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Well-resolved numerical simulations are used to study Rayleigh–Bénard–Poiseuille flow
over an evolving phase boundary for moderate values of Péclet (Pe ∈ [0, 50]) and Rayleigh
(Ra ∈ [2.15 × 103, 106]) numbers. The relative effects of mean shear and buoyancy
are quantified using a bulk Richardson number: Rib = Ra · Pr/Pe2 ∈ [8.6 × 10−1, 104],
where Pr is the Prandtl number. For Rib = O(1), we find that the Poiseuille flow inhibits
convective motions, resulting in the heat transport being only due to conduction and,
for Rib � 1, the flow properties and heat transport closely correspond to the purely
convective case. We also find that for certain Ra and Pe, such that Rib ∈ [15, 95], there
is a pattern competition for convection cells with a preferred aspect ratio. Furthermore, we
find travelling waves at the solid–liquid interface when Pe /= 0, in qualitative agreement
with other sheared convective flows in the experiments of Gilpin et al. (J. Fluid Mech., vol.
99(3), 1980, pp. 619–640) and the linear stability analysis of Toppaladoddi & Wettlaufer
(J. Fluid Mech., vol. 868, 2019, pp. 648–665).
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1. Introduction

Fluid flows that accompany solid–liquid phase transition are ubiquitous in both the natural
and engineering environments (Epstein & Cheung 1983; Glicksman, Coriell & McFadden
1986; Huppert 1986; Worster 2000; Hewitt 2020). The generation of fluid motions
in such situations is due to buoyancy forces generated by thermal and compositional
gradients arising during solidification (Davis, Müller & Dietsche 1984; Dietsche & Müller
1985; Wettlaufer, Worster & Huppert 1997; Worster 1997; Davies Wykes et al. 2018)
and/or externally imposed mean shear (Delves 1968, 1971; Gilpin, Hirata & Cheng
1980; Coriell et al. 1984; Forth & Wheeler 1989; Feltham & Worster 1999; Neufeld
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& Wettlaufer 2008a,b; Ramudu et al. 2016; Bushuk et al. 2019). In this study, we are
concerned with the shear- and buoyancy-driven flow of a pure melt over its evolving solid
phase.

Some of the first systematic investigations into the effects of a phase boundary
on convective motions in a pure melt are those of Davis et al. (1984) and Dietsche
& Müller (1985). Davis et al. (1984) studied fluid motions and pattern formation in
Rayleigh–Bénard convection (RBC) over a phase-changing boundary using experiments
and weakly nonlinear stability theory. The primary focus of their study was on identifying
different regimes in which roll, hexagonal and mixed patterns appeared at the phase
boundary. Some of the key results from their study are: (i) both the critical Rayleigh
number (Rac) and the critical wavenumber (kc) for the onset of convection decrease
monotonically with A, where A is the ratio of the initial thickness of the solid layer to
the initial thickness of the liquid layer, and asymptote to constant values for large values
of A; (ii) hexagonal and roll patterns on the phase boundary are observed when A is
large and small, respectively; and (iii) the onset of hexagonal convection is accompanied
by a jump in the heat flux and thereby in the mean position of the phase boundary. The
subsequent experimental study of Dietsche & Müller (1985) confirmed the predictions of
jump in the phase-boundary position and the existence of strong hysteresis behaviour near
the onset of convection. They also explored the different interfacial patterns that emerged
with increasing Ra.

Recent studies on the coupled convection-phase-change problem have focused on
Ra � Rac. Esfahani et al. (2018) numerically studied the interactions between a melting
isothermal solid phase and convective motions in the underlying liquid phase in two and
three dimensions. A key result from their study is that the dimensionless heat flux (N ) is
only weakly dependent on the Stefan number (S), which is defined as the ratio of latent
heat of fusion to the specific heat content of a material and quantifies the pace at which
phase change proceeds. Using a similar configuration in two dimensions, Favier, Purseed
& Duchemin (2019) systematically explored the different transitions in the convection
cell structure as the solid and liquid phases evolved. They showed that owing to the
presence of the phase boundary, the flow remains steady even at large Ra. This results
in higher heat transport than in the classical RBC in two dimensions, where the flow
becomes unsteady at Ra ≈ 7.5 × 105 (Toppaladoddi, Succi & Wettlaufer 2015a). Purseed
et al. (2020) considered a more general situation where the melting point of the solid
lies between the temperatures imposed at the upper and lower boundaries and studied the
bistability close to the onset of convection which was first predicted by Davis et al. (1984).

From the studies of thermal convection over phase boundaries it can be concluded
that when the temperature of the upper boundary is less than the melting point, the
phase boundary develops steady patterns, polygons, rolls or a mix of both, due to steady
convection cells for up to Ra = O(108). The introduction of a mean shear flow, however,
introduces additional interesting effects. The effects of both shear- and buoyancy-driven
flows on the directional solidification of two-component melts have been extensively
studied in the past. A detailed discussion of those studies can be found in Toppaladoddi &
Wettlaufer (2019).

