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In this work we present a multilayer shallow model to approximate the Navier–Stokes
equations with the µ(I)-rheology through an asymptotic analysis. The main advantages
of this approximation are (i) the low cost associated with the numerical treatment of
the free surface of the modelled flows, (ii) the exact conservation of mass and (iii) the
ability to compute two-dimensional profiles of the velocities in the directions along
and normal to the slope. The derivation of the model follows Fernández-Nieto et al.
(J. Comput. Phys., vol. 60, 2014, pp. 408–437) and introduces a dimensional analysis
based on the shallow flow hypothesis. The proposed first-order multilayer model fully
satisfies a dissipative energy equation. A comparison with steady uniform Bagnold
flow – with and without the sidewall friction effect – and laboratory experiments
with a non-constant normal profile of the downslope velocity demonstrates the
accuracy of the numerical model. Finally, by comparing the numerical results with
experimental data on granular collapses, we show that the proposed multilayer model
with the µ(I)-rheology qualitatively reproduces the effect of the erodible bed on
granular flow dynamics and deposits, such as the increase of runout distance with
increasing thickness of the erodible bed. We show that the use of a constant friction
coefficient in the multilayer model leads to the opposite behaviour. This multilayer
model captures the strong change in shape of the velocity profile (from S-shaped
to Bagnold-like) observed during the different phases of the highly transient flow,
including the presence of static and flowing zones within the granular column.
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1. Introduction
Granular flows have been widely studied in recent years because of their importance

in industrial processes and geophysical flows such as avalanches, debris or rock
avalanches, landslides, etc. In particular, numerical modelling of geophysical granular
flows provides a unique tool for hazard assessment.

The behaviour of real geophysical flows is very complex due to topography effects,
the heterogeneity of the material involved, the presence of fluid phases, fragmentation,
etc. (Delannay et al. 2015). One of the major issues is to quantify erosion/deposition
processes that play a key role in geophysical flow dynamics but are very difficult to
measure in the field (see e.g. Conway et al. 2010; Berger, McArdell & Schlunegger
2011; Iverson et al. 2011). Laboratory experiments on granular flows are very useful
to test flow models on simple configurations where detailed measurements can be
performed, even if some physical processes may differ between the large and small
scale. These experiments may help in defining appropriate rheological laws to describe
the behaviour of granular materials. Recent experiments by Mangeney et al. (2010)
and Farin, Mangeney & Roche (2014) on granular column collapse have quantified
how the dynamics and deposits of dry granular flows change in the presence of an
erodible bed. They showed a significant increase of the runout distance (i.e. maximum
distance reached by the deposit) and flow duration with increasing thickness of the
erodible bed. This strong effect of bed entrainment was observed only for flows on
slopes higher than a critical angle of approximately 16◦ for glass beads. The question
remains as to whether this behaviour can be reproduced by granular flow models.

Understanding the rheological behaviour of granular material is a major challenge.
In particular, a key issue is to describe the transition between flow (fluid-like) and
no-flow (solid-like) behaviour. Granular flows have been described by viscoplastic
laws and especially by the so-called µ(I)-rheology, introduced by Jop, Forterre &
Pouliquen (2006). It specifies that the friction coefficient µ is variable and depends
on the inertial number I that is related to the pressure and strain rate. Jop, Forterre
& Pouliquen (2007) considered this viscoplastic law and compared their results with
laboratory experiments to investigate the time evolution of the vertical profile of
velocity in narrow channels, where the sidewall friction is modelled through an
additional friction term introduced by Jop, Forterre & Pouliquen (2005). Lagrée,
Staron & Popinet (2011) implemented the µ(I)-rheology in a full Navier–Stokes
solver (Gerris) by defining a viscosity from the µ(I)-rheology. They validated the
model with two-dimensional (2D) analytical solutions and compared it to 2D discrete
element simulations of granular collapses over horizontal rigid beds and with other
rheologies. Staron, Lagrée & Popinet (2012) and Staron, Lagrée & Popinet (2014)
applied this model to granular flows in a silo. Using an augmented Lagrangian
method combined with finite element discretisation to solve the 2D full Navier–Stokes
equations, Ionescu et al. (2015) showed that this rheology quantitatively reproduces
laboratory experiments of granular collapses over horizontal and inclined planes.
By interpreting the µ(I)-rheology as a viscoplastic flow with a Drucker–Prager yield
stress criterion and a viscosity depending on the pressure and strain rate, they showed
that the mean value of this viscosity has a key impact on the simulated front dynamics
and on the deposit of granular column collapses. In particular without viscosity, the
runout distance is strongly overestimated. However, using a constant viscosity or
a spatio-temporally variable viscosity only slightly changes the results for granular
columns of small aspect ratio (see Ionescu et al. 2015).

In Chauchat & Médale (2014), the authors implemented the µ(I)-rheology in a
three-dimensional numerical model with a finite element method combined with the
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Newton–Raphson algorithm with a regularization technique. The numerical model
was validated by an analytical solution for a dry granular vertical-chute flow and a
dry granular flow over an inclined plane and by laboratory experiments. Previously,
Chauchat & Médale (2010) simulated the bed-load transport problem in 2D and 3D
with a two-phase model that considers a Drucker–Prager rheology for the granular
phase. Lusso et al. (2015b) used a finite element method to simulate a 2D viscoplastic
flow considering a Drucker–Prager yield stress criterion and a constant viscosity.
They obtained similar results taking into account either a regularization method or
the augmented Lagrangian algorithm. By comparing the simulated normal velocity
profiles and the time change of the position of the flow/no-flow (i.e. flowing/static)
interface with laboratory experiments by Farin et al. (2014), they concluded that a
pressure and rate-dependent viscosity can be important to study flows over an erodible
bed. A similar conclusion is presented in Lusso et al. (2015a) after comparing the
normal velocity profiles and the position of the flow/no-flow interface during the
stopping phase of granular flows over erodible beds calculated with a simplified
thin-layer but not depth-averaged viscoplastic model (Bouchut, Ionescu & Mangeney
2016) with those measured in laboratory experiments.

Because of the high computational cost of solving the full 3D Navier–Stokes
equations, in particular in a geophysical context, granular flows have often been
simulated using depth-averaged shallow models. The shallow or thin-layer approxi-
mation (the thickness of the flow is assumed to be small compared to its downslope
extension) associated with depth-averaging leads to conservation laws like the
Saint-Venant equations. These approximations have been applied to granular flows by
Savage & Hutter (1989) by assuming a Coulomb friction law where the shear stress
at the bottom is proportional to the normal stress, with a constant friction coefficient
µ. However, this model does not reproduce the increase in runout distance observed
with increasing thickness of the erodible bed. The analytical solution deduced in
Faccanoni & Mangeney (2013) proves that this model leads to the opposite effect.
The question is as to whether this opposite behaviour between the experiments and
simulations is due to the thin-layer approximation and/or depth-averaging process or
to the rheological law implemented in the model (i.e. constant friction coefficient).

Recently, Capart, Hung & Stark (2015) proposed a depth-integrated model taking
into account a linearization of the µ(I)-rheology. They prescribed an S-shaped velocity
profile corresponding to equilibrium debris flows and typical of granular flows over
erodible beds. Their velocity profiles were reconstructed using the computed averaged
velocity making it possible to compare their results with velocity profiles measured
in laboratory experiments. Gray & Edwards (2014) introduced the µ(I)-rheology in a
depth-averaged model by adding a viscous term and prescribing a Bagnold velocity
profile, typical of granular flows over rigid beds. Edwards & Gray (2015) showed
the ability of this model to capture roll-waves and erosion-deposition waves, if it
is combined with the basal friction law introduced in Pouliquen & Forterre (2002).
In these two depth-averaged models, however, the shape of the velocity profile is
prescribed so that they cannot reproduce the different profiles observed in highly
transient flows such as in granular collapses where the velocity profiles change from
Bagnold-like near the front to S-shaped upstream where upper grains flow above
static grains (see Ionescu et al. 2015). Furthermore, in depth-averaged models, only
the mean velocity over the whole thickness of the flow is calculated (i.e., the whole
granular column is either flowing or at rest, except for the model proposed by Capart
et al. (2015)). Granular collapse experiments and simulations have shown on the
contrary that during the stopping phase and when erosion/deposition processes occur,
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static zones may develop near the bottom and propagate upwards. The resulting
normal gradient of the downslope velocity, which changes in time, is a significant
term in the strain rate and therefore strongly influences the µ(I) coefficient. The
well-posedness of the full µ(I)-rheology is proved by Barker et al. (2015) for a large
intermediate range of values of the inertial number I. It is ill-posed for low and high
values of I, even for steady-uniform flows where I ranges from zero to infinity when
the slope varies between the limit angles of the µ(I)-rheology.

Multilayer models represent an interesting alternative to depth-averaged models,
making it possible in particular to resolve the shape of velocity profiles. They were
introduced by Audusse (2005) and extended by Audusse, Bristeau & Decoene (2008).
A different multilayer model, which takes into account the exchange of mass and
momentum between the layers, has since been derived by Audusse et al. (2011a,b),
and Sainte-Marie (2011).

A new procedure to obtain a multilayer model has been introduced by Fernández-
Nieto, Koné & Chacón Rebollo (2014). Several differences appear between this
multilayer model and the ones deduced by Audusse et al. First, in Fernández-Nieto
et al. (2014), the multilayer model is derived from the variational formulation of
Navier–Stokes equations with hydrostatic pressure by considering a discontinuous
profile of the solution at the interfaces of a vertical partition of the domain. This
procedure proves that the solution of this multilayer model is a particular weak
solution of the Navier–Stokes system. Moreover, the mass and momentum transfer
terms at the interfaces of the normal partition are deduced from the jump conditions
verified by the weak solutions of the Navier–Stokes system. In addition, the definition
of the vertical velocity profile is easily obtained using the mass jump condition
combined with the incompressibility condition.

By comparing this model with granular flow experiments on erodible beds (Jop
et al. 2007; Mangeney et al. 2010; Farin et al. 2014), we evaluate (i) if the model
with the µ(I)-rheology gives a reasonable approximation of the granular flow
dynamics in different regimes and of their deposits, (ii) if the model is able to
reproduce strong changes in velocity profiles during highly transient flows, (iii) if
it reproduces the increase in runout distance observed for granular collapses for
increasing thickness of the erodible bed above a critical slope angle θc ∈ [12◦, 16◦]
and (iv) how the multilayer approach improves the results compared to the classical
depth-averaged Saint-Venant model (i.e. monolayer model).

