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Abstract. A theory of enhanced plasma and ion lines near the reflection height of
a pump wave is presented. It is argued that the high-frequency pressure of the
pump wave and the averaged pressure of plasma waves localized in small-scale
cavitons contribute to the rapid creation of a cavity in the main Airy maximum.
Langmuir waves excited later by parametric decay instability are trapped in such
a nonstationary cavity. Analytical expressions for adiabatic eigenmodes of Lang-
muir waves in a nonstationary cavity are presented. Collisionless attenuation of the
eigenmodes of Langmuir waves trapped in the cavity is investigated. It is shown
that parametric decay instability in a cavity may account for the excitation of
plasma and ion-acoustic waves measured by EISCAT UHF radar.

1. Introduction
Under the action of a strong high-frequency (HF) electromagnetic wave, various
nonlinear processes take place in the F-region of the ionosphere (see e.g. Gure-
vich 1978; DuBois et al. 1993; Sulzer and Fejer 1994; Stubbe and Hagfors 1997;
Mjølhus 1998). In an inhomogeneous ionospheric plasma, there are three partic-
ular regions where the strongest excitations of electrostatic waves are expected.
One of them is localized near the reflection level of the ordinary electromagnetic
pump wave, the second corresponds to the so-called matching height, the third is
situated at the upper-hybrid resonance level. Different diagnostic tools are used
to investigate interesting phenomena in these regions. One of the most powerful
methods that gives important information about Langmuir and ion-acoustic waves
excited in the ionosphere due to HF heating is incoherent scatter radar. In Tromsø,
Norway, there is a unique opportunity to obtain information about excited waves
with considerably different k-numbers using EISCAT radars with the frequencies
f = 224 MHz (VHF radar) and f = 933 MHz (UHF radar) and by making bistatic
observations in Kiruna and Sodankylä. With the help of chirped radar technique
(Hagfors 1982) unusual behavior of the enhanced ion line was detected (Isham
et al. 1990). The ion line was measured by UHF radar near the reflection height
of the pump wave (bottomside enhancement) and also above the maximum of the
F-layer at the level where the electron concentration is the same as at the reflection
point of a pump wave (topside enhancement). The natural plasma line excited by
photoelectrons and the usual enhanced plasma line at the matching height were not
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simultaneously detected in the experiment. Previous experiments with UHF radar
occasionally showed the existence of the enchanced ion line without simultaneously
excited plasma lines (Stubbe et al. 1985; Kohl et al. 1987). The ion line was detected
below the reflection height of the pump wave. A possible explanation for this, based
on the decay of the mother Langmuir wave into daughter Langmuir and ion-sound
waves, was given by Stubbe et al. (1992). In the experiment performed by Isham
et al. (1990), on the other hand, the enhanced ion line was measured within a
few milliseconds after a cold start near the reflection height (within 1 km), where
the matching conditions in a nondisturbed plasma are not fulfilled. The enhanced
plasma line was also measured near the reflection level of the pump wave in the
heating experiments. First it was detected in Arecibo with the help of Barker-coded
430 MHz radar pulses (Muldrew and Showen 1977), and later in Tromsø.

The aim of the present paper is to give a theoretical analysis of the processes
associated with the almost-instantaneous appearance of enhanced ion and plasma
lines near the reflection level of a pump wave. We propose the following mechanism.
In the main Airy maximum, an electromagnetic pump wave and small-scale cavi-
tons produce significant HF pressure. The maximum of the pressure is localized in
the central part of the Airy maximum. Due to such pressure, a few milliseconds
after the heater is switched on, a cavity is formed in the center of the main Airy
maximum that is deep enough to retain at least several lowest modes of the Lang-
muir waves. In such a cavity, the electromagnetic pump wave decays into Langmuir
and ion-acoustic waves. The formation of density depletions of different scales near
the reflection level of a pump wave has been discussed in several papers (e.g. Morales
and Lee 1977; Muldrew 1992; DuBois et al. 1993). Morales and Lee (1977) inves-
tigated cavity formation and its dynamics in the case of a laser plasma. Muldrew
(1992) argued that magnetospheric ducts can play a significant role in parametric
processes near the reflection level of the pump wave. DuBois et al. (1993) investi-
gated the formation of small-scale cavitons in the ionosphere and the interaction
of waves in such plasma depletions. We consider a cavity with scales of the order
of tens of meters stretched in the horizontal plane and a near-vertical magnetic
field line. Such a cavity is formed due to the rapid longitudinal rearrangement of
electrons and ions. The idea, based on experimental data, that plasma depletion
with the mentioned scales could be quickly formed near the reflection level of the
pump wave was previously introduced by Birkmayer et al. (1986) and Isham et al.
(1987). Note that such a cavity is a nonstationary one. We discuss the possibility of
introducing eigenmodes (adiabatic modes) for Langmuir waves, and obtain analyti-
cal expressions for them in a model parabolic cavity changing in time. Langmuir
waves are trapped in such a cavity, and grow in time due to the parametric de-
cay instability. Matching conditions for decay instability in a nonstationary cavity
are fulfilled only within some restricted time interval for a certain eigenmode of
Langmuir waves. Thus the amplification of the excited waves is achieved.