Some of the early systematic studies on shear flows over phase boundaries are those
of Hirata, Gilpin & Cheng (1979a); Hirata et al. (1979b) and Gilpin et al. (1980). Here,
we focus on the work of Gilpin et al. (1980) because of certain features observed in their
experiments. Gilpin et al. (1980) considered a turbulent boundary-layer flow over a layer of
ice. At the initial instant, a groove was melted into the ice layer to introduce a perturbation
at the ice–water interface. Subsequently, the effects of the shear flow on the growth of this
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perturbation was studied. They observed that under certain conditions, the perturbation
grew and propagated downstream, leading to the formation of a ‘rippled’ surface. This
led to an increase in the heat transfer rate by as much as 30–60 % compared with a flat
surface. Gilpin et al. (1980) attributed these observations to the effects of shear. However,
because of the 4 ◦C density maximum of water, the layer of water overlying the ice surface
was unstably stratified. Hence, their observations were due to the combined effects of
mean shear and buoyancy. This was recognised by Toppaladoddi & Wettlaufer (2019),
who reanalysed the velocity profiles from the experiments of Gilpin et al. (1980) and
showed that these are described better by the Monin–Obukhov theory than the classical
law of the wall (Monin & Yaglom 1971). They also showed that the Obukhov length
scale that emerged from these measurements was negative, implying that the column of
liquid was unstably stratified. Furthermore, Toppaladoddi & Wettlaufer (2019) studied the
stability of a phase boundary with a Rayleigh–Bénard–Couette flow over it and showed
that buoyancy destabilises the phase boundary, whereas shear stabilises it. They also found
that for certain values of Pe, travelling waves are generated at the phase boundary. This
tendency of buoyancy to cause large ‘deformations’ to a phase boundary is also present
in the turbulent regime: Couston et al. (2020), who recently studied stably, neutrally and
unstably stratified shear flows over a phase boundary using direct numerical simulations
(DNS), found that when the flow is unstably stratified, the ‘channels’ and ‘keels’ that are
formed at the interface interact strongly with the underlying flow.

Here, motivated by the experiments of Gilpin et al. (1980), we study the dynamics
of an unstably stratified shear flow over a phase boundary in the laminar regime in
two dimensions. Specifically, we use a combination of the lattice Boltzmann method
(LBM) and the enthalpy method to simulate Rayleigh–Bénard–Poiseuille flow over a phase
boundary and study their interactions. The present study is also a qualitative continuation
of the work described in Toppaladoddi & Wettlaufer (2019) into the nonlinear regime.

2. Governing equations

The horizontally periodic domain used in this study is shown in figure 1. The cell height
and length are Lz and Lx, respectively. The aspect ratio of the domain is defined as Γ =
Lx/Lz. Initially, the phase boundary is planar at z = h0 and the fluid occupies the region
0 ≤ z ≤ h0. The initial thickness of the solid layer is d0 = Lz − h0. The bottom plate is
maintained at a temperature Th and the top plate is maintained at Tc. The melting point of
the solid phase is Tm and the temperature boundary conditions are such that Tc < Tm < Th.
We also have a fully developed Poiseuille flow in the liquid region starting from the initial
instant. As the flow develops, the initially flat phase boundary may grow/melt resulting in
a deformed interface. The location of the phase boundary and the thickness of the solid
layer at any time instant t > 0 are denoted by h(x, t) and d(x, t), respectively. Note that
h(x, t) + d(x, t) = Lz.

The governing equations in the different regions are as follows.

2.1. Liquid
The mass, momentum and heat balance equations are

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = − 1
ρ0

∇p + gα(Tl − Tm)ẑ + ν∇2u, (2.2)
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Th

z = 0

z = h0

z = Lz
Tc
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Solid
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Figure 1. Schematic of the horizontally periodic domain considered here. The initial thicknesses of the liquid
and solid layers are h0 and d0 = Lz − h0, respectively. The temperature boundary conditions are such that
Tc < Tm < Th. No-slip and no-penetration boundary conditions for the velocity field are imposed at the bottom
boundary and the phase boundary. The temperature fields in the liquid and solid regions at the initial instant
vary only with height and the horizontal velocity profile in the liquid region is parabolic.

∂Tl

∂t
+ u · ∇Tl = κ∇2Tl, (2.3)

respectively. Here, u(x, t) = (u, w) is the two-dimensional velocity field, ρ0 is the
reference density, p(x, t) is the pressure field, g is acceleration due to gravity, α is the
thermal expansion coefficient, Tl(x, t) is the temperature field in the liquid, ẑ is the unit
vector along the vertical, ν is the kinematic viscosity and κ is the thermal diffusivity. We
assume the liquid and solid phases have the same density (ρ0) and thermal diffusivity (κ).

2.2. Solid
The temperature field in the solid, Ts(x, t), evolves according to the diffusion equation

∂Ts

∂t
= κ∇2Ts. (2.4)

2.3. Evolution of the phase boundary
To track the location of the phase boundary, we need an additional equation for its
evolution, which is given by the Stefan condition (Worster 2000):

ρ0Lsvn = n · [qs − ql]z=h. (2.5)

Here, Ls is the latent heat of fusion, vn is the normal component of growth rate of the
solid phase, n is the unit normal pointing into the liquid, qs and ql are the heat fluxes away
from the phase boundary into the solid and towards the phase boundary from the liquid,
respectively.

2.4. Boundary conditions
We impose Dirichlet conditions on temperature at the bottom and top boundaries of the
domain such that

Tl(z = 0, t) = Th and Ts(z = Lz, t) = Tc. (2.6)
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And, at the phase boundary, the temperature is the equilibrium temperature

Tl(z = h, t) = Ts(z = h, t) = Tm. (2.7)

For the velocity field in the liquid region, we impose no-slip and no-penetration
conditions at the bottom boundary and the phase boundary such that

u(z = 0, t) = w(z = 0, t) = 0, (2.8)

u · n = u · t = 0 at z = h(x, t), (2.9)

where t is the unit tangent at the phase boundary. We also impose periodic boundary
conditions for the temperature and velocity fields at x = 0 and x = Lx.