The paper is organised as follows. Section 2 is devoted to presenting the initial
system composed of the 2D Navier–Stokes equations with the µ(I)-rheology and
the appropriate boundary conditions. We also give the local coordinates system that
we consider for the derivation. In § 3 we present the multilayer approach following
Fernández-Nieto et al. (2014) to derive a 2D multilayer model for dry granular flows
up to first order when considering the thin-layer asymptotic approximation. The final
µ(I)-rheology multilayer shallow model (MSM) is also presented in this section
together with the associated energy balance. Section 4 is devoted to presenting the
numerical results. First, we validate our model using the 2D analytical solution of a
Bagnold flow and a flow in a narrow channel with a strong effect from the lateral
wall friction. We also compare with experimental data for the previous case, and do a
deeper comparison of our results with granular collapse laboratory experiments done
by Mangeney et al. (2010). We show that the µ(I)-rheology is able to qualitatively
reproduce the increase in runout distance of granular flows over erodible beds,
in contrast with the constant friction model. Moreover, the multilayer approach
reproduces the change in shape of the velocity profiles and significantly improves
results compared to the monolayer one (i.e. Saint-Venant). Finally, conclusions are
presented in § 5.
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2. The initial system

In this section we present the two-dimensional model considered to describe the
dynamics of granular flows. First, we introduce the starting system of equations,
completed with the definition of the stress tensor including the µ(I)-rheology. We
then specify the suitable boundary conditions. Finally, we present the complete model
in local coordinates.

2.1. Governing equations

We consider a granular mass flow with velocity u∈R2 and density ρ ∈R and we set
the incompressible Navier–Stokes equations describing the dynamics of the system:

∇ · u= 0,

ρ∂tu+ ρ∇ · (u⊗ u)−∇ · σ = ρg,

}
(2.1)

where g is the gravity force. The total stress tensor is

σ =−pI + τ , (2.2)

with p ∈R the pressure. I is the 2D identity tensor and τ the deviatoric stress tensor
given by

τ = ηD(u), (2.3)

where η ∈R denotes the viscosity and D(u) the strain-rate tensor

D(u)= 1
2(∇u+ (∇u)′). (2.4)

2.2. µ(I)-rheology
As discussed in the Introduction, we consider the so-called µ(I)-rheology (see Jop
et al. 2006) in order to take into account the non-Newtonian nature of granular flows.
Hence, the viscosity coefficient is defined by

η= µ(I)p
‖D(u)‖ , (2.5)

with ‖D‖=√0.5 D : D the usual second invariant of a tensor D. The friction coefficient
µ(I) is written as

µ(I)=µs + µ2 −µs

I0 + I
I, (2.6)

where I0 is a constant value and µ2 > µs are constant parameters. I is the inertial
number

I = 2ds‖D(u)‖√
p/ρs

, (2.7)

where ds is the particle diameter and ρs the particle density. The apparent flow density
is then defined as

ρ = ϕsρs, (2.8)

where the solid volume fraction, denoted by ϕs, is assumed to be constant.
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Note that when the shear rate is equal to zero, µ(I) is reduced to µs. For high
values of the inertial number, µ(I) converges to µ2. Otherwise, if we consider a
constant value of µ, independent of I, the model is always ill-posed (see Schaeffer
1987).

The µ(I)-rheology includes a Drucker–Prager plasticity criterion, the deviatoric
tensor is defined as

τ = µ(I)p‖D‖ D if ‖D‖ 6= 0,

‖τ‖6µsp if ‖D‖ = 0.

 (2.9)

Note that the µ(I)-rheology can equivalently be written as a decomposition of the
deviatoric stress in a sum of a plastic term and a rate-dependent viscous term (see
Ionescu et al. 2015):

τ = µsp
‖D‖D + 2η̃D if ‖D‖ 6= 0,

‖τ‖6µsp if ‖D‖ = 0;

 (2.10)

with a viscosity defined as η̃= (µ2 −µs)p/(I0/ds
√

p/ρs + 2‖D‖). Here we investigate
the rheology defined by a variable friction µ(I) and a constant friction µs. In Ionescu
et al. (2015), the authors showed that simulations of the front propagation of granular
column collapses and of their deposits are very sensitive to the value of the average
value of the viscosity (see their figures 8 and 13). However, replacing η̃ by a
constant viscosity equal to the averaged value of the spatio-temporal viscosity η̃ does
not significantly change the simulated dynamics and deposit. Here we compare the
case where µ = µs so that η̃ = 0 with the µ(I) rheology corresponding to typical
values of the viscosity η= 1 Pa s for granular collapses over horizontal and inclined
planes (Ionescu et al. 2015).

The model considering a viscosity defined by (2.5) presents a discontinuity when
‖D(u)‖= 0. To avoid this singularity there are several ways to proceed. One of them
is to apply a duality method, such as augmented Lagrangian methods (Glowinski
& Tallec 1989) or the Bermúdez–Moreno algorithm (Bermúdez & Moreno 1981).
Another option is to use a regularization of D(u), which is cheaper computationally;
however, it does not give an exact solution, contrary to duality methods.

In this work, we take into consideration two kinds of regularizations of D(u). First,
we use the regularization proposed in Lagrée et al. (2011), which consists of bounding
the viscosity by ηM = 250ρ

√
gh3 Pa s, considering instead of (2.5),

η= µ(I)p

max
(
‖D(u)‖, µ(I)p

ηM

) . (2.11)

In this way, we obtain η=ηM if ‖D(u)‖ is close to zero. We used this regularization in
the simulation of the granular flow experiments. However, as explained in § 4.1.1, we
cannot consider this regularization in some tests presented below, for which we have
to take into account the regularization introduced in Bercovier & Engelman (1980),

η= µ(I)p√‖D(u)‖2 + δ2
, (2.12)

where δ > 0 is a small parameter.
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2.3. Boundary conditions
We consider the usual geometric setting, that is, the granular material fills a spatial
domain limited by a fixed topography at the bottom and by a free surface at the top.

Since the domain is moved with the velocity of the material, we set the kinematic
condition

Nt + u · nh = 0 at the free surface, (2.13)

with (Nt, nh) the time–space normal vector to the free surface. We also assume a
normal stress balance

p= 0 at the free surface. (2.14)

At the bottom we consider the no-penetration condition

u · nb = 0 at the bottom, (2.15)

where nb is the downward unit normal vector to the bottom. We also consider a
Coulomb-type friction law involving the variable friction coefficient µ(I):

σnb − ((σ nb) · nb)nb =
µ(I)p u

|u|
0

 at the bottom. (2.16)

Note that the multilayer approach considered here can also be deduced by
considering a no-slip condition, that is, u = 0 at the bottom. This condition implies
the no-penetration condition (2.15). Then, the only difference is that instead of
considering condition (2.16), the definition of σnb − ((σnb) · nb)nb at the bottom
must be set by using the no-slip condition and the profile of u (see Gray & Edwards
2014). The resulting model with this alternative condition is analysed at the end of
§ 3.3.

2.4. Local coordinates
Let us consider tilted coordinates, which are commonly used for granular flows
(see Fernández-Nieto et al. 2008; Pirulli & Mangeney 2008; Gray & Edwards 2014;
Bouchut et al. 2015, 2016). Let b̃(x) be an inclined fixed plane of constant angle θ
with respect to the horizontal axis; we define the coordinates (x, z) ∈Ω × R+ ⊂ R2.
The x and z axis are measured along the inclined plane and along the normal direction
respectively (see figure 1). In this reference frame the gravitational force is written
as

g= (−g sin θ,−g cos θ)′. (2.17)

In addition, we set b(x) an arbitrary bottom topography and a layer of the material
over it with thickness h(t, x). Both are measured in the normal direction to the
inclined plane b̃(x). We consider the velocity u ∈ R2 with horizontal (downslope
direction) and vertical (normal direction) components (u,w). We set ∇= (∂x, ∂z), the
usual differential operator in the space variables.

With these definitions we write:

τ =
(
τxx τxz
τxz τzz

)
and D(u)= 1

2

(
2∂xu ∂zu+ ∂xw

∂zu+ ∂xw 2∂zw

)
. (2.18a,b)
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x

z

FIGURE 1. (Colour online) Sketch of the granular material domain and its multilayer
division.

In this reference frame, system (2.1) can be developed as

∂xu+ ∂zw= 0,

ρ(∂tu+ u ∂xu+w ∂zu)+ ∂xp=−ρg sin θ + ∂xτxx + ∂zτxz,

ρ(∂tw+ u ∂xw+w ∂zw)+ ∂zp=−ρg cos θ + ∂xτxz + ∂zτzz.

 (2.19)

For the boundary conditions (2.13)–(2.16) we just take into account the definitions of
the normal vectors. Namely, the time and space normal vectors to the free surface are
respectively

Nt = ∂th; nh = (∂x(b+ h),−1)√
1+ |∂x(b+ h)|2 ; (2.20a,b)

and the normal vector to the bottom reads:

nb = (∂xb,−1)√
1+ |∂xb|2

. (2.21)

3. The µ(I)-rheology multilayer model
In this section, we present a multilayer model designed to approximate the dynamics

of granular flows. We follow Fernández-Nieto et al. (2014), in which a multilayer
approach was developed to solve the Navier–Stokes equations. In our case, the system
to approximate is given by (2.19) together with the boundary conditions described
in § 2.3. The originality of this paper is to develop the multilayer approach together
with an asymptotic approximation. The system is deduced under several specific
changes involving the asymptotic approximation and the definition of the stress tensor
according to the µ(I)-rheology that introduces a non-constant viscosity coefficient.
The advantage of this approach is that we recover the normal profile of the downslope
and normal components of the velocity.

In the first subsection we show the dimensional analysis of the equations and write
the non-dimensional system in matrix form. In the second part we present a brief
explanation of the procedure to obtain the multilayer model and the model itself. A
more detailed presentation of the deduction is made in appendix A, where we focus on
the aspects of the derivation that differ from the method proposed in Fernández-Nieto
et al. (2014).
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3.1. Dimensional analysis
In this subsection we carry out a dimensional analysis of the system (2.1)–(2.16)
under the local coordinates system specified in § 2.4. We consider a shallow domain
by assuming that the ratio ε = H/L between the characteristic height H and the
characteristic length L is small. We also introduce the characteristic density ρ0.
Following the scaling analysis proposed in Gray & Edwards (2014), we define the
dimensionless variables, denoted with the tilde symbol (.̃), as follows:

(x, z, t)= (Lx̃,Hz̃, (L/U)̃t), (u,w)= (Uũ, εUw̃),

h=Hh̃, ρ = ρ0ρ̃, p= ρ0U2p̃,

η= ρ0UHη̃, ηM = ρ0UHη̃M,

(τxx, τxz, τzz)= ρ0U2(ετ̃xx, τ̃xz, ετ̃zz).

 (3.1)

Let us also note that

D(u)= U
H

1
2

(
2ε∂x̃ũ ∂̃zũ+ ε2∂x̃w̃

∂̃zũ+ ε2∂x̃w̃ 2ε∂̃zw̃

)
, (3.2)

and the Froude number
Fr= U√

g cos θH
. (3.3)

Then, the system of equations (2.19) can be rewritten using this change of variables
as (tildes have been dropped for simplicity):

∂xu+ ∂zw= 0,

ρ(∂tu+ u∂xu+w∂zu)+ ∂xp=−1
ε
ρ

1
Fr2

tan θ + ε∂xτxx + 1
ε
∂zτxz,

ε2ρ(∂tw+ u∂xw+w∂zw)+ ∂zp=−ρ 1
Fr2
+ ε∂xτxz + ε∂zτzz.

