefore the approach to an asymptotically invariant state can be
expected to be slow.

Key words: boundary layer structure, turbulent boundary layers, pipe flow boundary layer

1. Introduction

Reynolds number similarity is an essential tool in scaling and modelling of the near-wall
turbulence. One of the cornerstones in the theory of turbulent wall flows is the logarithmic
(‘log’) variation of the mean velocity (1.1) in the inertial sublayer:

U+ = 1
κ

ln( y+) + A, (1.1)

† Present address: Department of Aerospace Engineering, Indian Institute of Science,
Bangalore 560012. Email address for correspondence: sdiwan@iisc.ac.in

© The Author(s), 2021. Published by Cambridge University Press 913 R1-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

71
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:sdiwan@iisc.ac.in
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.71&domain=pdf
https://doi.org/10.1017/jfm.2021.71


S.S. Diwan and J.F. Morrison

where U+ = U/uτ and y+ = yuτ /ν; U is the mean streamwise velocity, y is the
wall-normal distance, ν is the kinematic viscosity, uτ = √

τw/ρ is the friction velocity,
τw is the wall shear stress and ρ is the density. In (1.1), κ is the well-known von Kármán
constant and A is the additive constant. Another celebrated result in wall turbulence is
Townsend’s ‘attached-eddy’ hypothesis (Townsend 1976), which predicts a logarithmic
profile for the streamwise (and spanwise) velocity variance in the inertial sublayer. For
pipe flows, the log law for the streamwise variance takes the form

u2

u2
τ

= B1 − A1 ln
( y

R

)
, (1.2)

where u is fluctuating streamwise velocity, R is the pipe radius and the overbar indicates
time averaging. Here, A1 and B1 are constants, and A1 is called the ‘Townsend–Perry
constant’ (Marusic et al. 2013). Perry & Chong (1982) showed that the log law for the mean
velocity (1.1) and that for the streamwise variance (1.2) can be derived as dual conditions
using the attached-eddy formulation.

There remain some central, yet open, questions regarding the Reynolds-number
invariance and universality of the von Kármán constant that have received much attention
(von Kármán 1930; Townsend 1976; Nagib & Chauhan 2008; Marusic et al. 2010),
especially for pipe flow (Wosnik, Castillo & George 2000; Bailey et al. 2014). Nagib
& Chauhan (2008) analysed the available experimental data for pipe flow and found κ

to be nearly constant, and equal to 0.41, at sufficiently high Reτ (= Ruτ /ν). Bailey et al.
(2014) used five data sets obtained using three different measurement techniques in the
Princeton Superpipe and found the best estimate for κ to be 0.4 ± 0.02. By comparison,
the Reynolds-number dependence of the Townsend–Perry constant has received rather
less attention; see Perry, Henbest & Chong (1986), Marusic et al. (2013). The theoretical
analysis of Hultmark (2012), using the method of near asymptotics for u2, suggests a
possible Reτ dependence of A1, although this is not discussed. Based on the available
data, it is not clear whether there is a systematic Reynolds-number dependence of A1 for
pipe flow.

There have also been alternative formulations for the mean velocity, e.g. the power-law
variation proposed by Barenblatt (1993) for pipe and channel flows. Zagarola & Smits
(1998) used a general matching principle involving different velocity scales for the inner
and outer layers, and argued that, as long as the ratio of the velocity scales is a function
of Reynolds number, the mean velocity is expected to follow a power law. Princeton
Superpipe measurements show that, at very high Reynolds numbers, Reτ = O(105), a
power law is present in the lower part of the overlap region followed by the log law further
away from the wall; see also McKeon et al. (2004) and Hultmark et al. (2012).