2.5. Non-dimensional equations
To non-dimensionalise the equations of motion, we choose the initial centreline velocity of
the Poiseuille profile in the liquid region, U0, as the velocity scale, h0 as the length scale,
t0 = h2

0/κ as the time scale, p0 = ρ0U0κ/h0 as the pressure scale and ΔT = Th − Tm as
the temperature scale. Using these we obtain the dimensionless versions of (2.1)–(2.5) as

∇ · u = 0, (2.10)

∂u
∂t

+ Pe(u · ∇u) = −∇p + RaPr
Pe

θlẑ + Pr∇2u, (2.11)

∂θl

∂t
+ Pe(u · ∇θl) = ∇2θl, (2.12)

∂θs

∂t
= ∇2θs, (2.13)

and

vn = 1
ΛS [n · (qs − ql)]z=h, (2.14)

where

θl = Tl − Tm

ΔT
and θs = Ts − Tm

ΔT
. (2.15a,b)

Here, we have maintained the pre-scaled notation for u, t and x for simplicity. There are
five governing parameters, which are

Ra = gαΔTh3
0

νκ
, Pe = U0h0

κ
, Pr = ν

κ
, (2.16a–c)

S = Ls

Cp(Tm − Tc)
and Λ = (Tm − Tc)

ΔT
, (2.17a,b)

where Cp is the specific heat of the solid phase and Λ denotes the ratio of temperature
differences in the solid and liquid regions.

The non-dimensional versions of the boundary conditions are

θl(z = 0, t) = θh = 1 and θs(z = Lz, t) = θc = −Λ, (2.18a,b)

θs(z = h, t) = θl(z = h, t) = θm = 0, (2.19)

u(z = 0, t) = w(z = 0, t) = 0 and (2.20)

u · n = u · t = 0 at z = h(x, t). (2.21)
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2.6. Initial conditions
At the initial instant, the temperature profiles in the liquid and solid regions are given by

θ
(0)
l (z) = 1 − z, (2.22)

and

θ(0)
s (z) = Λ

d0
(1 − z). (2.23)

In addition, we demand that the heat fluxes at the phase boundary balance at the initial
instant (see (2.14)), giving

dθ
(0)
l

dz
= dθ

(0)
s

dz
at z = 1. (2.24)

This gives
Λ = d0. (2.25)

2.7. Heat transport
The response of the system is quantified using the dimensionless heat flux, which is the
Nusselt number, defined as

Nu(t) = − 1
Lx

∫ Lx

0

(
∂Tl

∂z

)
dx

/[
ΔT
h̄(t)

]
at z = 0. (2.26)

Here, h̄(t) denotes the instantaneous horizontally averaged thickness of the liquid layer.
After the dynamics have reached a stationary state, the horizontally and temporally
averaged Nusselt number is calculated as

N = 1
T

∫ t0+T

t0
Nu(t) dt. (2.27)

We also define the horizontally and temporally averaged liquid height as

hm = 1
T

∫ t0+T

t0
h̄(t) dt, (2.28)

and the effective Ra based on hm as

Rae = gαΔTh3
m

νκ
. (2.29)

The results from this study are discussed in terms of either Ra or Rae.

3. Numerical method

To numerically solve the equations of motion and the boundary conditions, we combine
the LBM (Benzi, Succi & Vergassola 1992; Chen & Doolen 1998) with the enthalpy
method (Voller, Cross & Markatos 1987). In the enthalpy method, the total enthalpy is
split into specific and latent heat contributions and the regions that undergo phase change
are tracked through the changes in the latent heat content of those regions (Voller et al.
1987). A phase variable φ(x, t), which represents the liquid fraction field, is introduced
to follow the evolution of the different phases. A grid point x = (xi, zj) is deemed to be
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solid or liquid depending on whether φ(x) ≤ φ0 or φ(x) > φ0, where φ0 ∈ (0, 1) denotes a
chosen threshold value. The choice of φ0 is arbitrary, but choosing a large value effectively
increases the latent heat of fusion for the following reason. The change in the nature of a
grid point (solid to liquid, or vice versa) involves a change in the latent heat of fusion. A
smaller value of φ0 requires a smaller amount of heat of fusion to be provided to effect a
change from solid to liquid grid point when compared with a higher value of φ0. In this
study, we choose φ0 = 0.5.

The principal advantage of the enthalpy method is that the phase boundary is not
explicitly tracked, resulting in less onerous requirements for grid resolution when
compared with other methods. The details of the enthalpy method can be found in Voller
& Cross (1981) and Voller et al. (1987) and its implementation for conduction- and
convection-driven phase-change problems using LBM can be found in Jiaung, Ho & Kuo
(2001) and Huber et al. (2008), respectively. For our study, we use the scheme of Huber
et al. (2008). Further details are provided in Appendix A.

For the fluid flow, we use the D2Q9 (Succi 2001) and D2Q5 (Latt 2007) lattice
models for the velocity and temperature distribution functions, respectively. No-slip and
no-penetration boundary conditions for the velocity field are imposed using the mid-grid
bounceback scheme (Succi 2001), which is known to conserve mass for flows over complex
geometries in the high Ra and Re regimes (Toppaladoddi 2017). The Dirichlet boundary
conditions for the temperature field are imposed by requiring that the temperature
distribution functions at the boundaries are the corresponding equilibrium distribution
functions.

The flow simulated by the LBM is weakly compressible and the equation of state is
the ideal gas law. Hence, it is difficult to maintain significant pressure gradients in the
flow (Succi 2001). For these reasons, a body force G, which mimics an applied pressure
gradient, is introduced in the evolution equation for the velocity distribution functions. In
dimensional units, the centreline velocity in plane Poiseuille flow is given by

U0 = |∇p0|h2
0

8ρ0ν
, (3.1)

where |∇p0| is the constant pressure gradient. Choosing a value of U0, G (= |∇p0|) is
determined using (3.1) and then used to drive the flow in the LBM. Further details on the
implementation can be found in Toppaladoddi (2017).

Our numerical code has been rigorously validated against spectral methods for both
RBC (Toppaladoddi et al. 2015a) and Poiseuille flow (Toppaladoddi, Succi & Wettlaufer
2015b). We have also validated the code for transient, conduction-driven melting problems
against analytical solutions (Toppaladoddi 2017). Further validation is presented in the
following sections where we compare some of our results for pure convection over a phase
boundary with those that exist in the literature.