 (3.4)

We also write the boundary and kinematic conditions using dimensionless variables.
At the free surface we get

∂th+ u|z=b+h ∂x(b+ h)−w|z=b+h =O(ε2); p|z=b+h = 0, (3.5a,b)

and at the bottom we obtain

u|z=b∂xb=w|z=b;
(η∂zu)|z=b =

(
µ(I)p

u
|u|
)
|z=b

+O(ε2).

 (3.6)

As shown previously, it is convenient to write the set of equations (3.4) in matrix
notation before applying the multilayer approach. First, we focus on the equations of
momentum. We multiply the horizontal momentum equation by ε and the vertical one
by 1/ε. This gives

ερ(∂tu+ u∂xu+ u∂zw)+ ε∂xp=−ρ 1
Fr2

tan θ + ε2∂xτxx + ∂zτxz,

ερ(∂tw+ u∂xw+w∂zw)+ 1
ε
∂zp =−1

ε
ρ

1
Fr2
+ ∂xτxz + ∂zτzz.

 (3.7)
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Note that the stress tensor can be written:

τε = ηDε(u) with Dε(u) := 1
2

(
2ε2∂xu ∂zu+ ε2∂xw

∂zu+ ε2∂xw 2 ∂zw

)
. (3.8)

We introduce the notation:

f =
(

tan θ
Fr2

,
1
εFr2

)′
and E =

(
ε 0
0 1/ε

)
. (3.9a,b)

Now we can write the momentum equations as follows:

ερ∂tu+ ερ∇ · (u⊗ u)+∇ · (pE )=−ρf +∇ · (ηDε(u)), (3.10)

and we obtain the system (3.4) in matrix notation:

∇ · u= 0,

ρ∂tu+ ρ∇ · (u⊗ u)− 1
ε
∇ · σ =−1

ε
ρf ,

 (3.11)

where the stress tensor is rewritten as σ =−pE + τε, with τε given by (3.8).

3.2. A multilayer approach
We apply the multilayer approach introduced in Fernández-Nieto et al. (2014) to the
system (3.5)–(3.11). Note that the structure of the system (3.11) looks like that of
Navier–Stokes equations (2.1) and then the whole procedure developed in Fernández-
Nieto et al. (2014) can be followed. In the next lines we describe the main points of
the derivation and we introduce the required notation to understand the final model.

3.2.1. Notation
We denote the granular domain ΩF(t) and its projection IF(t) on the reference plane,

for a positive t ∈ [0, T], i.e.

IF(t)= {x ∈R; (x, z) ∈ΩF(t)}. (3.12)

The multilayer approach considers a vertical partition of the domain in N ∈N∗ layers
with preset thicknesses hα(t, x) for α= 1, . . . ,N, (see figure 1). Note that

∑N
α=1 hα= h.

In practice, we set a vertical partition of the domain as follows: we introduce the
positive coefficients lα such that

hα = lαh for α = 1, . . . ,N;
N∑
α=1

lα = 1. (3.13a,b)

Note that the thickness of each layer is automatically adapted to the movement of the
free surface, since it depends on the total thickness of the mass flow. These layers
are separated by N + 1 interfaces Γα+1/2(t), which are described by the equations z=
zα+1/2(t, x) for α= 0, 1, . . . ,N, x ∈ IF(t). We assume that these interfaces are smooth
enough. Observe that the fixed bottom and the free surface are respectively b = z1/2
and b+ h= zN+1/2, corresponding to the interfaces at the bottom Γ1/2 and at the free
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surface ΓN+1/2 respectively. Note that zα+1/2 = b +∑α

β=1 hβ and hα = zα+1/2 − zα−1/2,
for α= 1, . . . ,N. The subdomain between Γα−1/2 and Γα+1/2 is denoted by Ωα(t), for
a positive t ∈ [0, T],

Ωα(t)= {(x, z); x ∈ IF(t) and zα−1/2 < z< zα+1/2}. (3.14)

We need to introduce a specific notation about the approximations of the variables on
the interfaces (see figure 1). For a function f and for α = 0, 1, . . . ,N, we set

f−α+1/2 := ( f|Ωα(t))|Γα+1/2(t)
and f+α+1/2 := ( f|Ωα+1(t)

)|Γα+1/2(t)
. (3.15a,b)

Note that if the function f is continuous,

fα+1/2 := f|Γα+1/2(t)
= f+α+1/2 = f−α+1/2. (3.16)

In addition, for a given time t, we denote

nT,α+1/2= (∂tzα+1/2, ∂xzα+1/2,−1)′√
1+ (∂xzα+1/2)2 + (∂tzα+1/2)2

and nα+1/2= (∂xzα+1/2,−1)′√
1+ (∂xzα+1/2)2

, (3.17a,b)

the space–time unit normal vector and the space unit normal vector to the interface
Γα+1/2(t) outward to the layer Ωα+1(t) for α = 0, . . . ,N.

3.2.2. Weak solution with discontinuities
We are looking for a particular weak solution (u, p, ρ) of (3.11) (see Fernández-

Nieto et al. 2014). We remind the reader that this solution must meet the following
conditions:

(i) (u, p, ρ) is a standard weak solution of (3.11) in each layer Ωα(t),
(ii) (u, p, ρ) satisfies the normal flux jump condition for mass and momentum at the

interfaces Γα+1/2(t), namely:

[(ρ; ρu)]α+1/2 nT,α+1/2 = 0,[(
ρu; ρu⊗ u− 1

ε
σ

)]
α+1/2

nT,α+1/2 = 0,

 (3.18)

where [(a; b)]α+1/2 denotes the jump of (a; b) across the interface Γα+1/2(t).
There are two main differences with the derivation in Fernández-Nieto et al. (2014):

first, the µ(I)-rheology produces a non-constant viscosity coefficient, which implies
an additional difficulty in order to develop the momentum balances at the interfaces.
Second, the system to be solved is an asymptotic approximation of the Navier–Stokes
equations, which helps to resolve the previous difficulty since we look for a first-order
approximation in ε.

A particular family of velocity functions is considered, by assuming that the
thickness of each layer is small enough to make the horizontal velocities independent
of the vertical variable z (usual shallow domain hypothesis). As a consequence, thanks
to the incompressibility condition in each layer, we obtain that vertical velocities are
linear in z and maybe discontinuous. We denote the velocity in each layer as

u|Ωα(t) := uα := (uα,wα)
′, (3.19)

where uα and wα are the horizontal and vertical velocities, respectively, on layer α.
Then,

∂zuα = 0; ∂zwα = dα(t, x) (3.20a,b)
for some smooth function dα(t, x).
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Pressure
From the asymptotic analysis, we directly get a hydrostatic pressure that is obtained

from the vertical momentum equation in (3.4):

∂zpα =−ρ 1
Fr2
+O(ε). (3.21)

By the continuity of the dynamic pressure, we can deduce at first order that

pα(z)= ρ

Fr2
(b+ h− z). (3.22)

Mass conservation across the interfaces and normal velocity
The mass conservation jump condition gives us the definition of the normal mass

flux at the interface Γα+1/2(t), denoted by Gα+1/2 :=G+α+1/2 =G−α+1/2 for:

G±α+1/2 = ∂tzα+1/2 + u±α+1/2 ∂xzα+1/2 −w±α+1/2. (3.23)

By integrating the incompressibility equation and using this mass conservation
condition, we get the definition of the vertical velocity wα for uα a solution of
(3.11) (see Fernández-Nieto et al. 2014 for details). Thus, if we consider that there
is no mass transference with the bottom (i.e. G1/2 = 0), we obtain

w+1/2 = u1∂xb+ ∂tb, (3.24)

and for α = 1, . . . ,N and z ∈ (zα−1/2, zα+1/2),

wα(t, x, z)=w+α−1/2(t, x)− (z− zα−1/2)∂xuα(t, x),

w+α+1/2 = (uα+1 − uα)∂xzα+1/2 +w−α+1/2,

}
(3.25)

where
w−α+1/2 =w+α−1/2 − hα∂xuα. (3.26)

Momentum conservation across the interfaces
The momentum jump conditions become:

1
ε
[σ ]α+1/2nα+1/2 = ρ Gα+1/2√

1+ |∂xzα+1/2|2
[u]α+1/2, (3.27)

where, for α = 1, . . . ,N − 1, the total stress tensor is

σ±α+1/2 =−pα+1/2E + τ±ε,α+1/2, (3.28)

with pα+1/2 = p+α+1/2 = p−α+1/2 and τ±ε,α+1/2 approximations of pα and τε,α at Γα+1/2.
Following Fernández-Nieto et al. (2014), we finally get that the momentum jump
condition gives

τ±ε,α+1/2nα+1/2 = τ̃ε,α+1/2 nα+1/2 ± 1
2

ερGα+1/2√
1+ |∂xzα+1/2|2

[u]|Γα+1/2(t)
, (3.29)
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where τ̃ε,α+1/2 is an approximation of (ηDε(uα))|Γα+1/2 , defined by

τ̃ε,α+1/2= ηα+1/2D̃ε,α+1/2= 1
2
ηα+1/2

2ε2∂x

(
u+α+1/2 + u−α+1/2

2

)
D̃ε,α+1/2,xz(

D̃ε,α+1/2,xz
)′

2U V
Z ,α+1/2

 . (3.30)

In this equation,

D̃ε,α+1/2,xz = ε2∂x

(
w+α+1/2 +w−α+1/2

2

)
+U H

Z ,α+1/2, (3.31)

and (U H
Z ,α+1/2,U

V
Z ,α+1/2) is defined to approximate the derivatives in z. We remind the

reader that we use a mixed formulation because of the possible vertical discontinuous
profile. Thus, the auxiliary unknown UZ satisfies

UZ − ∂zu= 0, with UZ = (U H
Z ,U

V
Z ). (3.32)

And to approximate UZ , we approximate u by ũ, a P1(z) interpolation such that
ũ|z=1/2(zα−1/2+zα+1/2) = uα. Then UZ α+1/2 = (U H

Z ,α+1/2,U
V

Z ,α+1/2) is an approximation of
UZ (ũ) at Γα+1/2.