The paper is organized as follows. First, the basic equations describing Lang-
muir wave trapped in a cavity are derived. Then collisionless attenuation of the
eigenmodes of Langmuir waves trapped in a cavity is discussed. The creation of a
plasma depletion in the presence of the eletromagnetic pump and Langmuir waves
is investigated in Sec. 4. In this section the role of thermal effects in the formation
of the depletion is briefly analysed. Adiabatic modes of Langmuir waves trapped
in the cavity are considered in Sec. 5. In Sec. 6, the decay instability of the pump
electromagnetic wave into Langmuir and ion-acoustic waves is investigated.
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2. Basic equations
Let a powerful HF electromagnetic wave with frequency ω0 be radiated into the
ionosphere. The ionosphere is supposed to be homogeneous in the horizontal plane
and slowly changing with height. It is convenient to introduce a system of coor-
dinates with the z axis vertical, the y axis horizontal in the meridional plane, and
the x axis orthogonal to z and y.

The equation for a Langmuir wave in a homogeneous medium is (Ginzburg 1961)

ω2
L = ω2

Pe + 3k2v2
Te + ω2

He sin2 θ. (1)

Here ωPe = (e2N/ε0m)1/2 is the plasma frequency, −e and m are the electron
charge and mass, N is the plasma density, ε0 is the dielectric permeability of the
vacuum, ωHe = eB/m is the electron gyrofrequency,B is the Earth’s magnetic field,
vTe = (Te/m)1/2 is the electron thermal speed, Te, is the electron temperature (in
energy units), k is the wavenumber, θ is the angle between the wave vector and the
magnetic field, which is assumed to be small (sin θ2�1, and therefore sin2 /θ ≈ θ2).
In inhomogeneous media, the equation for Langmuir waves must be discussed in
greater detail.

We start with the kinetic equation for the perturbation of the electron distri-
bution function in the form Fe(r, v, t) = F1(r, v, t) exp (iω1t):

iω1F1 + (v ·∇)F1 − e

m
(v× B) · ∂F1

∂v
=
e

m
E · ∂F0

∂v
. (2)

Here v is the electron velocity and E exp (iω1t) is the polarization electric field. The
function F1 is assumed to change slowly with t to compare with the frequency ω1,
and hence its derivative with respect to t in the first approximation can be neglected.
The nondisturbed electron distribution function is supposed to be Maxwellian.

F0 =
N (z)

(2πv2
Te)

3/2
exp

(
−
v2
‖ + v2

⊥
2v2
Te

)
, (3)

where v‖ is the component of the electron velocity along the magnetic field line
and v⊥ is the projection of the electron velocity on the plane orthogonal to B. The
equation for the electric field amplitude E is

∇ · E = − e

ε0

∫
F1 dv‖ d2v⊥ (4)

For a Langmuir wave excited along the z axis, (2) takes the form(
iω1 + vz

∂

∂z

)
F1 + ωBe

∂F1

∂α
= − evz

mv2
Te

∂φ

∂z
F0. (5)

The angle α is measured from the x axis in the plane orthogonal to the Earth’s
magnetic field B. The polarization electric field E is expressed as E = −∇φ. Note
that the vertical component of the velocity, vz, is a function of the longitudinal (v‖)
and transverse (v⊥) velocities.

The distribution function F1 can be represented as a sum of two parts: F1 =
F̄ + F̃ (α), where F̄ does not depend on α and F̃ (α) has zero average, meaning∫ 2π

0 F̃ (α) dα = 0. To obtain a simple approximate equation for the electron distri-
bution F̄ , we assume that plasma concentration changes rather slowly along the
z axis and introduce the following small parameter: vTe/lzω1� 1, where lz is the
characteristic scale of plasma inhomogeneity along the z axis. Note that vz for
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small angles θ takes the form vz ≈ v‖ − θv⊥ sin α, and F̃ (α) can be expressed as
a sinusoidal variation in α with in-phase and quadrature components that can be
eliminated to obtain an equation for F̄ alone. As a result, we come to the following
approximate equation for F̄ :(

iω1 + v‖
∂

∂z

)
F̄ = − e

mv2
Te

[
∂φ

∂z
v‖F0 +

θ2

2
iω1v

2
⊥

ω2
1 − ω2

He

∂

∂z

(
∂φ

∂z
F0

)]
. (6)

In a homogeneous medium, N0 = const, and taking the dependence of F̄ and φ on
the z coordinate as exp(−ikz), (6) is reduced to

i(ω1 − kv‖)F̄ =
iekφF0

mv2
Te

(
v‖ +

θ2

2
ω1kv

2
⊥

ω2
1 − ω2

He

)
. (7)

Substituting (7) into (4), we obtain the usual dispersion relation (1) for Langmuir
waves. In an inhomogeneous plasma, it is convenient to represent the distribution
function F̄ according to (6) in the form

F̄ =
ie

ω1mv2
Te

[
∂φ

∂z
v‖F0 +

θ2

2
iω1v

2
⊥

ω2
1 − ω2

He

∂

∂z

(
∂φ

∂z
F0

)]
+
iv‖
ω1

∂F̄

∂z
. (8)

The last term on the right-hand side of (8) can be considered as a small perturbation
and calculated subsequently with the required accuracy. Again substituting the
distribution function (8) into (4), we find the equation for plasma waves in a weakly
inhomogeneous medium:

∂2Φ
∂z2 +

ω2
1 − ω2

Pe(z)− θ2ω2
He

3v2
Te

Φ = 0. (9)