4. Results

4.1. RBC over a phase boundary
Here, we present results from our simulations for purely convective flow over a phase
boundary. The discussion of these results serves the following two main purposes. First,
it allows us to compare our results with the previous experiments and DNS studies and,
hence, assess the accuracy of our formulation and simulation methods. Second, it provides
a natural comparison point for our later discussion of the effects of mean shear on the
convective motions and on the evolution of the phase boundary.
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Figure 2. Plot of N (Ra) for Ra ∈ [1470, 1600], Pr = 1 and S = 5.82. The critical Ra is Rac ≈ 1510.
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Figure 3. Contours of steady-state vertical-velocity field for Ra = 1510. The solid phase is shown in white.
The velocity is non-dimensionalised by the buoyancy velocity scale

√
gαΔTh0.

The resolution used in the simulations varies with Ra, e.g. for Ra = 2.15 × 103 we use
400 × 100 grid points and for Ra = 106 we use 1200 × 300 grid points. These resolutions
are such that there are at least nine grid points in each boundary layer. Furthermore, we fix
Pr = 1 and h0 = d0 = 1 for all simulations.

4.1.1. Onset of thermal convection
To study the onset of convection, we perform simulations for Ra ∈ [1470, 1600], S = 5.82
and Γ = 10. The value of S is chosen to match the experimental conditions of Dietsche
& Müller (1985), who used cyclohexane as the working fluid, and the large value of Γ

is chosen to ensure any finite-size effects are minimised. The Pr for cyclohexane is 17.6
(Dietsche & Müller 1985), but we use Pr = 1 in our simulations. This choice does not
affect the onset of convection as Rac is independent of Pr for this system (Davis et al.
1984; Toppaladoddi & Wettlaufer 2019).

Figure 2 shows N (Ra) for Ra ∈ [1470, 1600]. There is a jump in N at the onset of
convection, which is at Ra ≈ 1510. The jump in N is related to the jump in the interface
position and the onset of convection for the following reason. At the initial instant, the
temperature gradients in both the solid and liquid layers are such that the heat fluxes in
(2.14) are equal. This remains true for all Ra < Rac and, hence, there is no change in the
position of the interface. At Ra = Rac, the heat flux in the liquid layer increases due to
the onset of convective motion. As a result of this heat-flux imbalance, a part of the solid
phase melts and the interface reaches a new position, resulting in more vigorous convection
(Davis et al. 1984). This is a positive feedback loop and a steady state is reached when the
mean thickness of the solid phase is such that the balance in the heat fluxes at the interface
is restored again.

919 A28-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

39
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.396


Interactions of unstably stratified shear flow and a phase boundary

0 0.2 0.4 0.6 0.8 1.0
1.0

1.1

1.2

1.3

1.4

1.5
h̄(t)

N
u

(t)
t t

1.6

1.7

1.8

1.9(a) (b)

0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

12

14

16

18

Figure 4. Time series for the horizontally averaged (a) height of the liquid column and (b) heat flux for
Ra = 106.
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Figure 5. Snapshot of the steady temperature field for Ra = 106.

The jump behaviour is in contrast to what happens near Rac in the classical RBC
(Chandrasekhar 2013) and is in good agreement with the analysis of Davis et al. (1984),
who predicted a subcritical bifurcation at Ra = Rac. Similar behaviour at Ra = Rac
has been reported in previous experiments (Dietsche & Müller 1985) and DNS studies
(Esfahani et al. 2018; Purseed et al. 2020).

Figure 3 shows the contours of steady-state vertical velocity field for Ra = 1510. We
can calculate the critical wavenumber from figure 3, noting that there are nine pairs of
counter-rotating cells. This gives the dimensionless wavelength as λ = 20/9 ≈ 2.22 and
the critical wavenumber as kc = 2π/λ ≈ 2.83. These values are in excellent agreement
with Rac = 1493 and kc = 2.82 from the linear stability calculations of Davis et al. (1984).

4.1.2. Thermal convection for larger Ra
Before exploring the combined effects of shear and buoyancy on the evolution of the phase
boundary, we investigate the effects of pure thermal convection for Ra ∈ [2.15 × 103, 106].
The simulation results reported in the remainder of this paper are for S = 1, except in
§4.2.5, and Γ = 4.

919 A28-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

39
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.396


S. Toppaladoddi

In figures 4(a) and 4(b) we show the time series for the horizontally averaged thickness
of the liquid layer and the heat flux for Ra = 106. The following observations can be
made from these figures: (1) after an initial transient, both the thickness and the heat
flux attain steady state; (2) the Nu(t) time series exhibits oscillations before reaching the
steady state. These oscillations are caused by the evolving convection cells, whose aspect
ratio continuously changes before reaching the steady-state value. The effective Ra for this
case is Rae ≈ 6.5 × 106 and the steady state N = 16.27, which is larger than N = 12.07
for classical RBC (Johnston & Doering 2009). These results are in qualitative agreement
with the findings of Favier et al. (2019) and Purseed et al. (2020). The increase in the
heat flux compared with classical RBC is because the non-planar phase boundary ‘locks
in’ the convection cells, thereby delaying the onset of unsteady convection (Favier et al.
2019). This is seen in figure 5, which shows a snapshot of the steady temperature field for
Ra = 106. A close examination of the cusps at the phase boundary in figure 5 reveals that
they have slightly different amplitudes.

To understand the impact of the phase boundary on the dependence of heat flux on
buoyancy forcing, we plot N as a function of Rae in figure 6. The data are described well
by the power law N = 0.2 × Ra0.285±0.009

e , which is obtained from a linear least-squares
fit to the logN − log Rae data. The exponent β = 0.285, which is indistinguishable from
β = 2/7, is in remarkable agreement with the findings of previous DNS studies of classical
RBC (Johnston & Doering 2009; Toppaladoddi et al. 2015a). However, the prefactor here
is larger than that in the classical RBC case. This is because it depends on the geometry of
the boundaries (Toppaladoddi et al. 2015a). This effect on the prefactor has been reported
by Favier et al. (2019) as well, with β ≈ 0.27 in their case.