Here we propose a theoretical framework, in the context of turbulent pipe flow, for
addressing some of the outstanding issues outlined above. We seek Reynolds-number
scaling of the mean velocity and variance in the intermediate region using the length
scale, y+

m ∝ √
Reτ and the velocity scale (um) equal to the r.m.s. velocity at y = ym. We

propose the existence of a distinct intermediate layer (with scales ym and um), in addition
to the classical inner and outer layers, implying a three-layer asymptotic structure for
pipe flow. The first studies to hypothesise the presence of an intermediate or ‘meso-’
layer in wall turbulence, with the

√
Reτ scaling, were due to Long & Chen (1981) and

Afzal (1982). Afzal (1982) carried out asymptotic analysis for the pipe flow and identified
an intermediate layer, which implied the existence of two overlap layers. Sreenivasan
& Sahay (1997) argued that the mean momentum balance within the mesolayer in a
pipe or channel is distinct in character from that in the classical inner and outer layers;
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they employed asymptotic arguments to explore the mesolayer structure. The mean-force
balance performed by Wei et al. (2005) shows that there exists a region, which scales on√

Reτ , wherein the dominant balance is between the turbulent inertia, pressure gradient
and viscous forces (Klewicki 2013). These studies provide a strong physical basis for the
existence of the meso- or intermediate layer in pipe flow. The term mesolayer was used
with a different connotation in Wosnik et al. (2000), namely, to provide an offset for the
log-law origin in the inertial sublayer, which is not relevant to the present study. Here
we use the term ‘intermediate layer’ as it is closer in spirit to that proposed in Afzal
(1982), and define it as a layer of finite thickness centred on y/ym = 1 with governing
scales ( ym, um). We examine the consequences of intermediate variables for the scaling
and structure of high-Reynolds-number pipe-flow turbulence, using the well-established
principle of generalised asymptotic matching (Zagarola & Smits 1998).

2. Intermediate scaling for mean velocity and variance

The present analysis is based on the nanoscale thermal anemometry probe (NSTAP) data
measured in the Princeton Superpipe (Hultmark et al. 2012). Figure 1 shows scaling of the

streamwise variance with length scale, y+
m = 3.5

√
Reτ , and velocity scale, um =

√
u2( y =

ym). As can be seen, there is an excellent collapse of the profiles in the region around
y/ym = 1 for two decades in Reτ , 1985 ≤ Reτ ≤ 98 190: this is the motivation for using
um as the intermediate velocity scale. At the highest Reynolds numbers, the scaled region
extends from 0.15 ≤ y/ym ≤ 15 and, as expected, the profiles peel off from this trend on
both sides of y/ym = 1 as Reτ decreases. The choice of constant used in the definition
of y+

m is guided by the coefficients for
√

Reτ used in previous definitions of the mesolayer
location, e.g. 2

√
Reτ (Sreenivasan & Sahay 1997), or in determining the lower bound of the

inertial sublayer, 3
√

Reτ (Marusic et al. 2013). Here, a slightly higher value, 3.5, is chosen
to provide a better Reτ scaling of the variance profiles for the pipe as well as boundary
layer data (not shown); see Diwan & Morrison (2019). Note that the qualitative (and, to
certain extent, quantitative) nature of the results is unaffected by the precise choice of this
constant. Taking Um as the mean velocity at y = ym, figure 2 shows, in ‘defect’ form, the
corresponding mean velocity profiles scaled on um. Excellent scaling is apparent around
y/ym = 1 for mean velocity also. This scaling for the mean velocity and variance suggests
the existence of a distinct, asymptotic intermediate layer lying between the classical inner
and outer layers. This implies that there exists two overlap regions: one between the inner
and intermediate layers (‘Overlap Layer I’) and the other between the intermediate and
outer layers (‘Overlap Layer II’); see also Afzal (1982). We choose the velocity scales
in the inner and outer layers as ui and uo, respectively, which in general need not be the
same as um. This is in contrast to the earlier formulations (Afzal 1982; Sreenivasan &
Sahay 1997; Klewicki 2013), which used the same velocity scale, uτ , for all the layers
considered. The use of um instead of uτ in our formulation enables the demonstration
of Reynolds-number similarity in the intermediate layer of the pipe (figures 1, 2). Note
that the five-layer description based on spectral characteristics of the streamwise velocity
proposed by Vallikivi, Ganapathisubramani & Smits (2015) is different in spirit to the
present formulation which, including the two overlap layers, also proposes a total of five
layers. Next, we carry out a matching analysis using the method used by Zagarola & Smits
(1998). For Overlap Layer I, the inner and intermediate scaling laws are written as