Here Φ = ∂φ/∂z is the eigenfunction describing Langmuir waves in an inhomo-
geneous plasma. Suppose that Langmuir waves are excited in a plasma cavity where
the following model of the plasma distribution applies:

N (z) = N0

{
1−A exp

[
−
(
z − z0

b

)2
]}

(10)

Here A is a small amplitude, b is the scale of the inhomogeneity, and z0 is the
center of the cavity. Near the local minimum of plasma concentration |z| < b, the
distribution of the plasma takes the form

N (z) ≈ N0(1−A)

[
1 +

(
z − z0

a

)2
]
, (11)

where a = b/A1/2. For a cavity (11), well-known solutions describing stationary
eigenstates exist (Landau and Lifshitz 1958). Equation (9) with plasma distribution
(11) can be represented in the dimensionless form

∂2Φ
∂ζ2 + (ε− ζ2)Φ = 0, (12)

where

ζ =

(
ω

(0)
Pe√

3vTea

)1/2

(z − z0), ε =
(ω2

1 − ω(0)2
Pe − θ2ω2

He)a√
3ω(0)

PevTe
;

ω
(0)
Pe is the electron plasma frequency in the local minimum of the concentration.
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Equation (12) has a discrete set of eigenfunctions

Φn =
1

(
√
πn!2n)1/2

exp(− 1
2ζ

2)Hn(ζ) (13)

corresponding to eigenvalues εn = 2n + 1. Here Hn are Hermite polynomials, n =
0, 1, 2, . . .. The eigenvalues εn determine the set of eigenfrequencies ω1,n = ω

(0)
Pe+∆ωn

of the Langmuir waves, where the corrections ∆ωn are

∆ωn = (2n + 1)

√
3vTe
2a

. (14)

Near the center of the cavity |z − z0| < b, only a finite number of modes can be
retained

n <
bω1A

1/2

2
√

3vTe
. (15)

In typical ionospheric conditions, the restriction (15) is weak and the parabolic
model (11) can be used even for high modes n� 1. For such modes, the approxi-
mation of geometric optics is valid. In the general case, eigenfunctions describing
stationary states of (12) in the approximation of geometric optics take the form

Φ(z) =
B

[k(z)]1/2
cos
(∫ z

z1

k(z) dz − π

4

)
. (16)

Here B is a constant and k(z) = kn(z) are discrete wavenumbers, corresponding to
different states n,

kn(z) =

[
ω2

1,n − ω2
Pe(z)− θ2ω2

He

]1/2

√
3vTe

. (17)

These wavenumbers can be found from the equation∫ z2

z1

kn(z)dz = n + 1
2 , (18)

where z1 and z2 are the turning points with kn(z1,2) = 0

3. Attenuation of Langmuir waves in a cavity
In the homogeneous case, the usual expression for Landau damping in plasma with
Maxwellian electron distribution follows from (6).

ν
(L)
1 =

√
π

8
ω4
Lo

k3v3
Te

exp
(
− ω2

Lo

2k2v2
Te

)
, (19)

where ω2
Lo = ω2

Pe + 3k2v2
Te. The damping of the Langmuir waves in a cavity may

differ significantly from the damping in a homogeneous plasma. The eigenmodes
in a cavity, Φn, are localized functions, and hence wavepackets rather than plane
waves with fixed k-numbers. To include attenuation of Langmuir waves in a cavity
(11), we start with (6). It is convenient to perform calculations in k space. As a real
cavity is rather shallow, the plasma inhomogeneity is a small term (proportional to
θ2) in (6) and can be neglected. As a result, (6) is reduced to

i(ω1 − kv‖)F̄k = C(v‖, v⊥)
[
v‖

(
1− 1

a2

∂2

∂k2

)
Ek +

θ2

2
ω1kv

2
⊥

ω2
1 − ω2

He

Ek

]
, (20)
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where

F̄k =
1√
2π

∫
exp(ikz) F̄ dz, Ek = − 1√

2π

∫
exp(ikz)

∂φ

∂z
dz,

C(v‖, v⊥) =
eN0

(2π)3/2mv5
Te

exp

(
−
v2
⊥ + v2

‖
2v2
Te

)
.

Substituting F̄k into Poisson’s equation (4), we find the following equation for
Langmuir waves:

∂2Φk
∂k2 + a2ω

2
1 − (ω(0)2

Pe + θ2ω2
He + 3k2v2

Te)− i2ω1ν̂
(L)
1

ω
(0)2
Pe

Φk = 0, (21)

where ν̂(L)
1 coincides with (19) in k-space. Now we introduce instead of k the dimen-

sionless variable κ = [
√

3vTea/ωPe(0)]1/2k. The result is

∂2Φ(κ)
∂κ2 +

(
ε− κ2 − i2 ν̂

(L)
1 a√
3vTe

)
Φ(κ) = 0, (22)

where

ε =
(ω2

1 − ω(0)2
Pe − θ2ω2

He)a√
3vTeω

(0)
Pe

.