Let us remark that the previous expression of the tensor τ̃ε,α+1/2 in (3.30) has the
same structure as the original case in Fernández-Nieto et al. (2014), except for the
viscosity that now is not constant because it is defined by the µ(I)-rheology in (2.11).
Then, we must give an approximation of the viscosity at the interface up to first
order in ε, which we denoted by ηα+1/2. We have considered the following first-order
approximation of ‖D(u)‖ at z= zα+1/2,

‖D(u)‖α+1/2 ≈ |U H
Z ,α+1/2|. (3.33)

Then, it reads

ηα+1/2 = ηα+1/2(U
H

Z ,α+1/2)=
µ(Iα+1/2)pα+1/2

max
(
|U H

Z ,α+1/2|,
µ(Iα+1/2)pα+1/2

ηM

) , (3.34)

with
U H

Z ,α+1/2 =
uα+1 − uα

hα+1/2
, for α = 1, . . . ,N − 1, (3.35)

with hα+1/2 being the distance between the midpoints of layers α and α+ 1. Moreover,

U H
Z ,1/2 =

u1

h1
, (3.36)

and

pα+1/2 = ρ

Fr2

N∑
β=α+1

hβ, Iα+1/2 =
2 ds|U H

Z ,α+1/2|√
pα+1/2/ρs

, for α = 0, . . . ,N − 1. (3.37a,b)

Note that ηN+1/2 = 0, because we suppose that the atmospheric pressure is zero.
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3.3. Final model
The final model is derived as in Fernández-Nieto et al. (2014) by looking for a
particular weak solution of the asymptotic system (3.11). First (3.11) are multiplied
by some test functions, and secondly we integrate this system in the domain Ωα(t)
(see appendix A for more details). In this way, the final µ(I)-rheology multilayer
model is obtained in dimensionless variables. The last step is to come back to the
original variables taking into account the assumptions described in § 3.1. As a result,
the final model reads, for α = 1, . . . ,N,

lα(∂th+ ∂x(huα))=Gα+1/2 −Gα−1/2,

lα(ρ∂t(huα)+ ρ∂x(hu2
α)+ ρg cos θh∂x(b+ b̃+ h))

=Kα−1/2 −Kα+1/2 + 1
2ρGα+1/2(uα+1 + uα)− 1

2ρGα−1/2(uα + uα−1),

 (3.38)

where Gα+1/2 are given in (3.23),

Kα+1/2=−ηα+1/2(U
H

Z ,α+1/2)U
H

Z ,α+1/2 and K1/2=−µ(I1/2)ρg cos θ h
u1

|u1| , (3.39a,b)

for ηα+1/2 defined in (3.34)–(3.37).
Note that the proposed model (3.38) has 2N equations and unknowns:

(h, {huα}α=1,...,N, {Gα+1/2}α=1,...,N−1). But thanks to (3.23)–(3.25) we can write

Gα+1/2 = ∂tzα+1/2 + uα + uα+1

2
∂xzα+1/2 −wα+1/2, where wα+1/2 =

w+α+1/2 +w−α+1/2

2
.

(3.40)
As a consequence, the system has 2N unknowns that are also the total height (h),
the discharge at each layer ({huα}α=1,...,N) and the averaged vertical velocity at each
internal interface ({wα+1/2}α=1,...,N−1).

Nevertheless, by combining the continuity equations, the system can be rewritten
with N + 1 equations and unknowns. The unknowns of the reduced system are the
total height (h) and the discharge of each layer,

qα = h uα, for α = 1, . . . ,N. (3.41)

By introducing (see Fernández-Nieto et al. 2014)

ξα,γ =
{
(1− (l1 + · · · + lα))lγ , if γ 6 α,
−(l1 + · · · + lα)lγ , otherwise,

(3.42)

for α, γ ∈ {1, . . . ,N}, the system (3.38)–(3.39) is rewritten as

∂th+ ∂x

(
N∑
β=1

lβqβ

)
= 0,

∂tqα + ∂x

(
q2
α

h
+ g cos θ

h2

2

)
+ g cos θ h ∂xzb

+
N∑
γ=1

1
2hlα

((qα + qα−1)ξα−1,γ − (qα+1 + qα)ξα,γ )∂xqγ

= 1
ρlα

(Kα−1/2 −Kα+1/2) α = 1, . . . ,N,



(3.43)

where zb = b+ b̃ has been introduced for simplicity.
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Moreover, we can see that this model satisfies a dissipative energy inequality.
Denoting the energy of the layer α = 1, . . . ,N for the system (3.38)–(3.39) by

Eα = hα

( |uα|2
2
+ g cos θ

(
zb + h

2

))
, (3.44)

the following dissipative energy inequality is satisfied:

ρ∂t

(
N∑
α=1

Eα

)
+ ρ∂x

[
N∑
α=1

uα

(
Eα + ρg cos θ hα

h
2

)]

6−ρg cos θ h|u1|µ(I)− |uN|2
hN

ηN+1/2 −
N−1∑
α=1

(uα+1 − uα)2

hα+1/2
ηα+1/2. (3.45)

Finally, note that if we consider a no-slip condition to deduce the model instead of the
Coulomb friction condition (2.16), the only difference that appears in the multilayer
approach is the definition of K1/2. It must be defined directly in terms of the rheology,
in the same way as Kα+1/2 for α = 1, . . . ,N − 1. That is,

K1/2 =−η1/2(U
H

Z ,1/2)U
H

Z ,1/2, (3.46)

where U H
Z ,1/2 is an approximation of the horizontal component of the solution of

(3.32) for z= b. Then, using the no-slip condition, a second-order approximation is

U H
Z ,1/2 =

2 u1

h1
. (3.47)

4. Numerical tests

The numerical approximation is performed in 2D (downslope and normal directions).
We rewrite the model as a non-conservative hyperbolic system with source terms as
in Fernández-Nieto et al. (2014). Then a splitting procedure is considered.

First, we set aside the term that appears in the internal interfaces and a standard
path-conservative finite volume method is applied. These path-conservative methods
were introduced in Parés (2006). To deal with the Coulomb friction term, we use
the hydrostatic reconstruction introduced in Audusse et al. (2004), which is applied
in Bouchut (2004) to solve the Saint-Venant system with Coulomb friction. The main
advantage of this reconstruction is its great stability.

The second step is to solve the contribution of the term in the internal interfaces,
which represents the mass and momentum exchange between layers. In this step, a
semi-implicit scheme is employed, taking into account the regularization of ‖D(uα)‖
mentioned in § 2.2 in order to avoid the singularity when ‖D(uα)‖ vanishes.

In order to validate the multilayer shallow model (denoted MSM hereafter) with
the µ(I)-rheology, we compare it to (i) 2D steady and transient uniform flows over
inclined surfaces with and without the effect of sidewall friction (analytical solutions
and experimental data for deep and surface flows), (ii) laboratory experiments of
highly transient and non-uniform granular flows over inclined planes covered by an
erodible bed, in which case the shape of the velocity profiles strongly changes with
time and space.
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H

z

x

FIGURE 2. (Colour online) Sketch of the analytical solution.

4.1. Granular surface flows in a channel
In this subsection we deal with several Bagnold flows. First, we consider a uniform
Bagnold flow without taking into account the effect of the lateral wall friction. Then,
we show that our multilayer model is able to capture the velocity profiles for flows in
a narrow channel when sidewall friction is introduced. In that case we compare with
the analytical solution and laboratory experiments. Note that Bagnold flows verify, at
the free surface

p|z=H = 0 and ‖D(u)‖|z=H = |∂zu||z=H = 0. (4.1a,b)

Therefore, we cannot use the regularization (2.11) since its denominator vanishes at
the free surface. In this case we use the regularization

η= µ(I)p√‖D(u)‖2 + δ2
, (4.2)

where δ > 0 is a small parameter (see Bercovier & Engelman 1980).

4.1.1. Steady uniform Bagnold flow: analytical solution
Let us first compare the model with the analytical solution for a uniform flow over

an inclined plane of slope θ and thickness H > 0, i.e. a Bagnold flow (see Silbert
et al. 2001, GDR MiDi 2004 or Lagrée et al. 2011). This solution is obtained by
imposing zero pressure and zero shear stress at the free surface and a no-slip condition
at the bottom (Coulomb friction can be easily changed by no-slip condition in the
µ(I)-rheology multilayer model, see §§ 2.3 and 3.3).

By denoting u and w the downslope and normal velocities, p the pressure and τ

the shear stress and by taking the rheological parameters defined in § 2.2, the steady
uniform Bagnold flow is described by

u(z)= 2
3ds

I0

(
tan θ −µs

µ2 − tan θ

)√
ϕsg cos θ(H3/2 − (H − z)3/2),

u(z= 0)= 0, w= 0,

p(z)= ρg cos θ(H − z),

τ (z)=µ(I)p= ρg sin θ(H − z),

p(z=H)= 0, τ (z=H)= 0,

µ(I)= tan(θ), for z ∈ (0,H).


(4.3)
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FIGURE 3. (Colour online) Comparison between the analytical solution (dashed and solid
lines) and the simulations obtained using the MSM with the µ(I)-rheology (symbols).
(a) Analytical and simulated downslope horizontal velocity u, pressure p and strain
rate ‖D(u)‖. (b) Analytical and simulated shear stress and friction coefficient µ(I). (c)
Comparison between the simulated (symbols) and the exact (dashed line) horizontal
velocity at the free surface as a function of the slope angle.

For the numerical simulation, as in the analytical solution, we consider a uniform
flow with constant thickness H= 1 m and velocity u=w= 0 m s−1 at the initial time
t= 0 s. The boundary conditions at the free surface and at the bottom have been set
as in (4.3). At the right and left boundaries, we use open boundary conditions.

We choose the rheological parameters I0 = 0.279 and µs = 0.38≈ tan(20.8◦), µ2 =
0.62 ≈ tan(31.8◦) and the particle diameter ds = 4 cm with solid volume fraction
ϕs = 0.62. The slope angle is taken as θ = 0.43 rad ≈ 24.64◦. Figure 3 shows the
good agreement between the simulated and exact solutions for the profiles of the
velocity, pressure, shear stress, µ(I) and ‖D(u)‖. It also shows the downslope velocity
at the free surface as a function of the slope angle. Note that for slopes smaller than
arctan(µs), the surface velocity is close to zero (it is not equal to zero, because of the
regularization method), namely u(z=H)∼ 10−5, so that the mass is almost at rest.

These results are computed using 50 layers in the MSM. Note that we use
a slope in the well-posed region described in Barker et al. (2015) for the full
µ(I)-rheology, which is smaller than the well-posed region for the depth-averaged
µ(I)-rheology (well-posed for δs= 20.8◦6 θ <δ2= 31.8◦ in the case of depth-averaged
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FIGURE 4. (Colour online) (a) Computing time as a function of the number of layers in
the MSM and (b) relative error between the computed and exact velocity for simulations
over a slope of θ = 24.64◦.

N(1z= 1/N) L1-error L1-order L2-error L2-order L∞-error L∞-order

4 8.74× 10−3 — 8.08× 10−3 — 7.59× 10−3 —
8 2.27× 10−3 1.84 2.13× 10−3 1.92 2.39× 10−3 1.66
16 5.84× 10−4 1.96 5.58× 10−4 1.93 7.84× 10−4 1.61
32 1.48× 10−4 1.97 1.45× 10−4 1.941 2.62× 10−4 1.57
64 3.76× 10−5 1.982 3.76× 10−5 1.948 8.94× 10−5 1.55
128 9.48× 10−6 1.988 9.73× 10−6 1.95 3.08× 10−5 1.53

TABLE 1. Order of the error for the velocity of the Bagnold flow.

µ(I)-rheology). If we use a slope close enough to δ2 the system becomes unstable
because of the ill-posedness of the full µ(I)-rheology in this region.