U+ = f ( y+),
U − Um

um
= g(ζ ), (2.1a,b)
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Figure 1. Streamwise variance profiles in a smooth pipe scaled on the intermediate variables ym and um; data
from Hultmark et al. (2012). The solid line is the log-law fit.

where ζ = y/ym. Asymptotic matching of the velocity gradient for the inner and
intermediate layers gives

y+f ′( y+) = ΛIζg′(ζ ), (2.2)

where ΛI = um/uτ and (′) indicates the derivative with respect to the corresponding
independent variable. When ΛI is Reynolds-number dependent, (2.2) does not imply
log-law scaling. For this case, Reynolds-number similarity can be achieved by
simultaneously matching both velocity and velocity gradient in the overlap region. This
results in a power law for the mean velocity:

f ( y+) = U+ = C( y+)γ ,

Um

um
+ g(ζ ) = U

um
= Cm

(
y

ym

)γ

,

⎫⎪⎬
⎪⎭ (2.3)

where γ , C and Cm are constants. Alternatively, when ΛI = constant, a log law is obtained
in the overlap region.

Figure 3(a) shows the variation of ΛI with Reynolds number, where it continues to
increase even at the highest Reτ . This implies that Overlap Layer I is governed by a power
law up to Reτ ≈ 105. The ratio Um/um shows a much weaker variation with Reτ than
ΛI , without a monotonic trend (figure 3b): there is only a 6 % variation in Um/um for
two decades of change in Reτ ; this justifies the power law in (2.3). Fitting a power-law
curve to U/um for 0.06 ≤ y/ym ≤ 0.8, Reτ = 98 190 gives the power-law constants as
γ = 0.14 and Cm = 8.51. Note that γ is independent of Reτ , whereas Cm shows a weak
Reτ -dependence reflecting the weak trend of Um/um with Reτ (figure 3b). Using these
parameters, the variation of (U − Um)/um is plotted in figure 2 as a magenta line which
fits the data quite well in Overlap Layer I. To determine C, we separately fit a power law
to the inner-scaled data (not shown here) for Reτ = 98 190 in the corresponding range,
65 ≤ y+ ≤ 880 (Hultmark et al. 2012). This yields the same value of γ = 0.14, with
C = 8.47. These are close to the values γ = 0.142 and C = 8.48 reported by McKeon
et al. (2004). Overlap Layer II is bounded by the intermediate layer and the outer layer.
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Figure 2. Streamwise mean velocity deficit scaled on the intermediate variables. The magenta line indicates a
power-law fit and the green line indicates the log-law fit. The inset shows the variation without the power and
log law lines.

The scaling law for the mean velocity deficit in the outer layer can be written as

UCL − U
uo

= h
( y

R

)
, (2.4)

where UCL is the pipe centre-line velocity. It can be seen that the character of the
mean velocity variation in Overlap Layer II is determined by the velocity-scale ratio,
ΛII = uo/um (corresponding to ΛI in 2.2). Note that although (2.4) is written in a
Reynolds-number-invariant form, the appropriate velocity scale, uo, that would result in
Reynolds-number similarity in the outer region is still unknown (Morrison et al. 2004).
The two alternatives for uo that have been used so far, for the pipe, are uτ and UCL − Ub
(Zagarola & Smits 1998), where Ub is the bulk velocity. Choosing uo = uτ , ΛII = 1/ΛI ,
implying (figure 3a) that Overlap Layer II is also governed by a power law for the entire
Reτ range. This would be a surprising result as there has been overwhelming support
in favour of the log law. If, on the other hand, we choose uo = (UCL − Ub), we get
ΛII = (UCL − Ub)/um, see figure 3(c), which shows that ΛII is a strong function of Reτ ,
but where, for Reτ � 104, it shows a much weaker dependence on Reτ . If we assume ΛII

to be approximately constant for Reτ � 104, we recover the log law for the mean velocity
in Overlap Layer II, which, in terms of um and ym, can be written as