Assuming that Landau damping is small compared with the frequency shift between
the adjacent eigenfrequencies Ω = ∆ωn − ∆ωn−1 (see (14)), we use the theory of
perturbations with discrete spectrum to find the collisionless damping for the nth
eigenmode in the cavity (see Landau and Lifshitz, 1958):

ν
(L)
1,n =

33/4π1/2

23/2

ω
5/2
1,na

3/2

v
3/2
Te

∫ |Φn(κ)|2
|κ|3 exp

(
−
√

3ω1,na

2vTeκ2

)
dκ (23)

Here Φn(κ) is the nth Fourier component of the eigenfunction Φn(ζ) in the cavity:

Φn(κ) =
in

(
√
πn!2n)1/2

Hn(κ) exp(− 1
2κ

2);

Hn(κ) is the Hermite polynomial of argument κ. Taking into account the plasma
distribution for the lowest state n = 0 in the cavity,

Φ0(κ) =
1

(π)1/4
exp(− 1

2κ
2), (24)

collisionless damping of this state can be easily found with the help of the method
of stationary phase:

ν
(L)
1,0 ≈ 0.1ω1,0q

3/2 exp(−2q), (25)

where q = (
√

3aw/2vTe)1/2. Note that for typical conditions in the F-region of the
ionosphere (vTe ≈ 107 cm s−1 ω0 ≈ 3× 107 s−1, a ≈ 103–105 cm, the parameter q is
large (q� 1).

Similarly, for the state Φ1,

Φ1(κ) =
iκ

(2
√
π)1/2

exp(− 1
2κ

2), (26)
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the Landau damping is equal to

ν
(L)
1,1 ≈ 0.1ω1,1q

5/2 exp(−2q). (27)

With the growth of the mode number, n the attenuation increases. For the lowest-
order modes this is clear from direct comparison of (25) and (27). If a state with
high number n� 1 is excited, it is difficult to use the general expression (23) for
calculation of the damping rate. But, in this case, the approximation of geometric
optics is valid, allowing us to find the attenuation. Starting once more with (6), we
then arrive at the following expression for collisionless damping:

ν(L)
n =

√
π

8
1∫ |Φn(z)|2 dz

∫
|Φn(z)|2 ω4

1,n

|kn(z)|3v3
Te

exp

[
− ω2

1,n

2kn(z)2v2
Te

]
dz, (28)

where kn(z) is the k-number corresponding to the nth eigenmode in the cavity. For
a parabolic cavity (11), we obtain

k2
n(z) =

2ω1,n∆ωn
3v2
Te

(
1− ω1,n

2 ∆ωn

z2

a2

)
. (29)

The main contribution to the attenuation in (28) stems from the region near the
local minimum of plasma concentration where k2

n(z) achieves its maximum value.
Due to this, the integral in (28) can be evaluated, and the following analytical result
is obtained:

ν
(L)
1,n =

π
√

3aω2
1,n

4(n + 1
2 )vTe

exp

(
−
√

3aω1,n

4(n + 1
2 )vTe

)
. (30)

This result is valid if the eigenfunctions Φn(z) oscillate not too fast to compare with
the region of order a(∆ωn/ω1)1/2 that contributes to the attenuation in (29). The
coresponding condition takes the form (∆ωn/ω1)3/2 < rd/a, where rd = vTe/ωPe
is the Debye radius. Note that the collisionless damping increases with increasing
mode number n. It also increases rapidly with the decreasing dimensionless scale of
inhomogeneity a/rd. It should be mentioned that plasma inhomogeneity along the
z axis influences the collisionless attenuation. Compared with the Landau damping
in a homogeneous plasma, the damping rate in the inhomogeneous case is smaller
by a factor of approximately (∆ωn/ω1)1/2. In Fig. 1, Landau damping in a parabolic
cavity for the eigenmodes n = 10 (continuous line) and n = 1 (dashed line) as a
function of dimensionless scale a/rd is presented. It is seen that damping for the
mode n = 10 is very strong, especially in small cavities.

Suprathermal electrons produced in the process of cavity collapse cause addi-
tional increase of the damping rate. To investigate this effect, the electron distribu-
tion function can be taken in the form Fe = F0 + ∆Fe, where F0 is given by (3) and
∆Fe is a small part represented by a Maxwellian distribution with high temperature
along the magnetic field line

∆Fe = ξ
N (z)

(2π)3/2vTev
1/2
h

exp

[
−
(
v2
⊥

v2
Te

+
v2
‖
v2
h

)]
. (31)

Here ξ� 1 is the reduced concentration of the suprathermal electrons and vh is the
thermal speed of hot electrons along the magnetic field line. We suppose that small
amounts of hot electrons do not influence the dispersion of the trapped Langmuir
waves. The corresponding condition takes the form ξv2

h/v
2
Te� 1. At the same time,
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Figure 1. Dependence of collisionless attenuation on the cavity scale a for different modes:
n = 10 (continuous line) and n = 1 (dashed line).
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30

Figure 2. Influence of suprathermal electrons on collisionless attenuation in a cavity for
the mode n = 1. The dashed line represents collisionless attenuation without suprathermal
electrons, while the continuous line shows attenuation in the presence of a small fraction of
suprathermal electrons ξ = 0.01, vh/vTe = 7.

the existence of suprathermal electrons causes significant additional collisionless
attenuation:

∆ν̂L =

√
π

8
ξ
ω4

1

k3v3
h

exp
(
− ω2

1

2k2v2
h

)
. (32)

Let us discuss the corresponding effect for the first eigenmode Φ1(κ) and calculate
the total collisionless attenuation. Taking (32) into account, we arrive at the result
(compare with (27))