Figure 4 shows the computing time required to simulate 50 seconds (on a laptop
with IntelrCoreTM i7-4500U and 8 GB of RAM) and the relative error between the
computed velocity and the exact solution using a different number of layers and 30
nodes in the x-direction. In table 1 we show that second-order accuracy is reached in
norms L1 and L2, while in norm L∞ the order is over 1.5. This behaviour in norm
L∞ is due to the boundary conditions at the free surface, where the analytical solution
verifies that ∂zu= 0.

4.1.2. 2D steady uniform flow in a channel: sidewalls effect on the velocity profile
The relevance of the lateral wall friction when a granular material flows in a channel

has been proved by Jop et al. (2005) (see also Baker, Barker & Gray 2016). Under
the hypothesis of a steady uniform flow and neglecting the variations in the transverse
direction, they propose to model this effect with a modified µ(I)-rheology by adding
an extra term, which defines an effective friction term

µ(I)=µs + µ2 −µs

I0 + I
I +µw

H − z
W

, (4.4)

where W is the channel width, µw is the constant coefficient of friction with the side
walls and H the thickness of the flow. Note that this extra term (last term) increases

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

33
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.333


A multilayer shallow model for dry granular flows with the µ(I)-rheology 661

5

 0

10

15

20

25

30

35

40

45

10 2 3 4 5

FIGURE 5. (Colour online) Comparison between the analytical solution (solid lines) and
the simulations obtained using the MSM with the µ(I)-rheology (symbols) for the velocity
profile for Q∗ = 31.5, and different widths: W = 19ds, W = 57ds and W = 283ds.

when we get closer to the bottom from the free surface. In addition, for a channel
slope θ with respect to the horizontal axis, the analytical expression for the velocity
profile reads (see appendix B in Jop et al. 2005):

u(z) = 2
I0
√
ϕs g cos θ

ds

[
1
3
(H − z)3/2 − 1

3
(H − h∗)3/2

− µ2 −µs

µw
W((H − z)1/2 − (H − h∗)1/2)

+
√

h2
µ2 −µs

µw
W

(
arctan

√
H − z

h2
− arctan

√
H − h∗

h2

)]
, (4.5)

where

h∗ =H − tan θ −µs

µw
W, h2 = µ2 − tan θ

µw
W. (4.6a,b)

Note that we can integrate the last equation and the discharge is obtained as a
function of the slope θ . In these experiments, Jop et al. (2005) fixed the discharge
and computed the velocity profile for different widths. We choose the same material
and rheological properties and perform these experiments. The grain diameter is
ds = 0.53 mm and the volume fraction is ϕs = 0.6. The rheological parameters
are µs = tan(20.9◦), µ2 = tan(32.76◦) and I0 = 0.279. The friction coefficient with
the sidewalls is µw = tan(10.4◦). We set the thickness of the flow H = 45ds, the
dimensionless discharge Q∗= 31.5 and different widths of the channel are considered
(W = 19ds, 57ds, 283ds).

Figure 5 shows the exact agreement between the analytical solution and the
simulations for the velocity profile. In this case we consider 50 layers to obtain
the solution. In table 2 we present the errors and accuracy order of the method for
W = 283ds. We obtain similar results to those presented in the previous subsection.
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N(1z= 1/N) L1-error L1-order L2-error L2-order L∞-error L∞-order

4 1.72× 10−2 — 1.41× 10−2 — 1.14× 10−2 —
8 4.71× 10−3 1.87 5.24× 10−3 1.43 6.61× 10−3 0.78
16 1.33× 10−3 1.82 1.21× 10−3 2.11 1.42× 10−3 2.21
32 2.65× 10−4 2.32 3.50× 10−4 1.79 7.23× 10−4 0.97
64 7.46× 10−5 1.83 1.00× 10−4 1.80 2.56× 10−4 1.49
128 1.80× 10−5 2.05 2.58× 10−5 1.95 8.80× 10−5 1.54

TABLE 2. Order of the error for the velocity of the Bagnold flow with lateral wall
effect. Case W = 283ds.
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FIGURE 6. (Colour online) Comparison between the laboratory experiments (symbols)
and simulations (dash-dotted lines) in Jop et al. (2007), and simulations using the MSM
with the µ(I)-rheology (solid lines) for the transient velocity profiles for two different
slopes θ , and times t∗ = t/

√
ds/g: (a) θ = 26.1◦, t∗ = 1.2, 15.1, 166.1; (b) θ = 32.15◦,

t∗ = 2.3, 7.5, 24.2, 77.8, 175.

4.1.3. Laboratory experiments: transient velocity profiles
We compare our model with the experiments and simulations presented in Jop et al.

(2007) where granular material is flowing within a narrow channel of width W =
19ds ≈ 1 cm. The grain diameter is ds = 0.53 mm, the volume fraction is ϕs = 0.6
and the rheological parameters are µs = tan(20.9◦), µ2 = tan(32.76◦) and I0 = 0.279.
The friction with the wall is modelled as in the precedent test, following (4.4). In this
case, the authors set the friction coefficient with the sidewalls as µw = tan(13.1◦).

For the simulations, we impose zero velocity at the initial time and the material
flows because of the gravitational force. We use 50 layers in the MSM. Figure 6
shows the comparison between the results in Jop et al. (2007) and the simulation
using the MSM µ(I)-rheology model for the transient velocity profiles and its final
state in two configurations. As is concluded in Jop et al. (2007), the agreement for
the transient velocity profiles is better for high slopes and less accurate for low
inclinations. In the case of high inclination angles our model results are similar
to their simulations (see figure 6b), and are slightly better in the other cases (see
figure 6a).

4.2. Granular collapse experiments
We will now use the MSM to simulate the laboratory experiments performed in
Mangeney et al. (2010). The objectives are: to evaluate if (i) the model with the
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µ(I)-rheology gives a reasonable approximation of the flow dynamics and deposits of
highly transient and non-uniform granular flows, (ii) it recovers the strong change in
the shape of the velocity profiles with time and space, (iii) it reproduces the increase
in runout distance observed for increasing thickness of the erodible bed above a
critical slope angle θc ∈ [12◦, 16◦] and (iv) the multilayer approach improves the
results compared to the classical depth-averaged Saint-Venant model (i.e. monolayer
model).

In § 4.2.1 we also introduce a modification in the calculation of the friction
coefficient µ(I). In particular, we take into account second-order terms to approximate
‖D(u)‖. As shown below, this correction provides better results in some test cases.

4.2.1. Improvement of the approximation of the µ(I) coefficient
The advantage of the multilayer models is that we obtain a variable profile of the

downslope velocity, in contrast with the prescribed profile of the monolayer model.
It makes it possible to obtain a better approximation of ‖D(u)‖ (see (3.33)). As a
consequence, this improves the approximation of the inertial number I (see (2.7) and
(3.37)), which is a key number in the variable friction coefficient µ(I).

As the main advantage of the multilayer model is the improvement of the
approximation of ‖D(u)‖, we present two approximations that can be made with
the multilayer model. First, let us recall that a first-order approximation corresponds
to the definition (3.33). This approximation considers only the leading-order term, i.e.
‖D(u)‖α+1/2 ≈ ‖∂zuα+1/2‖ = ‖U H

Z ,α+1/2‖. Note that in dimensionless form, we have

‖D(u)‖ =
√

1
ε2
(∂zu)2 + 4(∂xu)2 + 2∂xw∂zu+ ε2(∂xw)2. (4.7)

We can improve the approximation of ‖D(u)‖ at the interfaces z = zα+1/2 by
considering the approximation taking into account second-order terms in the previous
equation. For the numerical tests, we consider the following approximation ‖D(u)‖
at the interfaces,

‖D(u)‖α+1/2 ≈
√
|U H

Z ,α+1/2|2 + (∂x(uα+1 + uα))2. (4.8)

Note that this definition corresponds to an approximation of

‖D(u)‖ ≈
√
(∂zu)2 + 4(∂xu)2 (4.9)

at z = zα+1/2. Nevertheless, in (4.7), the term 2∂zu ∂xw is not taken into account
although it is of the same order as 4(∂xu)2. This is because when an approximation
of this term is added, we obtain results that are very similar to those obtained when
considering (4.8). Furthermore, adding this term implies an additional computational
cost since pre-calculated vertical velocities are required. Note that (4.8) is a
second-order correction while we have developed a first-order model that neglects
other second-order terms. This correction, however, highlights the importance of
second-order terms in granular collapses over erodible beds, even if it is a partial
correction.

The effect of this second-order approximation on the results is discussed below in
§§ 4.2.3 and 4.2.4. In particular, we observe an improvement of the results compared
to the original first-order approximation of ‖D(u)‖.
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z

x

FIGURE 7. Sketch of the initial and final state of the granular collapse. A granular column
with a thickness h0 = 14 cm and a length r0 = 20 cm is released on an inclined plane
of slope θ . The plane is covered by an erodible bed of thickness hi made of the same
material. When the flow stops, the maximum final thickness is hf and its final extent rf .

4.2.2. Experimental and test data
In the laboratory experiments performed in Mangeney et al. (2010), subspherical

glass beads of diameter ds = 0.7 mm were used. The particle density ρs =
2500 kg m−3 and volume fraction ϕs = 0.62 were estimated, leading to an apparent
flow density ρ = ϕsρs = 1550 kg m−3.

The variable rf denotes the runout distance, i.e. the length of the deposit measured
from the position of the front of the released material at the initial time located at
x = 0 m, tf denotes the flow time from t = 0 s to the time when the material stops
and hf denotes the maximum final thickness of the deposit (see figure 7).

In order to use the µ(I)-rheology, the rheological parameters (µs, µ2 and I0) must
be defined. We consider the data proposed in Ionescu et al. (2015). The minimum and
maximum friction angles are µs = tan(20.9◦) and µ2 = tan(32.76◦), according to the
measurements made in the experiments presented in Pouliquen & Forterre (2002) and
Jop et al. (2005). These parameters can be obtained by fitting the curve hstop(θ), where
hstop is the thickness of the deposit lying on the slope when the supply is stopped after
steady uniform flow (see Pouliquen (1999b) for more details). Nevertheless, in Ionescu
et al. (2015) the value of µs and µ2 are incremented, in order to consider the effect
of lateral wall friction. Let us remember that lateral wall friction is modelled in Jop
et al. (2005) as an additional friction term µw(h− z)/W, where µw= tan(10.4◦) is the
coefficient of friction in the side walls. Moreover, the thickness of the flowing layer
(see Mangeney et al. 2010) is approximately 0.05 m and the width of the channel
W=10 cm. Therefore, the additional friction term is approximately 0.1. As a result, in
Ionescu et al. (2015) the authors propose to consider µs= tan(25.5◦)≈ tan(20.9◦)+0.1
and µ2 = tan(36.5◦) ≈ tan(32.76◦) + 0.1. Moreover, we set I0 = 0.279 (see Jop et al.
2006).