U − Um

um
= 1

κm
ln

(
y

ym

)
+ Am. (2.5)

To obtain κm and Am, we fit a least-square straight line through the mean velocity data
(green solid line in figure 2) for the two highest Reynolds numbers, Reτ = 68 370 and
Reτ = 98 190, and for 1.2 ≤ ( y/ym) ≤ 13, equivalent to 4.2

√
Reτ ≤ y+ ≤ 0.145Reτ for
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Figure 3. Variation with Reτ of (a) ΛI = um/uτ , (b) Um/um, (c) ΛII = (UCL − Ub)/um, (d) κ obtained from
(3.1a,b); the values of κ for Reτ � 104 do not correspond to the log law and are shown by crosses.

Reτ = 98 190, which is broadly consistent with the range used in Marusic et al. (2013).
The fit gives the following values for the constants:

κm = 1.034, Am = 0.0084. (2.6a,b)

These represent the Reynolds-number-invariant log-law constants in terms of the
intermediate variables for Reτ � 104. Note that, provided the Reynolds-number similarity
in the intermediate layer is ensured, the value of κm is independent of small changes in
the numerical value of the coefficient in the definition of ym. The value of Am, however,
is directly dependent on this choice (2.5). Moreover, the range 1.2 ≤ ( y/ym) ≤ 13 is valid
only for the two highest Reτ . As Reτ decreases, the range of y/ym over which a log variation
is observed continues to decrease, although κm and Am remain the same, as clearly seen in
figure 2. To further support this observation, we plot the variation of an ‘indicator function’
(McKeon et al. 2004) with Reτ , which is presented as supplementary material to this paper
available at https://doi.org/10.1017/jfm.2021.71.

In figure 1, the Reynolds-number similarity of the streamwise variance for y ≈ ym
implies that, for y > ym, there should exist a Reynolds-number-invariant log law for the
variance as well (scaled on the intermediate variables), which is

u2

u2
m

= Bm
1 − Am

1 ln
(

y
ym

)
. (2.7)

To determine Am
1 and Bm

1 , we fit a least-square straight line through the points in figure 1
(shown as a solid line) in the region 1.2 ≤ y/ym ≤ 13 for the two highest Reynolds
numbers; this range is the same as that chosen for fitting the log law for the mean velocity
in Overlap Layer II (figure 2). Again the extent of the log region for the variance decreases
with decrease in Reτ ; see the supplementary material for the indicator-function plots. (The
behaviour of u2 in Overlap Layer I is beyond the scope of the present work.) This line fit
gives the Re-invariant log-law constants for the streamwise variance as

Am
1 = 0.178, Bm

1 = 1.005. (2.8a,b)

We do not attempt to estimate the uncertainty bounds for Am
1 and Bm

1 , nor for κm and Am,
(2.6a,b) here, as their precise numerical values are not relevant for our key conclusions.
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Reτ κ A A1 B1

1985 × × 0.79 2.44
3334 × × 0.88 2.51
5411 × × 0.95 2.48
10 480 × × 1.03 2.34
20 250 0.42 5.17 1.1 2.13
37 690 0.41 4.92 1.15 1.88
68 370 0.4 4.75 1.2 1.59
98 190 0.39 4.55 1.24 1.43

Table 1. The log-law constants for the mean velocity (κ and A) and variance (A1 and B1) obtained from (3.1a,b)
and (3.2a,b) using the log fits in (2.5) and (2.7). For Reτ ≤ 10, 480, κ and A are shown as ‘×’ as log law is not
expected in Overlap Layer II (figure 3d).