ν
(L)
1,1 ≈ 0.1ω1q

3

[
exp(−2q)
q1/2

+ ξ
v3
Te

v3
h

exp(−2qh)

q
1/2
h

]
, (33)

where qh = qvTe/vh. In Fig. 2, the influence of a small fraction of suprathermal
electrons ξ = 0.01 on collisionless attenuation for different scales of plasma inhomo-
geneity is presented. The dashed line describes the damping rate without suprather-
mal electrons, while the continuous line shows the attenuation in the presence of
fast electrons. It is clearly seen that even a small amount of fast electrons causes
an increase of attenuation by several orders of magnitude. The same effect takes
place for modes with higher numbers. In Fig. 3, this is demonstrated for the mode
n = 10.
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6

Figure 3. Influence of suprathermal electrons on collisionless attenuation in a cavity for the
mode n = 10. The dashed line represents collisionless attenuation without suprathermal
electrons, while the continuous line shows attenuation in the presence of small fraction of
suprathermal electrons ξ = 0.01, vh/vTe = 7.

In the above discussion, a very small reduced concentration of suprathermal
electrons ξ = 0.01 was included. With increasing ξ, the damping rate grows very
rapidly. Note that the parameter δ that describes the ratio of inelastic (change of
energy) to elastic (change of impulse) collisions is small (δ � 1). Due to this, fast
electrons return several times (∼ δ−1) to the resonance region before they lose a
sufficient fraction of their energy. As a result, the concentration of suprathermal
electrons grow in time. Hence the collisionless damping in cavities with scales small
enough becomes so strong that it supresses any instability. This means that it is
not necessary to artificially introduce the type of increase of attenuation for small
scales as was done in numerical simulations of strong turbulence (see DuBois et al.
1993).

4. Formation of a seed plasma cavity
Due to the action of a strong HF pump wave on the ionosphere, a weak plasma de-
pletion appears in the region of the main Airy maximum. To describe its formation,
we start with the equation for the motion of electrons in which the ponderomotive
force is retained. It is well known that the electric field E0 of the electromagnetic
pump wave at the reflection level is polarized mainly along the Earth’s magnetic
field B (see Ginzburg 1961). Besides the pressure of the pump wave, we also retain
the HF pressure of Langmuir waves. According to the results of numerical compu-
tations (DuBois et al. 1993), localized packets of strong Langmuir waves (cavitons)
appear in the Airy maximum. Cavitons have very short lifetime and small scales.
Nevertheless, their averaged HF pressure contributes to the formation of a plasma
cavity with larger scales. The idea that the averaged pressure of cavitons influences
the formation of plasma depletion in the Airy maximum was introduced by Cheung
et al. (1992). As a result of the HF pressure of the small-scale Langmuir waves the
equation of electron motion takes the form

∂v
(2)
ez

∂t
= − e

m
E(2)
z − γe

v2
Te

N0

∂∆N
∂z
− e2

4m2

1
ω2

0

∂

∂z
[|E0(z)|2 + |EL(z)|2]. (34)

Here N0 is the undisturbed plasma concentration, E(2)
z is a low-frequency electric

field, v(2)
ez is the speed of low-frequency oscillations of electrons in the z direction,

∆N is the low-frequency plasma perturbation, γe is the adiabatic coefficient for
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electrons, E0 is the amplitude of the pump wave with frequency ω0, and EL(z, t)
is the electric field of Langmuir cavitons randomly distributed in the vicinity of
the Airy maximum. Below, it is shown that a spatial averaging associated with the
action of small-scale Langmuir waves |EL|2 appears in (34). The pump electric field
is represented as

Ep(z, t) = 1
2 [E0(z) exp(iω0t) + c.c.]

The corresponding equation for the motion of ions takes the form

∂v
(2)
iz

∂t
=

e

M
E(2)
z − γi

v2
Ti

N0

∂∆N
∂z
− ν2v

(2)
iz (35)

Here M is the mass of an ion, γi is the adiabatic coefficient for ions, v(2)
iz is the speed

of ions in the low-frequency field E(2)
z , and ν2 is the effective collision frequency of

ions, which includes collisions and Landau damping. The continuity equations for
electrons and ions should be added to the system (34), (35):

∂∆Nl
∂t

+
∂

∂z
N0v

(2)
l,z = 0 (l = e, i) (36)

Eliminating the low-frequency polarization electric field E(2)
z , which serves only

to maintain plasma neutrality, one obtains the following equation describing the
formation of the cavity as the heater is turned on at t = 0:

∂

∂t

[(
∂

∂t
+ ν2

)
∆N
]
−
(
γi + γe

Te
Ti

)
v2
Ti

∂2

∂z2 ∆N =
ε0

4M
ω2
Pe

ω2
0

∂2

∂z2 [|E0|2Θ(t) + |EL|2],

(37)

where vTi is the ion thermal velocity, Ti is the ion temperature, and Θ(t) is the
unit step function. Note that γi is in general a complex function, for low-frequency
oscillations γe ≈ 1 (see Stubbe and Hagfors 1997).

As (37) is linear with respect to ∆N , we can represent ∆N as the sum of two
terms: ∆N = ∆N (P ) + ∆N (L), where ∆N (P ) and ∆N (L) describe plasma depletions
produced by the pump wave and Langmuir waves.