Another feature that is absent in figure 6 is a discontinuity in the N (Rae) data at around
Rae = 106, which is due to a pattern competition instability observed in the classical RBC
(Glazier et al. 1999; Johnston & Doering 2009). This indicates that the phase boundary
suppresses this instability. However, this does not rule out its appearance at a higher Ra.

In figure 7, we show our N (Rae) data along with those from Purseed et al. (2020), who
had Γ = 6, h0 = 1.8 and S = Pr = 1 in their simulations. The agreement between the
results shows that for a fixed Pr, N depends only on Rae and does not appreciably depend
on the initial conditions.

4.2. Rayleigh–Bénard–Poiseuille flow over a phase boundary
Having established consistency of our simulations with previous work on coupled
convection and phase change, we now explore the effects of mean shear on both the
convective motions and the evolution of the phase boundary. The range of Pe used in this
study is Pe ∈ [0, 50]. The simulations of Rayleigh–Bénard–Poiseuille flow are as equally
well resolved as our simulations of RBC over a phase boundary, with at least nine grid
points in each boundary layer.

4.2.1. Mean height of the liquid layer
We first consider the combined effects of mean shear and buoyancy on the mean height
of the liquid layer. In figure 8, hm is shown as a function of Ra for the different Pe
considered. The following observations can be made from the figure: (i) with increasing
Ra, the variation in hm for the different Pe decreases; (ii) for Pe = 40 and 50 and the lowest
Ra, there is negligible melting of the phase boundary, indicating there is no bifurcation
to steady convection; and (iii) for a fixed Ra ≥ 2.15 × 104, the changes in hm are not
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N

Figure 6. Plot of N as a function of Rae. The latter is calculated using (2.29). Symbols are data from
simulations and the solid line is the fit Nu = 0.2 × Ra0.285±0.009

e . The error bars on the exponent represent
the 95 % confidence interval. The inset shows the residuals from the fit. The curvature in the residual indicates
that there is a weak deviation from the power-law fit.
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100
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Data from Purseed et al. (2020) 
Data from present study

Figure 7. Comparison of N (Rae) data with those from Purseed et al. (2020), who had Γ = 6, h0 = 1.8 and
S = Pr = 1 in their simulations. Circles are data points from the present study and diamonds are from Purseed
et al. (2020).

monotonic with Pe. These observations indicate that the interplay between the shear flow
and convection has substantial effects on the evolution of the phase boundary.

4.2.2. Heat transport
To understand these effects, we consider the impact of mean shear and buoyancy on the
transport of heat. In figure 9 we show the temperature fields for Ra = 2.15 × 103 and
(a) Pe = 10 and (b) Pe = 50 at t = 49.84. The deformation of the phase boundary in
figure 9(a) is caused by the convection cells. The mean shear flow has a considerable
effect on the convective motions: for Pe = 10 the convection cells are slightly distorted,
but for Pe = 50 the convective motions disappear completely.

The effects of the mean shear on convective motion can be seen more clearly by
considering its effects on Rac, which is shown in figure 10 and on the heat transport, which
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Figure 8. Mean height of the liquid layer, hm, as a function of Ra for the different values of Pe.
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Figure 9. Temperature fields for Ra = 2.15 × 103 and (a) Pe = 10 and (b) Pe = 50 at t = 49.84. Convective
motions are suppressed for Pe = 50.

is shown in figure 11. The Rac is a monotonically increasing function of Pe, with the solid
line in figure 10 showing a least-squares fit to the data. The behaviour of N with Ra and
Pe in figure 11 is qualitatively similar to that of hm (figure 8). To obtain a more complete
understanding, the relative effects of mean shear and buoyancy have to be considered.

To quantify the relative strengths of buoyancy and mean shear, we introduce a bulk
Richardson number, defined as (Chandrasekhar 2013)

Rib = gαΔTh0

U2
0

= Ra · Pr
Pe2 (4.1)

and use it to study the changes in N for different values of Ra and Pe. In figure 12 we show
the dependence of N on Rib for the different Pe > 0. For Rib = O(1), the mean shear
dominates and hence the heat transport is only due to conduction. However, for Rib � 1
buoyancy dominates and the values of N are close to those for purely convective flow (see
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Figure 10. Critical Rayleigh number for the onset of convection as a function of Pe. The circles are data from
simulations and the solid line is the least-squares fit. For Pe = 0, Γ = 10 and for Pe > 0, Γ = 4.
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Figure 11. Plot of N as a function of Ra for the different Pe.

figure 11). For a fixed value of Ra, N does not increase monotonically with decreasing Pe
because the changes in the value of hm and, hence, Rae is not monotonic with Pe.

In order to determine N = N (Pe, Rib), we assume that this functional relation is of the
form

N = APeγ1Riγ2
b , (4.2)

where A, γ1, γ2 > 0. Writing (4.2) in terms of Pe and Ra, we have

N = APeγ1−2γ2Raγ2 . (4.3)

In the limit Rib → ∞ and Pe = O(1), we expect the mean shear to play no role in heat
transport, hence, we should recover the N –Ra scaling law for pure convection. This leads
to γ2 = 2/7 and γ1 − 2γ2 = 0, giving γ1 = 4/7. Hence, from (4.2) we obtain

N
Pe4/7 = F(Rib), (4.4)

where F is a power-law function of Rib. In figure 13 we plot NPe = N × Pe−4/7 vs Rib and
observe that this rescaling achieves a collapse of the different data sets shown in figure 12.
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Figure 12. Plot of N as a function of Rib for the different Pe. For each Pe, the simulations cover the Ra range
Ra ∈ [2.15 × 103, 106].
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Figure 13. Plot of NPe = N × Pe−4/7 as a function of Rib. The N (Pe, Rib) data sets shown in figure 12
collapse for this scaling.