3. Consequences for the von Kármán and Townsend–Perry ‘constants’

The classical log-law constants for the mean velocity and variance can be readily expressed
in terms of the constants obtained from the intermediate-scaled log laws. For the mean
velocity, this relation can be written as (1.1), (2.5)

κ = κm

(um/uτ )
, A = um

uτ

{[
Um

um
+ Am

]
− 1

κm
ln( y+

m)

}
. (3.1a,b)

The value of κ obtained from (3.1a,b) is plotted in figure 3(d); see also table 1. For Reτ >

2 × 104, κ falls within the range 0.4 ± 0.02 (Bailey et al. 2014), shown as dashed lines in
the figure; the trend exhibited by κ within the band reflects the variation of um/uτ with
Reτ (figure 3a; 3.1a,b). For Reτ < 104, the values of κ are found to be much higher than
those which could be reasonably associated with a log law. These are denoted as crosses in
figure 3(d), including κ = 0.43 at Reτ = 10 480 which falls beyond the band of 0.4 ± 0.02.
This suggests that the mean velocity profile in Overlap Layer II is better described by a
power law at lower Reτ , as implied by the strong Reynolds-number dependence of ΛII
for Reτ � 104 (figure 3c). Note that Overlap Layer I is governed by power law for all Reτ

considered here. For Reτ < 104, the two overlap layers may not be entirely distinct and
therefore the two power-law profiles may appear indistinguishable (figure 2). These results
are consistent with those in Zagarola & Smits (1998) and McKeon et al. (2004).

The presence of a power law in Overlap Layer I and of the log law in Overlap Layer II, for
Reτ > 2 × 104, supports the observation by Zagarola & Smits (1998) (see also Hultmark
et al. 2012) that, at high Reτ , the mean velocity initially follows a power law, with a log law
at larger y. Note that in their analysis, the power and log laws share the same overlap region,
whereas in the present three-layer formulation they occupy two different overlap regions.
This provides an explanation for the coexistence of the power and log-law profiles in the
pipe flow at a given (and sufficiently large) Reτ . Furthermore, since the length scale for the
intermediate layer is ∝ √

Reτ , the lower limit for the log law for the mean velocity should
be Reynolds-number dependent, rather than constant in wall variables: see the discussion
in Marusic et al. (2013) and Bailey et al. (2014).

For the variance, the classical constants, A1 and B1 (1.2), can be expressed in terms of
Am

1 and Bm
1 (2.7) as

A1 = Am
1

(
u2

m

u2
τ

)
, B1 =

[
Am

1 ln
(ym

R

)
+ Bm

1

](
u2

m

u2
τ

)
. (3.2a,b)
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Figure 4. Streamwise variance profiles for the pipe; solid lines are the classical log-law fits using A1 and B1
from table 1.

Values of A1 and B1 calculated from (3.2a,b) (with Am
1 = 0.178 and Bm

1 = 1.005) are
included in table 1; a clear trend in A1 and B1 with respect to Reτ is evident. Figure 4
shows the log-law fits to the variance, in wall variables, obtained by using A1 and B1 from
table 1. As can be seen, the log fits inferred from (3.2a,b) show a good match with the
measured profiles in the intermediate region, over the entire Reτ range. This leads us to
conclude that the Townsend–Perry ‘constant’, A1, actually shows a systematic dependence
on Reτ even for Reτ > 104. This is due to the fact that Am

1 and Bm
1 are Reτ -invariant and

that um/uτ (figure 3a) and ym/R (= 3.5/
√

Reτ ) show a continuous dependence on Reτ .
Furthermore, the values of A1 in table 1 are entirely consistent, at corresponding Reynolds
numbers, with those in Perry et al. (1986) (A1 = 0.9 for Reτ ≤ 3900) and Hultmark et al.
(2012) (A1 = 1.25 for Reτ = 98 190; Marusic et al. (2013) reported A1 = 1.23 ± 0.05 for
the same Reτ ). Hence, the use of the three-layer formulation and intermediate scaling
enable us to explain the Reτ -dependence of A1, providing both an explanation for the low
values of A1 obtained by Perry et al. (1986), as well as reproducing A1 ≈ 1.25 for the
high-Re data. Another advantage of this framework is that the extent of the log region for
different Reτ in the classical scaling (figure 4) is automatically determined once the extent
of the intermediate-scaled log law (2.7), (3.2a,b) is known. This removes the subjectivity
of fitting a log law to the variance data, which has a direct bearing on the determination
of A1. The same considerations also apply to the determination of κ for the mean velocity
(table 1).