That might be a coarse way to introduce the wall friction effect, owing that the
multilayer model is able to approximate the term µw(h− z)/W in each layer. However,
introducing the friction term µw(h− z)/W does not give good results in this granular
collapse test. Actually it seems that there is not enough friction at the initial times
to well capture the S-shaped profile. Note that the numerical simulations with the
proposed hydrostatic multilayer approach cannot be accurate at short times because
the dominant effect is the non-hydrostatic pressure. At short times the flowing layer
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Models/Data Acronyms Line style

Experimental data Lab (blue)
Multilayer shallow model µ(I)-MSM (green)
MSM with the correction (4.8) µ(I)-C-MSM (black)
Monolayer model µ(I)-monolayer (green)
MSM with const. friction coef. µs-MSM (red)
Monolayer model with const. friction coef. µs-monolayer (red)

TABLE 3. Summary of notation of the different models and colours/symbols.

can be overestimated, and, consequently, the effect of the lateral wall friction is not
properly taken into account. These comparisons only make sense at the latter stage of
the flow. We plot the results for intermediate times in order to illustrate this discussion
(see figure 15).

This experiment has been simulated for different slopes θ and thicknesses hi of the
erodible bed: θ = 16◦ and hi = 1.4, 2.5, 5 mm, θ = 19◦ and hi = 1.5, 2.7, 5.3 mm,
θ = 22◦ and hi= 1.82, 3.38, 4.6 mm, and θ = 23.7◦ and hi= 1.5, 2.5, 5 mm. Note that
the model does not take into account the effect of removing the gate during the initial
instants even though it has a non-negligible impact on the flow dynamics as shown in
Ionescu et al. (2015). For instance, when the gate is taken into account, even with no
friction along it, the flow is substantially slowed down; however, the deposit is almost
unchanged. All the simulations are performed using 20 layers.

We compare hereafter (i) the constant and variable friction rheologies and (ii)
the monolayer and multilayer approaches. In table 3, we summarize the notation
and symbols used for the different models. MSM is the notation for multilayer
models. Note that the monolayer model with a constant friction coefficient (denoted
µs-monolayer model) corresponds to the Savage–Hutter classical model when
Kact/pas = 1. This model is widely used in the literature, e.g. Gray, Tai & Noelle
(2003), Mangeney-Castelnau et al. (2005). Note also that the monolayer model with
a variable friction coefficient (denoted µ(I)-monolayer model) corresponds to the one
proposed by Pouliquen (1999b), which has been recently used by Mangeney-Castelnau
et al. (2003) and Mangeney et al. (2007). This model also coincides with the one
proposed in Gray & Edwards (2014) by dropping second-order terms, that is, viscous
terms.

4.2.3. Deposit profiles
Let us compare the deposits simulated with the µ(I)-rheology and with a constant

friction coefficient µs for different slopes θ and erodible bed thicknesses hi. Figure 8
shows that the deposit calculated with the variable friction coefficient µ(I) is closer
to the experimental deposit than the one calculated with a constant friction coefficient
µs. The runout distance with the constant coefficient µs is always too long except for
θ = 19◦ and hi = 5.3 mm (see figure 8d). To properly reproduce the runout distance
with a constant friction coefficient, we need to increase its value. For example, with
a slope θ = 16◦ and an erodible bed thickness hi = 2.5 mm (figure 8a), we need
to use the value µs = tan(27.3◦) to produce the runout observed in the laboratory
experiments. That means an increment of 0.039 in the µs value. These results are
consistent with the simulations of Ionescu et al. (2015), showing that the runout is
strongly overestimated when the viscosity tends to zero (i.e. when µ tends to µs).
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FIGURE 8. (Colour online) Deposit obtained in the experiments (solid-circle blue line),
with the µs-MSM (dotted-circle red line) and with the µ(I)-MSM (solid-cross green line),
for different slopes θ and erodible bed thicknesses hi.
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FIGURE 9. (Colour online) Deposit obtained in the experiments (solid-circle blue line),
with the µs-MSM (dotted-circle red line), the µ(I)-MSM (solid-cross green line), the µs-
monolayer model (dashed red line) and with the µ(I)-monolayer model (solid green line)
for a slope θ = 22◦ and an erodible bed thickness hi= 1.82 mm. Circled sections indicate
specific locations for data shown in figure 10.

Figure 9 shows, for a slope θ = 22◦ and hi = 1.82 mm, the final deposit obtained
using the constant or variable friction coefficients for multilayer and monolayer
models. The difference between the multilayer and monolayer models is stronger
when using the µ(I)-rheology. For instance, the multilayer approach changes the full
deposit profiles for the µ(I)-rheology, while it only changes the front position for µs.
The multilayer approach makes it possible to obtain a deposit shape which is very
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FIGURE 10. (Colour online) Influence of the thickness of the erodible bed on the runout
distance rf and on the maximum final thickness hf (inset graphs) with the µ(I)-MSM (a)
and with the µs-MSM (b), for a slope θ = 22◦, in zones marked with circles in figure 9.

close to the experiments with the µ(I)-rheology. More generally, the shape of the
deposit is closer to the observations with µ(I)-MSM than with µs-MSM.

4.2.4. Effect of the erodible bed
Figure 10 shows two zooms, one near the maximum thickness of the deposit (zone

of circle (I) in figure 9), and one near the front (zone of circle (II) in figure 9), for θ =
22◦ and different values of hi. With the µ(I)-MSM, the runout distance rf increases as
the thickness of the erodible bed hi increases (figure 10a(II)) as observed in laboratory
experiments. On the contrary, with the µs-MSM (figure 10b(II)), the runout distance
rf decreases with increasing hi. Note that in both cases the maximum final thickness
hf decreases with increasing hi as it occurs in the experiments (figure 10a(I),b(I)).

Figure 11 shows that the decrease in runout distance with increasing hi for constant
friction µs is observed for all slopes, e.g. θ = 0◦, 10◦, 16◦, 19◦, 22◦ and 23.7◦. For the
constant friction coefficient case, the µs-MSM and µs-monolayer models follow the
same trend. Note that this non-physical decrease in runout distance with increasing
hi has been demonstrated analytically in Faccanoni & Mangeney (2013) for the
monolayer model. Moreover, laboratory experiments show that when the thickness of
the erodible bed increases, for slopes θ > θc, where θc ∈ [12◦, 16◦] is a critical slope,
the runout distance rf and the stopping time tf both increase while the maximum final
thickness hf decreases. Note that there is no pattern concerning the runout when the
thickness hi is increased for slopes θ < θc (θ = 0◦, 10◦) in the laboratory experiments.

Figure 12 shows that the increase of runout distance observed in the experiments
for increasing hi is qualitatively well reproduced with the µ(I)-MSM. With the µ(I)-
MSM, the runout increase with hi is actually larger for higher slopes, as observed
experimentally: at θ = 16◦, the runout distance is almost unaffected by the thickness
of the erodible bed while it increases by 26.9 % at θ = 22◦ when the thickness of the
erodible bed increase from 1.82 to 4.6 mm. Note that in the µ(I)-MSM, the increase
of the runout distance appears on slopes θ > 16◦, higher than θc in the experiments.
Actually, it appears starting with the slope θ = 18◦. When using the µ(I)-monolayer
model, the runout distance is higher than for the µ(I)-MSM whatever the slope and
thickness of the erodible bed. Based on the values of the runout distance in these
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FIGURE 11. (Colour online) Influence of the thickness hi of the erodible bed on the
final runout rf for slopes θ = 0◦, 10◦, 16◦, 19◦, 22◦ and 23.7◦ observed in the experiments
of Mangeney et al. (2010) (solid-circle blue line) and obtained with different simulations
using the µs-MSM, with 20 layers (dotted-circle red line) and the µs-monolayer model,
i.e. the Savage–Hutter model (dashed red line). There is no laboratory data for θ = 23.7◦.
Normalization is made using h0 = 14 cm.

cases, it is hard to discriminate which of the monolayer or multilayer models is closer
to the experiments. However, in the µ(I)-monolayer model, the runout distance at θ =
16◦ and 19◦ decreases when hi increases, contrary to the experimental data. For θ =
22◦ and θ = 23.7◦, the monolayer and multilayer µ(I) models reproduce qualitatively
the increase in runout with hi. Note that for θ = 0◦, 10◦ (θ < θc), the µ(I) models
predict a very slight decrease in the runout distance.

The µ(I)-MSM is the model corresponding to the multilayer approach with the
µ(I)-rheology when ‖D(u)‖ is approximated by the main term in (4.7), and µ(I)-C-
MSM when ‖D(u)‖ is approximated by the correction (4.8). Figure 12 shows that
the correction of ‖D(u)‖ corresponding to µ(I)-C-MSM improves the simulation of
both the runout extent and the influence of the erodible bed. They both increase the
runout when hi increases, although the effect of erosion is still much smaller than in
the experiments.

For example, for θ = 19◦, when hi varies from 1.5 to 5.3 mm, the experimental
runout increases by 15.1 %. On the contrary, for the monolayer model the runout
decreases by 1.1 %. For the µ(I)-MSM the runout increases by 2.5 %, and for the
µ(I)-C-MSM it increases by 6.8 %. For θ = 22◦, when hi varies from 1.82 to 4.6 mm,
the experimental runout increases by 26.9 %. It increases by 2.2 %, 4.4 % and 8.6 %
for the monolayer model, the µ(I)-MSM and the µ(I)-C-MSM, respectively.

In figure 13, the final time (time at which the front stops) is plotted as a function
of the thickness of the erodible bed for θ = 16◦, θ = 19◦ and θ = 22◦. Moreover, for
θ =22◦, we also plot the experimental data. Experimental data show that the final time
increases when the thickness of the erodible bed increases. We can see that this is true
for all the values of θ for the multilayer method. However, we observe that it is only
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FIGURE 12. (Colour online) Influence of the thickness hi of the erodible bed on the final
runout rf for slopes θ = 16◦, 19◦, 22◦ and 23.7◦ observed in the experiments of Mangeney
et al. (2010) (solid-circle blue line) and obtained with different simulations using the µ(I)-
MSM, with 20 layers (solid-cross green line), with the µ(I)-monolayer model (solid green
line) and with the µ(I)-C-MSM (dashed black line). There is no laboratory data for θ =
23.7◦. Normalization is made using h0 = 14 cm.
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FIGURE 13. (Colour online) Influence of the thickness hi of the erodible bed on the final
time tf for slopes θ = 16◦, 19◦ and 22◦ by using the µ(I)-MSM with 20 layers (solid-
cross green line), the µ(I)-monolayer model (solid green line) and the values observed
in the experiments of Mangeney et al. (2010) for slope θ = 22◦ (solid-circle blue line).
Normalization is made using τc =√h0/(g cos θ) and h0 = 14 cm.

true for the highest value, θ = 22◦, in the case of the monolayer model, whereas the
final time decreases when the erodible bed increases for θ = 16◦ and θ = 19◦.