First we discuss the formation of the depletion caused by the action of Langmuir
waves. The corresponding equation takes the form

∂

∂t

[(
∂

∂t
+ ν2

)
∆N (L)

]
− v2

s

∂2

∂z2 ∆N (L) =
ε0

4M
ω2
Pe

ω2
0

∂2

∂z2 |EL|2 (38)

Here vs = (γi + γeTε/Ti)1/2vTi is the ion-sound velocity. Cavitons have very small
lifetime ∆tc and spatial scale ∆zc compared with the time intervals and scales in
which we are interested. For this reason, we are able to represent the HF pressure
of the small-scale Langmuir waves in the form

|EL|2(z, t) = |E(0)
L |2

∑
j

δ(z − z0 − zj)δ(t− tj) ∆zc ∆tc, (39)

where the coordinates zj and tj describe the position and the moment of the ap-
pearence of the jth caviton and z0 is the center of the Airy maximum. Now we
perform a Fourier transform with respect to the coordinate z in (38):

∂

∂t

[(
∂

∂t
+ ν2

)
∆N (L)

k

]
+ k2v2

s ∆N (L)
k = −k2 ε0

4M
ω2
Pe

ω2
0

∑
j

|E(0)
L |2

× exp(−ikzj) δ(t− tj) ∆zc ∆tc, (40)
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where ∆N (L)
k is the kth Fourier component of ∆N (L). Note that cavitons are dis-

tributed stochastically within the Airy maximum. Hence, the statistical averaging
in (40) should be with respect to zj . If the distribution of the positions of the
cavitons is Gaussian, then

〈exp(−ikzj)〉 = exp(− 1
4k

2L2), (41)

where L2 = 2〈z2
j 〉 and the brackets 〈. . .〉 mean statistical averaging. We suppose

that the scale L is smaller than the scale of the Airy maximum b, because cavitons
are expected to appear more frequently in the region where the electric field of
the pump wave is the largest. Indeed, cavitons are excited due to the oscillating
two-stream instability, the growth rate of which is sensitive to the distribution of
the pump wave in the Airy maximum. We average (40) with respect to time and
compute the inverse Fourier transform. We obtain the following equation:

∂

∂t

[(
∂

∂t
+ ν2

)
∆N (L)

]
− v2

s

∂2

∂z2 ∆N (L) =
ε0

2ML2 |Ē
(0)
L |2

[
2(z − z0)2

L2 − 1
]

× exp
[
− (z − z0)2

L2

]
Θ(t), (42)

where

|Ē(0)
L |2 = 2

√
π

∆zc
L

∆tc
τ
|E(0)2
L |;

τ characterizes the frequency of caviton appearence in the Airy maximum,

τ = lim
T→∞

1
T

∫ T

0

∑
j

δ(t− tj).

With increasing time, the solution of (42) tends to

∆N (L) ≈ −N0

4v2
s

e2|E(0)
L |2

Mmω2
0

exp
[
− (z − z0)2

L2

]
. (43)

The characteristic time interval within which such a solution is achieved is ∆t ∼
L/vs. For example, if we take L = 5 m, ∆t is of the order of ∆t ≈ 5 ms. Further, we
concentrate on the processes that take place at t > ∆t, and hence we assume that
the cavity (43) exists.

Turning now to the slower plasma modification due to the action of the pondero-
motive force of the electromagnetic pump wave, we represent the distribution of
the pump wave near the Airy maximum in the form

|E0|2(z) = |Ee|2
{

1 + η exp
[
− (z − z0)2

b2

]}
,

where Ee is the electromagnetic field amplitude outside of the Airy maximum and
η is the swelling of the field in the center z = z0. As the scale of the Airy maximum
is large enough, b > vs/ν2, we use the diffusion equation to describe the slow
modification of the cavity:

∂

∂t
∆N (P ) −Da

∂2

∂z2 ∆N (P ) =
ε0

4Mν2

ω2
Pe

ω2
0

∂2

∂z2 |E0|2Θ(t), (44)

where Da = v2
s/νs is the coefficient of ambipolar diffusion. The solution of the
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diffusion equation (44) with HF pressure produced by the pump wave is as follows:

∆N (P )(z, t) = −QP
∫ t

0

1√
2πDa(t− t′) dt

′

×
∫ ∞
−∞

exp
{
−
[

(z − z′)2

4Da(t− t′) +
(z′ − z0)2

b2

]}[
1− 2(z′ − z0)2

b2

]
dz′.

(45)

Here

QP =
e2η|E0|2N0

2Mmω2
0b

2ν2
.

In explicit form, the decrease in plasma concentration ∆N (P ) at the center of the
cavity according to (45) is given by

∆N (P ) = −QP b
3

2Da

[
1
b
− 1

(b2 + 4Dat)1/2

]
. (46)

The characteristic time tD = b2/4Da describing cavity change in the lower part of
the F-region is about tD ≈ 50 ms. In the initial stage, the diffusion can be neglected
not only at the center z = z0 but also in the region |z−z0|� b. In this case, the small
parameter β = Dat/b

2 allows one to obtain an approximate solution of (45) near
the local minimum as a series of powers of β. In the lowest-order approximation,
the corresponding solution is described by

∆N (P )(z, t) ≈ −QP t
[
1− 3(z − z0)2

b2

]
. (47)

With the help of (44) and (47), one finds the shape of the nonstationary plasma
cavity near its center for ∆t < t < b2/4Da:

∆N (z, t) ≈ −∆N (L)
0 exp

[
− (z − z0)2

L2

]
−QP t

[
1− 3(z − z0)2

b2

]
, (48)

where ∆N (L)
0 is the depletion at the center of the cavity, (43). The total plasma

concentration in the vicinity of the cavity can be represented approximately in the
form

N (z, t) = (N0 − ∆N (ef ))
[
1 +

(z − z0)2

a2(t)

]
. (49)

Here ∆N (ef ) = ∆N (L)
0 + Qpt is the depletion at the center and the characteristic

scale a(t) is determined by

a−2(t) =
∆N (L)

0

N0
L−2 +

QP t

N0

3
b2 .