Note that the values of A1 and B1 are listed for all Reτ in table 1, whereas those for κ and
A are listed only for Reτ > 2 × 104, below which we expect a power law. However, there
is no general principle to rule out the presence of log law in u2 at Reτ � 104 apart from
low-Reynolds-number effects. In addition, indicator functions for u2 suggest the presence
of a log law for the entire range of Reτ . Of course, the numerical values of κ and A1 (and
also A and B1) in table 1 and their precise variation with Reτ are contingent on the accuracy
of the data used for fitting the intermediate-scaled log laws. Vallikivi (2014) estimates
uncertainties in the NSTAP measurement, U, to be ±2.2 %, the corresponding uncertainty
in u2 being ±3.0 %. Using the mean momentum equation, the associated error in uv
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Figure 5. The deficit in −uv scaled on the intermediate variables, i.e. 3.5/
√

Reτ (= ym/R) and um/uτ , as a
function of y/ym. See figure 4 for the legend.

(where v is the radial velocity component) is expected to be approximately ±5 %. These
estimates can be usefully compared to the Pitot probe data from McKeon (2004) which
estimates the corresponding uncertainties in U to be ±0.3 %. However, here obviously
one does not have the higher-order statistics provided by the NSTAP probe. Nonetheless,
as table 1 shows, the present analysis using the NSTAP data provides estimates of κ and
A that are consistent with the earlier Pitot probe data from the Superpipe. We therefore
expect the three-layer structure to be apparent for both data sets.

4. Discussion

The choice of um as a velocity scale is not obvious, the u-component comprising both the
‘active’ shear-stress-bearing motion of the inner layer (the ‘large-scale motions’, LSM)
and that induced by the ‘very-large-scale motions’ (VLSM) residing primarily in the outer
layer (Marusic et al. 2010). The intermediate layer can be conceived as a region in which
both the LSM and VLSM are of comparable magnitude, as suggested by the spectral
analysis of Vallikivi et al. (2015). Thus, the intermediate layer in pipe flow is a central
site for inner-outer interaction (Morrison 2007; Marusic et al. 2010). Further, the peak
in shear stress, −uv (figure 5), is close to the outer peak in u2 (figure 1), which is the
lower limit to the log law; see figure 6. The log region makes a major contribution to the
bulk production of turbulence kinetic energy at high Reτ , and is likely to enhance levels
of u2 in the intermediate region (Hultmark et al. 2012). The causal connection between
−uv and u2 in a fully developed internal flow is clearly provided through the production
of u2, uv(dU/dy). More specifically, we note that, in the local-equilibrium region, the
non-dimensional dissipation rate, ε/u3

τ /R ∝ √
Reτ (Morrison & Fernandez Vicente 2019),

implying that um, as a scale for u2, is also relevant to −uv.
We consider the mean momentum balance for the turbulent pipe flow as follows:

ν
d2U

dy2 + d
dy

(−uv) = −u2
τ

R

(
≡ 1

ρ

dp
dx

)
. (4.1)
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y+ = 5; Production peak; u2 inner peak; y+
m; Re-stress peak; u2 outer peak; R+

y+

Reτ
Figure 6. Variation of three length scales, y+ = 5, y+

m , R+, and locations of peaks in −uv, −uv(dU/dy) and
u2. There is some uncertainty in determining the location of the peak in −uv for the two largest Reτ (figure 5
inset), which is typically the same as the size of the symbols.

Its scaling behaviour in the classical inner and outer layers is well-known (Afzal 1982;
Klewicki 2013). To investigate the leading-order force balance in the intermediate layer, we
introduce the intermediate-scaled mean velocity deficit (2.1a,b). For scaling the Reynolds
stress gradient, we use the observation that the deficit in the maximum Reynolds shear
stress, (−uvmax − u2

τ )/u2
τ , scales on 1/

√
Reτ (Afzal 1982; Sreenivasan & Sahay 1997).