The collapsed data set can be described using two power laws, which are obtained from
the linear least-squares fits to logNPe–log Rib data:

NPe = 0.12 × Ri0.52±0.04
b (4.5)

for Rib ∈ [0.86, 100] and
NPe = 0.28 × Ri0.30±0.02

b (4.6)

for Rib ∈ [100, 10 000]. The mean shear is found to appreciably affect the convective flow
dynamics up to Rib = O(100) (see figure 17), hence, the segmentation of the NPe(Rib)
data set for determining the power laws. The exponent of the second power law is close to
γ2 = 2/7, with the small difference indicating a weak influence of the mean shear on the
heat transport.

4.2.3. Pattern competition
For the range of Ra and Pe, and hence Rib, studied here, the heat flux reaches a steady
value for Rib = O(1) and Rib � 1. However, for certain intermediate values of Pe and Ra,

919 A28-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

39
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.396


Interactions of unstably stratified shear flow and a phase boundary

1 2 3 4 5 6 70

1

2

3

4

5

6

7

8

4.0 4.2 4.4 4.6 4.8 5.0

4.0

4.5

5.0

Nu (t)

Nu (t)

t

t

Ra = 104

Ra = 2.15 × 104

Ra = 4.64 × 104

Figure 14. Time series of horizontally averaged heat flux, Nu(t), for Pe = 20 and Ra = 104, 2.15 × 104 and
4.64 × 104. The inset shows the oscillations for Ra = 2.15 × 104.

it becomes periodic. These values of Pe and Ra correspond to Rib ∈ [15, 95]. In figure 14,
we show the Nu(t) time series for Pe = 20 and Ra = 104, 2.15 × 104 and 4.64 × 104. The
heat transport becomes steady for the lowest and highest Ra here, but attains a periodic
state for Ra = 2.15 × 104.

In order to understand this behaviour in the neighbourhood of Pe = 20 and Ra = 2.15 ×
104, we perform additional simulations for Ra ∈ [1.2 × 104, 4 × 104]. The amplitude
of the oscillations is quantified using the standard deviation of the Nu(t) time series,
σNu. Figure 15(a) shows the bifurcation diagram in this neighbourhood. We see that the
oscillations in Nu(t) first occur at Ra = 1.6 × 104, reaching their maximum amplitude
at Ra = 3.4 × 104 and finally vanishing at Ra = 4 × 104. The oscillations also vanish at
Ra = 3 × 104, where the heat flux reaches a steady state. These windows of periodic states
are reminiscent of the window of ‘self-oscillations’ that is observed in the dynamics of the
Sel’Kov oscillator, which is a simplified mathematical model of glycolysis, for a certain
range of its parameter values (Sel’Kov 1968; Strogatz 2018).

The nature of this bifurcation can be established by studying how σNu changes with
changing r. Here, r = (Ra − Ra1)/Ra1, where Ra1 denotes the Rayleigh number at the
bifurcation point. Figure 15(b) shows σNu as a function of r. Using a least-squares fit,
one can determine that the increase in the amplitude close to the bifurcation point can be
described using

σNu = 0.46 × r0.52±0.12, (4.7)

which is shown as the dashed line in figure 15(b). This is remarkably close to σNu ∝ r0.5,
which can be obtained from the solution of the Landau equation, which describes the
time evolution of the amplitude of an unstable mode not far from the bifurcation point
(Landau & Lifshitz 2013). This, coupled with the fact that the bifurcation is from a
steady to periodic state, leads us to conclude that this is a supercritical Hopf bifurcation.
Although the transition from steady to periodic state is more gradual, the transition
from periodic to steady state is relatively abrupt. Similar oscillatory states are observed
for Pe = 30, 40 and 50. In figure 16, the bifurcation diagram for Pe = 30 is shown.
A least-squares fit to the data points close to the bifurcation point gives σNu = 0.47 ×
r0.47±0.06, which is quantitatively similar to that obtained for Pe = 20. The different
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Figure 15. Bifurcation diagram for Pe = 20 and Ra ∈ [1.2 × 104, 4 × 104]. In (a), the standard deviation of
the Nu(t) time series, σNu, is plotted as function of Ra, and in (b), σNu is plotted as a function of r = (Ra −
Ra1)/Ra1, where Ra1 denotes the Rayleigh number at the bifurcation point and is 1.4 × 104 in this case. The
circles are data points from simulations and the dashed line in (b) is the fit σNu = 0.46 × r0.52±0.12.

windows of self-oscillations are shown in the (Pe, Rib) phase diagram in figure 17. We
should note that for Pe = 20 and 50 there are multiple such windows.

Simulations for Pe = 20 and 30 with Γ = 6 also showed the existence of these
oscillatory states, but the details of the bifurcation diagrams are different from those seen
in figures 15 and 16 for Γ = 4 (the bifurcation diagrams for the Γ = 6 cases are not
shown). This indicates that there is some dependence of these states on Γ .

To understand the origin of this bifurcation, we study the temperature fields for the
three cases of figure 14, which are shown in figure 18. We see that for Ra = 104 and
Ra = 4.64 × 104, the flow settles into a state with four and three pairs of convection cells,
respectively. However, for Ra = 2.15 × 104 the latter pattern is not stable, resulting in the
plumes oscillating about the vertical. These oscillations are caused by the two competing
spatial patterns (e.g. Ciliberto & Gollub 1984) and can be seen in figures 19(a) and 19(b),
which show the temperature fields at the maxima and minima of the Nu(t) time series in
the inset of figure 14. This oscillatory behaviour can be discerned by observing the tilt
of the cold plumes which switch between leftwards and rightwards in figure 19(a) and
19(b), respectively. (See also the movie in supplementary movies, which are available at
https://doi.org/10.1017/jfm.2021.396.) In the latter figure the plumes are more distorted,
resulting in reduced vertical heat transport. We should also note here that such oscillatory
behaviour is not observed when the fluid motions are purely convective. For some of the
stable states that occur between the periodic states in figure 17, we observe the stable flow
pattern consists of only two pairs of plumes. This is the case for Pe = 20, Ra = 3 × 104