4.2.5. Flow dynamics and velocity profiles
Figures 14 and 15 show the time evolution of the granular column thickness for

a slope θ = 22◦ and an erodible bed of thickness hi = 1.82 mm for µs and µ(I),
respectively, for both the monolayer and multilayer models. As observed for the
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FIGURE 14. (Colour online) Thickness of the granular mass at different times in the
experiments (solid-circle blue line), with the µs-MSM with 20 layers (dotted-circle red
line), with the µs-monolayer model (Savage–Hutter model, dashed red line) and with
the flow/non-flow interface (dashed brown line), for the slope θ = 22◦ and erodible bed
thickness hi = 1.82 mm.

deposit, the difference between the thickness profiles simulated with the multilayer
and the monolayer model is stronger for µ(I) than for µs. The µ(I)-MSM makes it
possible to increase the maximum thickness of the flow and decrease the thickness
of the front. This is an important result as the shape of the front may be an indicator
of the flow rheology (Pouliquen 1999a; Jessop et al. 2012).

When a constant coefficient µs is used, very similar profiles are obtained with the
µs-MSM and µs-monolayer model (Savage–Hutter model). As a result, the multilayer
approach does not significantly improve the results when a constant friction coefficient
is used. Note that during the initial instants, the simulated mass spreads faster than
in the experiments. This is partly due to the role of initial gate removal that is not
taken into account here. However, this effect does not explain the strong difference
between the simulation and experiments (see Ionescu et al. 2015 for more details).
The hydrostatic assumption may also be responsible for this overestimation of the
spreading velocity (see e.g. Mangeney-Castelnau et al. 2005). In these figures we
also show the flow/no-flow interfaces computed with the multilayer models µs-MSM,
µ(I)-MSM and µ(I)-C-MSM, by considering a threshold velocity of 0.001 m s−1

to compute these interfaces. We see in figure 14 that the flow/no-flow interface has
a step-like shape for µs-MSM while it has a smoother shape for µ(I)-MSM (see
figure 15) in better qualitative agreement with laboratory experiments and numerical
modelling solving the full Navier–Stokes equations (e.g. figures 9 and 18 of Ionescu
et al. 2015). The flow/no-flow interface in the uppermost part even seems to be
improved when using µ(I)-C-MSM. For µ(I)-MSM and µ(I)-C-MSM, the lower
layers stop before the upper layers as observed experimentally. Note that in figures 14
and 15 we do not see the flow/no-flow interface at the final time because the material
has already stopped. As was shown in § 4.1.1, the wall friction effect is crucial to
determine the position of the flow/no-flow interface. Because in this test we do not
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FIGURE 15. (Colour online) Thickness of the granular mass at different times in the
experiments (solid-circle blue line), with the µ(I)-MSM using 20 layers (solid-cross
green line), with the µ(I)-monolayer model (solid green line), with the µ(I)-C-MSM
(dashed black line), and the flow/non-flow interface with both multilayer models (dashed
brown/solid brown lines) for the slope θ = 22◦ and erodible bed thickness hi = 1.82 mm.

consider the exact definition of the wall friction term, as in Ionescu et al. (2015), the
flow/no-flow interface should not be very well captured.

Figure 16 shows that the second-order correction in µ(I)-C-MSM leads to
simulated deposits that are generally closer to the experimental observations than
those calculated with µ(I)-MSM. In particular, the deposits at θ = 19◦ and θ = 22◦
with hi = 4.6 mm are very well reproduced (figure 16b,c,d, f ). However, in some
cases, µ(I)-MSM gives better results than µ(I)-C-MSM, for example for θ = 22◦
with hi = 1.82 mm. This is true for the overall dynamics as illustrated in figure 15
that shows the time change of the granular column thickness. We can see that with
µ(I)-C-MSM, the avalanche is faster and the runout is overestimated and very similar
to the runout obtained with the µ(I) monolayer model. As other second-order terms
than those included in the µ(I)-C-MSM model are neglected, it is not easy to draw
a firm conclusion on the improvement of results when using second-order terms.

The multilayer approach makes it possible to obtain a normal profile of the
downslope velocity. Figures 17 and 18 show the normal profiles of the downslope
velocity obtained at different times until the mass stops, for two different configura-
tions of slopes and erodible beds. In order to obtain a more accurate profile, 40 layers
are used in the µ(I)-MSM. The different kind of profiles observed in figures 17
and 18 are in good qualitative agreement with typical velocity profiles of granular
flows GDR MiDi (2004) (see also Lusso et al. 2015a and Lusso et al. 2015b), from
Bagnold-like to S-shaped profiles. This shows the ability of the model to recover
velocity profiles in a wide range of regimes.

Finally, let us compare the averaged velocity obtained with the µ(I)-monolayer
model to the average of the velocities over all the layers in the µ(I)-MSM. In
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FIGURE 16. (Colour online) Simulated deposits at different slopes θ and erodible bed
thicknesses hi with the µ(I)-C-MSM (dashed black line) and the µ(I)-MSM (solid-cross
green line). The deposits observed in the experiments are represented by solid-circle blue
lines.

figure 17, for the green profile (respectively red and magenta profiles), the velocity
in the monolayer model is 1.01 m s−1 (respectively 0.02 and 0.14 m s−1) and it is
0.95 m s−1 in the multilayer model (respectively 0.03 and 0.05 m s−1). Note that
we obtain similar values for the first and second profiles. For the third profile, the
averaged velocities strongly differ. Actually, at this position and time, the velocity
profile corresponds to the stopping phase for the multilayer model but not for the
monolayer model. As a result, the velocity obtained in the multilayer model is lower
than that obtained in the monolayer model. Figure 19 shows the normal profile
of normal velocity for the same configuration as figure 17. Note that the normal
velocities are always negative and that their absolute values are greater in the upper
layers.

5. Conclusions
In this work, we have proposed a multilayer shallow model (MSM) for dry granular

flows that considers a µ(I)-rheology. The multilayer approach has been applied as in
Fernández-Nieto et al. (2014), thus leading to a solution of the resulting model that is
a particular weak solution of the full Navier–Stokes equations with the µ(I)-rheology.
A regularization method has been used to avoid the singularity occurring when ‖D(u)‖
vanishes. Our multilayer model satisfies a dissipative energy inequality, which is a
requirement for a geophysical model to achieve a solution with physical meaning.

The numerical solutions of this model have been compared to the steady uniform
Bagnold flow, whose analytical solution is known (Silbert et al. 2001; GDR MiDi
2004; Lagrée et al. 2011). The model has also been compared with analytical solution
and laboratory experiments of granular surface flows in narrow channel, where the
lateral walls have an important role in the velocity profile (Jop et al. 2005, 2007).
The MSM gives accurate approximations of these tests.
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FIGURE 17. (Colour online) Normal profiles of the downslope velocity obtained with the
µ(I)-MSM (40 layers) for θ = 22◦ and hi= 1.82 mm during granular collapse at different
positions (x=0.095,0.495,0.995 m). For these positions, we represent the velocity profiles
for different times, taken every 0.15 s (blue lines). The first selected profile (green) shows
a profile at the beginning of the flow and the second (red) and third (magenta) profiles
were measured during the stopping stage. The final deposit is represented by the solid
brown line.
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FIGURE 18. (Colour online) Normal profiles of the downslope velocity obtained with the
µ(I)-MSM (40 layers) for θ = 0◦ and hi = 1.5 mm during granular collapse at different
positions (x= 0.045, 0.245 m) and times taken every 0.05 s.

By comparing the numerical results obtained with this new model to laboratory
experiments, we have shown that the model qualitatively and sometimes quantitatively
reproduces the granular column collapses over inclined erodible beds performed
in Mangeney et al. (2010). The increase of the runout distance with increasing
thickness of the erodible bed is only reproduced when using the MSM with the
µ(I)-rheology (µ(I)-MSM), although this increase is significantly underestimated.
To our knowledge, this is the first time that a model has been able to reproduce
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FIGURE 19. (Colour online) Normal profiles of the normal velocity obtained with the
µ(I)-MSM (40 layers) for θ = 22◦ and for hi = 1.82 mm during granular collapse at
different positions (x= 0.095, 0.495, 0.995 m) and times taken every 0.2 s.

this effect. The increase in runout distance appears for slopes θ > 18◦ whereas it is
observed for slopes θ > 16◦ in the laboratory experiments. On the other hand, when
using the µ(I)-monolayer model, the increase of runout distance with the thickness
of the erodible bed only occurs for slopes θ > 21◦. Moreover, in the monolayer
model for θ = 19◦, the runout distance decreases as the thickness of the erodible
bed increases, contrary to observations. As a result, when using the µ(I)-rheology,
the multilayer model significantly improves the simulated deposits at different slopes
over different thicknesses of the erodible bed compared to the monolayer model. In
particular it changes the shape of the front. This is an important result as the shape
of the front may be an indicator of the flow rheology (Pouliquen 1999a; Jessop et al.
2012).

When considering a constant friction coefficient, the multilayer approach only
slightly changes the results compared to the monolayer model. Even with the
multilayer model, the use of a constant friction coefficient does not make it possible
to reproduce the increase in runout distance with increasing thickness of the erodible
bed. In fact, the opposite effect is observed. This confirms the analytical results of
Faccanoni & Mangeney (2013) obtained for the monolayer Savage–Hutter equations.
Furthermore the constant friction model strongly overestimates the front velocity and
the runout distances. As a result, simulation of the effect of a thin erodible bed on
the granular front dynamics in granular collapses and on their deposits seems to be
a good test to discriminate between the different rheologies.

An important result is that this multilayer approach allows us to obtain the normal
profiles of the downslope and normal velocities. These profiles qualitatively agree with
the typical granular flow profiles during the developed flow and during the stopping
phase GDR MiDi (2004). In particular, the model makes it possible to reproduce the
change from Bagnold-like to S-shaped velocity profiles, characteristic of flows over a
rigid substrate and over a layer of static grains, respectively. As a result, this model
should be applicable to a larger range of flow regimes than the depth-averaged models
proposed by Capart et al. (2015) and Edwards & Gray (2015) for which velocity
profiles are prescribed.
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One of the differences between the multilayer and monolayer approaches is the
accuracy of the approximation of the strain rate and consequently of the inertial
number and the µ(I) friction coefficient. We have seen that the µ(I)-C-MSM model,
which introduces a second-order correction to improve the approximation of the
strain rate, generally improves the results. The increase in runout distance when
the thickness of the erodible bed is increased is larger and therefore closer to
the laboratory experiments. In addition, the critical slope above which the runout
increases with the thickness of the erodible bed is θ > 16◦, which is closer to the
value observed in the experiments than the critical slope predicted by the model
without the second-order correction. This suggests that the extension of this shallow
model up to the second order could be an important contribution.

Acknowledgements

This research has been partially supported by the Spanish Government and FEDER
through the research project MTM2012-38383-C02-02, by the Andalusian Government
through the project P11-RNM7069, by the ANR contract ANR-11-BS01-0016
LANDQUAKES, the USPC PEGES project and the ERC contract ERC-CG-2013-
PE10-617472 SLIDEQUAKES.

Appendix A. Derivation of the multilayer model

This appendix is dedicated to clarifying the complete derivation of the final model
shown in § 3.3.

Let us consider the weak formulation of (3.11) in Ωα(t) for α = 1, . . . , N. We
assume that the velocity u, the pressure p and the density ρ are smooth in each Ωα(t)
but may be discontinuous across the interfaces Γα+1/2 for α = 1, . . . ,N − 1.