Note that the main parameters of the cavity, a and ∆N (ef ), are slowly changing
with time. With the development of the cavity, trapped Langmuir waves with higher
numbers n can be retained. The estimate of the reduced density at the center of
the parabolic depletion (49) that is required in order to retain an eigenmode of
order n is obtained with the help of (15) as ∆N (ef )/N0 ≈ q

√
nvTe/aω0, where q is a

numerical factor of order unity. This depletion is much broader than the small-scale
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cavitons discussed by DuBois et al. (1993). As will be shown in Sec. 6, the usual
resonant three-wave interaction takes place in such a cavity.

Let us briefly discuss the influence of thermal effects on cavity formation. The
heating of electrons is determined by the equation

∂

∂t
∆Te + δνe∆Te −DTe

∂2

∂z2 ∆Te = QT (z)θ(t). (50)

Here ∆Te is the increase in electron temperature, νe is the collision frequency of
electrons, δ is the average fraction of energy lost by an electron in one collision,
DTe is the thermal conductivity of electrons along the magnetic field line, QT =
2e2|E(z)|2νe/3mω2

0 is the heating source, and |E(z)|2 = |E0|2 + |ĒL|2 is the square of
the electric field amplitude. Thermal nonlinearity is significant in quasistationary
conditions at t > (δνe)−1 (see Gurevich 1978). Due to the large thermal conductivity
along magnetic field lines, plasma depletion becomes more and more elongated. In
the opposite limiting case (t� (δνe)−1), the influence of heating on the formation
of the depletion is less pronounced. To analyze the results of Isham et al. (1990),
we need concentrate only on the latter case. Let us choose the spacial distribution
of the source Q(z) in the form

QT (z) = QL exp
[
− (z − z0)2

L2

]
+Q0 exp

[
− (z − z0)2

b2

]
.

After substitution of QT (z) into (50), we arrive at the following result:

∆Te(z, t) = QL

{
L

(
t

DTe

)1/2

−
√
π

2
L

DTe

∫ z

z0

[
Φ
(
z1 − z0

L

)

−Φ
(

z1 − z0

(L2 + 4DTet)1/2

)]
dz1

}

+Q0

{
b

(
t

DTe

)1/2

−
√
π

2
b

DTe

∫ z

z0

[
Φ
(
z1 − z0

b

)

−Φ
(

z1 − z0

(b2 + 4DTet)1/2

)]
dz1

}
, (51)

where

Φ(x) =
2√
π

∫ x

0
exp(−χ2) dχ

is the error function. According to (51), for moderate heating (|E(z)| ≈ 1–3 V m−1),
the increase in the electron temperature within the first several milliseconds from
the cold start is very small, ∆Te/Te < 10−3. This means that the influence of heating
on cavity formation at such times is weaker than the action of the ponderomotive
force, and can be neglected.

5. Adiabatic modes of Langmuir waves
Our aim is to find eigenmodes of Langmuir waves in the cavity (49) that change
in time. According to (49), plasma depletion in the Airy maximum is described by
two parameters: ∆N (ef )(t) and a(t). Assuming that the time variation of the scale
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a(t) is not too fast, ω1|d ln a/dt|� 1, the following equation is obtained instead of
(9):

∂2Φ
∂z2 +

[
ω2

1 − ω2
Pe(0, t)− θ2ω2

He

3v2
Te

− ω2
Pe(0, t)
3v2
Te

(z − z0)2

a2

]
Φ − i 2ω1

3v2
Te

∂Φ
∂t

= 0. (52)

We seek the solution of (52) describing eigenmodes of Langmuir waves in the
form

Φ = Φn(αz) exp
(
i

∫ t

Ωn dt + iµα2z2
)
, (53)

where α(t), Ωn(t), and µ(t) are parameters to be determined. Note that a similar sol-
ution is used in the theory of a quantum oscillator with slowly changing frequency.
After substitution of (53) into (52), three relations for the unknown parameters α,
Ωn, and µ are obtained:

ω2
1 − ω2

Pe(0, t)− θ2ω2
He + 2ω1Ωn(t) = (6n + 3)v2

Teα
2, (54a)

ω1

v2
Te

dα

dt
= 6α3µ, (54b)

ω2
Pe(0, t)
a2 − 2ω1α

(
α
dµ

dt
+ µ

dα

dt

)
= 3α2v4

Te. (54c)

In a steady state when ωPe and a have no dependence on time, it follows from (54)
that

α =
(
ωPe(0)√

3avTe

)1/2

, µ = 0, (55a, b)

Ωn =
√

3(n + 1
2 )
vTe
a
− ω2

1 − ω2
Pe(0)− θ2ω2

He

2ω1
. (55c)

Now let us assume that the parameters α(t) and µ(t) vary rather slowly in time
and that the terms with derivatives in (54c) can be neglected. The corresponding
condition will be given below. In this case we obtain the following approximate
solution of (54):

α(t) ≈
(
ωPe(0, t)√
3vTea(t)

)1/2

, µ(t) ≈ − ω1

12v2
Teα

2

d ln a
dt

. (56)

The expression for the eigenfrequencies Ωn remains the same as in (55c), with
a = a(t) and ωPe(0) = ωPe(0, t). According to (56), the difference of frequencies
between two adjacent eigenmodes is

∆Ω ≈
√

3vTe
a(t)

. (57)

The above approximate solution is valid if |µ|� 1. Combining (56) and (57), we
find the necessary condition for the existence of adiabatic modes.