and Pe = 50, Ra = 1.16 × 105. (Not shown.)
This pattern competition can be understood by considering the principal effects of mean

shear and buoyancy on the solid phase. For the range of Pe studied here, the mean shear
acts to inhibit vertical motions thereby melting less of the solid phase. This results in a
relatively small change in the mean height of the liquid layer, thus preferring convection
cells of smaller aspect ratio. However, buoyancy promotes vertical motions leading to
more melting of the solid phase. This results in a larger change in the mean height of the
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Figure 16. Bifurcation diagram for Pe = 30 and Ra ∈ [1.6 × 104, 5.4 × 104]. In (a), the standard deviation
of the Nu(t) time series, σNu, is plotted as function of Ra, and in (b), σNu is plotted as a function of r =
(Ra − Ra1)/Ra1, where Ra1 denotes the Rayleigh number at the bifurcation point and is 1.8 × 104 in this case.
The circles are data points from simulations and the dashed line in (b) is the fit σNu = 0.47 × r0.47±0.06.
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Figure 17. The Pe–Rib phase diagram showing the different final states. Circles denote steady final states and
diamonds denote periodic final states. The three filled symbols for Pe = 20 represent the three cases shown in
figure 18.

liquid layer. Thus, in this case, the flow prefers convection cells of larger aspect ratio. The
competition between these two effects is what leads to the observed pattern competition.

The multiple windows of self-oscillations for Pe = 20 and 50 point to the possibility of
the existence of multiple solutions, which may be stable (the possibility that multiple stable
solutions exist was suggested by one of the anonymous reviewers) or unstable for a given
set of initial conditions. If multiple stable solutions do exist, then the key question is, why
does the system choose a specific solution? This could be explored by using continuation

919 A28-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

39
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.396


S. Toppaladoddi

0

0.5

0.1

1.5

2.0

1 2 3 4

x

z

5 6 7 8
0

θl

1

0

0.5

0.1

1.5

2.0

1 2 3 4

z

5 6 7 8
0

θl

1

0

0.5

0.1

1.5

2.0

1 2 3 4

z

5 6 7 8
0

θl

1
(a)

(b)

(c)

Figure 18. Temperature fields for Pe = 20 and (a) Ra = 104, (b) Ra = 2.15 × 104 and (c) Ra = 4.64 × 104

in the stationary state. These values correspond to: (a) Rib = 25, (b) Rib = 53.75 and (c) Rib = 116, and are
highlighted using filled symbols in figure 17. For Ra = 104 and 4.64 × 104 the plumes are frozen and the shear
flow advects them, but for Ra = 2.15 × 104, the plumes oscillate about the vertical (see also figure 19).
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Figure 19. Snapshots of the temperature field for Pe = 20 and Ra = 2.15 × 104 for: (a) t = 1.87 and (b) t =
1.91. These snapshots represent the temperature field at the maxima and minima of the time series in the inset
of figure 14. See the movie in supplementary information.
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Figure 20. Spatiotemporal evolution of the interface for Pe = 20 and Ra = 4.64 × 104. The total duration of
the simulation is t = 8.58. Any two neighbouring curves are separated by Δt = 0.28.

methods (e.g. Waleffe, Boonkasame & Smith 2015) to compute these multiple solutions in
order to understand the end result. However, this is beyond the scope of the current work.

4.2.4. Travelling interfacial waves
One of the interesting results of Gilpin et al. (1980) is that under certain conditions a
turbulent boundary layer flow gives rise to travelling waves at the phase boundary. In
their experiments, the interfacial waves developed and propagated downstream over a
period of 6–16 hours, depending on the Reynolds numbers and temperature boundary
conditions. Toppaladoddi & Wettlaufer (2019), through their linear stability analysis of
the Rayleigh–Bénard–Couette flow over a phase boundary, showed that interfacial waves
can be generated in the laminar regime close to Ra = Rac for Pe ∈ (0, 0.22). Hence, these
waves can potentially be associated with the presence of a mean shear flow.

In figure 20, the spatiotemporal evolution of the phase boundary for Pe = 20 and
Ra = 4.64 × 104 is shown. The total duration of the simulation is t = 8.58 and any two
neighbouring curves are separated by Δt = 0.28. The presence of the interfacial wave is
easily discerned by observing changes in the phase at a fixed x location. The interfacial
wave is propagating from left to right.

To understand the mechanism of generation and propagation of this wave, we examine
the evolution of the temperature field, which is shown in figure 21. Figures 21(a)–21(c)
show snapshots of the temperature field for Pe = 20 and Ra = 4.64 × 104 at three different
times after the flow has reached a stationary state. Focusing on the hot plumes, one can
see that they are advected along the domain by the Poiseuille flow. As they are advected,
they locally melt some of the solid. The opposite is true for the cold plumes descending
from the phase boundary, here the solid grows locally as they are advected. This pattern
of local growth and melting gives rise to the travelling wave that is seen in figure 20. This
also implies that the crests and troughs of the wave are locked in with the convection cells.

These waves can be further characterised by their non-dimensional phase speed C, which
is shown as a function of Rib for Pe = 50 in figure 22. Here, the dimensional phase speed
has been non-dimensionalised using U0. It is seen from figure 22 that for Rib  1, C = 0
and for Rib � 1, C  1. This is because, for Rib  1 the amplitude of the interfacial wave
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Figure 21. Travelling waves at the phase boundary for Ra = 4.64 × 104 and Pe = 20. The temperature fields
are for: (a) t = 6.70; (b) t = 7.24; and (c) t = 7.77. See the movie in supplementary information.
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Figure 22. Phase speed of the interfacial waves for Pe = 50 as a function of Rib. The phase speed has been
made dimensionless using U0, the maximum initial fluid speed. However, values of C ≥ 1 should not be
interpreted to mean that the wave speed is faster than the fluid flow, because the maximum horizontal fluid
speed increases from its initial value as the phase boundary evolves.

vanishes because no waves are formed, and, for Rib � 1 the mean shear flow is negligible.
Hence, both mean shear and buoyancy are necessary to generate these travelling interfacial
waves.
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Figure 23. Plot of N versus Rae for Pe = 10 and the different values of S .
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Figure 24. Plot of N versus Rae for Pe = 50 and the different values of S .