Assuming uα ∈ L2(0, T; H1(Ωα(t))2), ∂tuα ∈ L2(0, T; L2(Ωα(t))2) and pα ∈
L2(0, T; L2(Ωα(t))), then a weak solution in Ωα(t) should satisfy

0=
∫
Ωα(t)

(∇ · uα)ϕ dΩ,

−1
ε

∫
Ωα(t)

ρf · v dΩ =
∫
Ωα(t)

ρ∂tuα · v dΩ +
∫
Ωα(t)

ρ(uα · ∇uα) · v dΩ

+ 1
ε

∫
Ωα(t)

(∇ · (E pα)) · v dΩ − 1
ε

∫
Ωα(t)

(∇ · (τε,α)) · v dΩ,


(A 1)

for all ϕ ∈ L2(Ωα(t)) and for all v ∈H1(Ωα(t))2.
We consider unknowns, velocities and pressures, that satisfy (3.20) and the system

(A 1) for test functions such that

∂zϕ = 0 (A 2)

and
v(t, x, z)= (v(t, x), (z− b)V(t, x))′, v|∂IF (t)

= 0, (A 3a,b)

where v (t, x) and V(t, x) are smooth functions that do not depend on z.
We will now develop (A 1) in order to obtain the mass and momentum conservation

equations that satisfy the weak solution for this family of test functions for each layer.
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A.1. Mass conservation
Similarly to the development in Fernández-Nieto et al. (2014), we obtain the mass
conservation law for each layer

∂thα + ∂x(hαuα)=Gα+1/2 −Gα−1/2, α = 1, . . . ,N, (A 4)

where GN+1/2 and G1/2 stand for the mass exchange with the free surface and the
bottom respectively and both should be given data.

A.2. Momentum conservation

Let v ∈ H1(Ωα)
2 be a test function satisfying (A 3). We develop the momentum

equation in (A 1) by integrating with respect to the variable z and by identifying the
horizontal and vertical components of the vector test function v. In addition, taking
into account the hydrostatic pressure framework, we can leave out the equation
corresponding to the vertical component. This is equivalent to considering the vector
test function where the vertical component vanishes, i.e. v= (v(t, x), 0). Therefore, the
horizontal momentum equation reads, for a weak solution u and for all α= 1, . . . ,N:

−1
ε

∫
Ωα(t)

ρf · (v , 0) dΩ =
∫
Ωα(t)

ρ∂t(uα, εwα) · (v, 0) dΩ

+
∫
Ωα(t)

ρ((uα, εwα) · ∇(uα,wα)) · (v, 0) dΩ

− 1
ε

∫
Ωα(t)

(pαE ) : ∇(v, 0) dΩ + 1
ε

∫
Ωα(t)

τε,α : ∇(v , 0) dΩ

+ 1
ε

∫
Γα+1/2(t)

((−pα+1/2E + τ−ε,α+1/2)nα+1/2) · (v, 0) dΓ

− 1
ε

∫
Γα−1/2(t)

((−pα−1/2E + τ+ε,α−1/2)nα−1/2) · (v , 0) dΓ.

(A 5)

We develop each term of this equation, taking into account that

∂zuα = ∂zv = v|∂IF (t)
= 0. (A 6)

The only terms that differ from those in Fernández-Nieto et al. (2014) are those
affected by the stress tensor. So we specify the development just for them. The rest
of the terms in (A 5) follow the same pattern as in Fernández-Nieto et al. (2014).

We prove that the term corresponding with the horizontal diffusion is a second-order
term:

1
ε

∫
Ωα(t)

τε,xx,α∂xv dΩ = 1
ε

∫
IF(t)

(∫ zα+1/2

zα−1/2

τε,xx,α∂xv dz

)
dx

= 1
ε

∫
IF(t)

(∫ zα+1/2

zα−1/2

τε,xx,α dz

)
∂xv dx

= −1
ε

∫
IF(t)

∂x

(∫ zα+1/2

zα−1/2

τε,xx,αdz

)
v dx
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+ 1
ε

∫
∂IF(t)

(∫ zα+1/2

zα−1/2

τε,xx,α dz

)
v n dΓ

= −1
ε

∫
IF(t)

∂x

(∫ zα+1/2

zα−1/2

τε,xx,αdz

)
v dx. (A 7)

Because ∂zuα = 0, we obtain that ‖Dε(uα)‖ is independent of z up to order ε, since

Dε(uα)=
(
ε2∂xuα 0

0 ∂zw

)
. (A 8)

Then, we get

1
ε

∫ zα+1/2

zα−1/2

τxx,α dz= 1
ε

∫ zα+1/2

zα−1/2

ε2η ∂xuα dz=O(ε). (A 9)

Therefore, we can neglect this term since we are interested in the first-order model.
Finally, the term that appears in the interfaces is written∫

Γα+1/2(t)
((−E pα+1/2 + τ−ε,α+1/2)nα+1/2) · (v, 0) dΓ

=
∫

IF(t)
((−E pα+1/2 + τ−ε,α+1/2)nα+1/2) · (v, 0)

√
1+ (∂xzα+1/2)2 dx. (A 10)

Note that (1/ε)E pα+1/2nα+1/2 · (v, 0)= pα+1/2nα+1/2 · (v, 0). Moreover,

(τ−ε,α+1/2nα+1/2) · (v, 0)
√

1+ (∂xzα+1/2)2 = (τ−ε,xx,α+1/2∂xzα+1/2 − τ−ε,xz,α+1/2)v. (A 11)

Introducing these calculations into (A 5) and taking into account that f = (tan θ/Fr2,
1/Fr2)′, we obtain∫

IF(t)

[
ρhα∂tuα + ρhαuα ∂xuα + ρ

Fr2
hα∂x(b+ h)+ 1

ε
ρhα

tan θ
Fr2

+ 1
ε
(τ−ε,xx,α+1/2∂xzα+1/2 − τ−ε,xz,α+1/2)−

1
ε
(τ+ε,xx,α−1/2∂xzα−1/2 − τ+ε,xz,α−1/2)

]
v dx= 0.

(A 12)

And this yields, for each layer α = 1, . . . ,N, the momentum equation

ρhα∂tuα + ρhαuα ∂xuα + ρ

Fr2
hα∂x(b+ h)+ ρ 1

ε
hα

tan θ
Fr2

+ 1
ε
(τ−ε,xx,α+1/2∂xzα+1/2 − τ−ε,xz,α+1/2)−

1
ε
(τ+ε,xx,α−1/2∂xzα−1/2 − τ+ε,xz,α−1/2)= 0.

(A 13)

Observe that

τ−ε,xx,α+1/2∂xzα+1/2 − τ−ε,xz,α+1/2 =
[
τ−ε,α+1/2nα+1/2

√
1+ (∂xzα+1/2)2

]
H

, (A 14)
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where [·]H denotes the first component. Now by (3.29) we obtain[
τ−ε,α+1/2nα+1/2

√
1+ (∂xzα+1/2)2

]
H

=
[
τ̃ε,α+1/2nα+1/2

√
1+ (∂xzα+1/2)2 − ε2ρGα+1/2[u]|Γα+1/2(t)

]
H

= τ̃ε,xx,α+1/2∂xzα+1/2 − τ̃ε,xz,α+1/2 − ε2ρGα+1/2(uα+1 − uα), (A 15)

and analogously[
τ+ε,α−1/2nα−1/2

√
1+ (∂xzα−1/2)2

]
H

= τ̃ε,xx,α−1/2∂xzα−1/2 − τ̃ε,xz,α−1/2

+ ε
2
ρGα−1/2(uα − uα−1). (A 16)

This allows us to rewrite the momentum equation as

ρhα∂tuα + ρhαuα ∂xuα + ρ

Fr2
hα∂x(b+ h)+ ρ 1

ε
hα

tan θ
Fr2

+ 1
ε
(τ̃ε,xx,α+1/2∂xzα+1/2 − τ̃ε,xz,α+1/2)− 1

ε
(τ̃ε,xx,α−1/2∂xzα−1/2 − τ̃ε,xz,α−1/2)

= 1
2
ρGα+1/2(uα+1 − uα)+ 1

2
ρGα−1/2(uα − uα−1). (A 17)

Note that

1
ε
(τ̃ε,xx,α+1/2∂xzα+1/2 − τ̃ε,xz,α+1/2)= 1

ε

[
τ̃ε,α+1/2nα+1/2

√
1+ (∂xzα+1/2)2

]
H

= 1
ε
[ηD̃ε,α+1/2nα+1/2]H

√
1+ (∂xzα+1/2)2 = εηα+1/2∂x

(
u+α+1/2 + u−α+1/2

2

)
∂xzα+1/2

− εηα+1/2

(
∂x

(
w+α+1/2 +w−α+1/2

2

))′
− 1
ε
ηα+1/2U

H
Z ,α+1/2. (A 18)

Now we define
Kα+1/2 =−1

ε
ηα+1/2U

H
Z ,α+1/2, (A 19)

where ηα+1/2 is an approximation of η at z= zα+1/2 given by

ηα+1/2 = µ(Iα+1/2)pα+1/2

max
(
|U H

Z ,α+1/2|,
µ(Iα+1/2)pα+1/2

ηM

) , (A 20)

with

pα+1/2 = ρ

Fr2

N∑
β=α+1

hβ, Iα+1/2 =
2 ds|U H

Z ,α+1/2|√
pα+1/2/ρs

. (A 21a,b)

These expressions of ηα+1/2 and Iα+1/2 are obtained from definitions (2.11) and (2.7),
respectively, by considering the hydrostatic pressure approximation (3.22) with the
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definition of ρ, (2.8) and with the following first-order approximation of ‖D(u)‖ at
z= zα+1/2,

‖D(u)‖|z=zα+1/2
≈ |U H

Z ,α+1/2|. (A 22)

By combining the previous equation with (A 4) we get the momentum equation up to
order ε,

ρ∂t(hαuα)+ ρ∂x(hαu2
α)+

ρ

Fr2
hα∂x(b+ h)+ ρ 1

ε
hα

tan θ
Fr2

=Kα−1/2 −Kα+1/2 + 1
2
ρGα+1/2(uα+1 + uα)− 1

2
ρGα−1/2(uα + uα−1), (A 23)

for α = 1, . . . ,N.
Next, we must impose friction at the bottom (Γα−1/2 with α= 1). We can translate

(3.6) into the notation of the multilayer approach, giving

w|Γ1/2
= 0,

1
ε
η1/2U

H
Z ,1/2 =

µ(I1/2)

ε
p1/2

u+1/2
|u+1/2|

.

 (A 24)

Therefore to impose the friction condition, we should change definition (A 19) of K1/2,
taking into account that

u+1/2 = u1. (A 25)

Then we obtain

K1/2 =−1
ε
η1/2U

H
Z ,1/2 =−

µ(I1/2)

ε
p1/2

u1

|u1| . (A 26)

Finally, the final model (3.38) is obtained when we write (A 23) in dimensional
variables.
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