With intermediate scaling, (4.1) can be rearranged in deficit form as:

1
(3.5)2

d2

dζ 2

(
U − Um

um

)
+ d

dζ

[(−uv − u2
τ

u2
τ

)(√
Reτ

3.5

)
uτ

um

]
= − uτ

um
. (4.2)

The quantity in square brackets on the left-hand side in (4.2), the Reynolds-stress deficit,
is plotted in figure 5 as a function of ζ = y/ym; the inset shows an expanded view of the
peak in −uv. The −uv data are obtained from (4.1) using the mean velocity data (figure 2):
figure 5 shows that intermediate scales work well in the intermediate layer. This collapse
is consistent with that seen earlier for u2 (figure 1) and (U − Um) (figure 2). The term
uτ /um on the right-hand side of (4.2) implies that the leading-order force balance, under
the intermediate scaling, is approximate so long as uτ /um is a function of Reτ , and can be
expected to become exact as Reτ → ∞. However, it is clear that the intermediate scaling
presents a ‘distinguished limit’ distinct from the inner and outer limits (Afzal 1982). If the
ratio ΛI = um/uτ (and ΛII = uo/um) reaches a constant value as Reτ → ∞, the present
analysis becomes identical with that in Afzal (1982), with all the three layers governed by
uτ . Clearly this limit has not yet been reached for the present data, as um continues to be
a relevant velocity scale in the intermediate layer even for Reτ = O(105); see figures 1–3.
Note that the balance of forces in (4.2) is consistent with that obtained in layer III in the
analysis of Klewicki (2013).

As a distinguished limit, the intermediate layer has distinct underlying physics, unique
to its position in the wall layer. This becomes evident by looking at figure 6, which plots
positions of the three layers in relation to locations of peaks in −uv, −uv(dU/dy) and
u2. As can be seen, the peak in production (y+ = 12) and the inner peak in u2 (y+ ≈ 15;
Hultmark et al. 2012) characterise the inner layer. Correspondingly, the peak in Reynolds
shear stress and the outer peak in u2 (given by y+ = 0.23(Reτ )

0.67; Hultmark et al. 2012)
are seen to characterise the intermediate layer; see figure 6. The intermediate layer is
amenable to another interesting physical interpretation: in the context of their mesolayer
theory, Sreenivasan & Sahay (1997) proposed that the peak in −uv could play a role
similar to that of the ‘critical layer’ in unstable wall flows. They pointed out that the
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mean velocity at the (−uv)max location is approximately a constant fraction (= 0.65)
of the centre-line velocity in the pipe, similar to that for a critical layer. In the present
work, Um/UCL falls in the range 0.68–0.64 for Reτ = 1985–98 190 and for Reτ > 20 000,
Um/UCL ≈ 0.65.

5. Conclusion

We have shown that, using intermediate variables (ym, um), the streamwise mean velocity
deficit and variance exhibit Reynolds-number similarity in the intermediate region of the
pipe flow. This suggests a three-layer asymptotic formulation for pipe flow, with two
overlap layers (Afzal 1982), wherein the intermediate layer is governed by a velocity
scale (um) different from the friction velocity. A generalised matching analysis shows that
Overlap Layer I (nearer to the wall) is governed by a power law for the mean velocity
until Reτ = O(105) and that the log law emerges in Overlap Layer II for Reτ � 104. This
provides a theoretical explanation for the presence of a power law close to the wall and
a log law further away, as observed in the Superpipe measurements of Zagarola & Smits
(1998) and Hultmark et al. (2012).

In terms of the intermediate scaling, Overlap Layer II (which represents the inertial
sublayer) exhibits a Reynolds-number-invariant log law for the mean velocity deficit
(at high Reτ ) as well as the variance. The von Kármán (κ) and Townsend–Perry (A1)
‘constants’ have been derived from the intermediate-scaled log-law constants. We find
that κ shows a weak trend within the range 0.4 ± 0.02 for Reτ > 2 × 104 consistent with
the literature, whereas A1 exhibits a systematic Reynolds-number dependence up to the
highest available Reτ . The present formulation shows that the scale separation between
two adjacent layers is proportional to

√
Reτ (rather than Reτ ) and this is likely to explain

the slow approach to asymptotic conditions (in terms of classical variables) evident in the
pipe flow data.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.71.
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