4.2.5. Effects of large Stefan number on heat transport
In many systems of interest, especially in geophysical settings (e.g. Maykut & Untersteiner
1971), S � 1. Hence, it is important to understand the effects of a large S on N . In
figures 23 and 24, we show N as a function of Rae for Pe = 10 and 50, respectively, and
three different values of S . For both Pe = 10 and 50 the values of N for the different
S are close to each other. Hence, S does not seem to have a significant impact on the
heat transport in this system. For a given Pe and Ra, the small divergences that are seen
in the values of N are caused by variations in the mean depth of the liquid layer hm.
Convective motions tend to melt more of the solid phase and hence increase hm, but mean
shear and larger values of S tend to oppose it. The resulting N is due to a combination
of these factors and is clearly seen for the data points for Rae ≈ 6.5 × 106 in figure 24.
This insensitivity is in qualitative agreement with the findings of Esfahani et al. (2018),
who observed it in RBC over a phase boundary.
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5. Conclusions

We have systematically studied the effects of Rayleigh–Bénard–Poiseuille flow on the
evolution of a phase boundary in two dimensions using a combination of the LBM and
enthalpy method for the following range of control parameters: Ra ∈ [2.15 × 103, 106]
and Pe ∈ [0, 50]. The following are the main conclusions of our study.

(i) The critical Rayleigh number and wavenumber for the onset of convection from our
simulations were found to be in very good agreement with the results from the linear
stability analysis of Davis et al. (1984).

(ii) For pure convection, the dependence of N on Rae can be represented as a power
law N = 0.2 × Ra0.285±0.009

e for Rae ∈ [5.5 × 103, 6.4 × 106]. The exponent β =
0.285 ± 0.009 is in excellent agreement with the previous DNS studies of classical
RBC (Johnston & Doering 2009; Toppaladoddi et al. 2015a). The prefactor in the
power law depends on the geometry (Toppaladoddi et al. 2015a) and is larger than
the prefactor for the classical RBC. Our N (Rae) data were also shown to be in good
agreement with the results of Purseed et al. (2020).

(iii) Introduction of a Poiseuille flow was shown to considerably affect both the
convective motions and the solid–liquid interface. The relative effects of mean shear
and buoyancy were quantified using a bulk Richardson number, Rib. For Rib = O(1),
the mean shear flow dominates and the transport of heat is only due to conduction.
However, for Rib � 1 buoyancy has a dominating influence on the flow and on the
evolution of the solid–liquid interface.

(iv) For moderate values of Rib, we observed travelling waves at the interface, in
qualitative agreement with the experiments of Gilpin et al. (1980) and the linear
stability analysis of Toppaladoddi & Wettlaufer (2019).

(v) There are windows of self-oscillations for Pe = 20, 30, 40 and 50 and Rib ∈ [15, 95],
which are triggered by a pattern competition for convection cells of a certain aspect
ratio. These oscillatory states were shown to occur through a supercritical Hopf
bifurcation. However, such states were not observed for the case of purely convective
flow.

(vi) We also explored the effects of larger values of S (= 5 and 10) on the heat transport
for Pe = 10 and 50 and Ra ∈ [2.15 × 103, 106] and find that a large S does not have
an appreciable impact on N .

The parameter phase space explored in this study was limited to laminar flows. The
onset of unsteadiness and turbulence will have profound effects on the evolution of this
system and is a part of our future work.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.396.
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Appendix A. The enthalpy method

In the enthalpy method, the total enthalpy is split into specific and latent heat contributions
as

H = CpT + Lsφ, (A1)

where φ ∈ [0, 1] is the liquid fraction of the region of concern. The enthalpies of pure
liquid and solid phases at the melting point are HL = CpTm + Ls and HS = CpTm,
respectively (the specific heats of the solid and liquid phases have been assumed to be
the same). The conservation equation for H when expressed in terms of T using (A1)
gives (Voller et al. 1987)

∂T
∂t

+ u · ∇T = κ∇2T − Ls

Cp

∂φ

∂t
. (A2)

Equation (A2) combines the heat balance equation and the Stefan condition.
The following algorithm is used to calculate T and φ numerically (Jiaung et al. 2001;

Huber et al. 2008). When the temperature field is known at a time step n and iteration k,
the total enthalpy at a grid point (i, j) is obtained by

H(n,k)(i, j) = CpT(n,k)(i, j) + Lsφ
(n,k−1)(i, j). (A3)

This is then used to determine the value of the kth iteration of φ using

φ(n,k)(i, j) = H(n,k)(i, j) − HS
HL − HS

. (A4)

If φ(n,k)(i, j) < 0 or > 1, then it is set to 0 or 1, respectively. This is then used to calculate
T(n,k+1)(i, j). This process is repeated until converged values of T and φ, as determined by
preset criteria, are obtained (Jiaung et al. 2001).

In the LBM, the enthalpy method is implemented by introducing the source term
in (A2) into the evolution equation for the temperature distribution functions (Jiaung
et al. 2001; Huber et al. 2008). After the temperature field is calculated from the
temperature distribution function, the steps outlined above are followed to update φ. In
our simulations, we find that using only one iteration provides results that are in good
agreement with results obtained using the phase-field method (see figure 7). For this
reason, we use only one iteration for all other calculations.
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