∆Ω�

∣∣∣∣d ln a
dt

∣∣∣∣ . (58)

This means that the cavity modification should be sufficiently slow compared with
the characteristic frequency ∆Ω. If the condition (58) is fulfilled, the general solution
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of (52) describing Langmuir waves localized in a parabolic cavity takes the form

Φ =
∑
n

cnΦn(αz) exp
(
i

∫ t

Ωn dt + iµα2z2
)
, (59)

where cn are arbitrary coefficients. Note that the eigenfunctions Φn with different
numbers n are orthogonal.

The depletion in the center of the Airy maximum is formed quickly. According to
the theory, the growth rate of the oscillating two-stream instability responsible for
caviton creation is proportional to the electric field amplitude of the pump (DuBois
et al. 1993). Hence, cavitons appear mainly in the center of the Airy maximum,
where the pump field reaches its maximum value. We therefore assume that the
corresponding scale L (see (41)) is less than the scale of the Airy maximum b. The
initial cavity with scale L appears in the center of the Airy maximum at ∆t ≈ L/vs.
The shape of the depletion at t ∼ ∆t is determined mainly by the distribution of
the averaged HF pressure of the small-scale plasma waves (see (43)). It is possible
under real ionospheric conditions to expect a depletion ∆N (0)

L /N0 ≈ 0.01 to be
formed within several milliseconds after the cold start. Furthermore, the cavity
will be modified due to the action of the ponderomotive force of the pump field E0

and growing Langmuir waves trapped in the cavity.
The adiabatic modes of Langmuir waves trapped in the cavity can be used if

the cavity modification is slow enough (see (58)). Substituting into the results ob-
tained above the parameters related to the cavity L ≈ 103 cm, b ≈ 6 × 103 cm,
∆N (0)

L /N0 ≈ 10−2, and for the ionospheric plasma ν2 ≈ 6 s−1 and E0 ≈ 1 m−1, it
is easy to verify that adiabatic modes can be used as soon as the initial cavity is
formed that is, a few milliseconds after the cold start.

6. Parametric decay instability in the nonstationary cavity
To investigate the parametric decay instability in the time-varying cavity, we start
with the coupled equations for the electric field of the Langmuir wave and the
low-frequency plasma oscillations. The electric field can be represented in the form

Ez =
1
2

[
E(0)
z (z) exp(iω0t) + E(1)

z (z, t) exp
(
i

∫ t

ω1 dt1

)]
+ c.c. + E(2)

z (z, t), (60)

where E(0)
z and E(1)

z are the slowly varying amplitudes of the electromagnetic pump
wave and the Langmuir wave, E(2)

z is the low-frequency polarization electric field.
We assume that the difference between the frequencies ω0 and ω1 is much smaller
than the frequency of the pump wave, δω = (ω0 − ω1)� ω0. At the same time, it
is assumed that the frequency shift between two adjacent modes of the trapped
Langmuir waves (see (57)) is large enough compared with the growth rate of the
parametric decay instability. To obtain the correct equation for E(1)∗

z , we must take
into account nonlinear terms in the electron equation of motion:[

∂2

∂z2 + i
2ω1

3v2
Te

∂

∂t
+
ω2

1 − ω2
Pe(z, t)− θ2ω2

He + i2ν̂(ef )
1 ω1

3v2
Te

]
E(1)∗
z

=
ω2
Pe(N0)

3v2
TeN0

[
exp
(
−i
∫ t

δω dt1

)
E(0)∗
z + E(1)∗

z

]
n2. (61)
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Here ν̂(ef )
1 describes the total damping of the Langmuir wave: ν̂(ef )

1 = νe + ν̂
(L)
1 , νe

is the electron collision frequency, ν̂(L)
1 is the damping caused by the interaction

with the resonance electrons in the cavity, and n2 is the plasma density of the
low-frequency perturbations. Note that the plasma frequency ωPe(N ) in (61) is
determined by the sum of the undisturbed concentrationN0 and the slowly varying
part ∆N (z, t) from the previous section. Hence the eigenfrequency ω1 depends on
time: ω1 = ω1(t).

The equation for the low-frequency plasma oscillations takes the form[
∂

∂t

(
∂

∂t
+ ν2

)
− v2

s

∂2

∂z2

]
n2 =

ε0

4M
∂2

∂z2

[
E(0)
z E

(1)∗
z exp

(
i

∫ t

δω dt1

)]
. (62)

We assume that the pump frequency ω0 coincides with the plasma frequency in
the undisturbed plasma, ωPe(N0). If E(1)∗

z corresponds to the eigenmode of the
Langmuir wave in the cavity, the difference δω is equal to

δω0,n =
∆N (ef )(t)

2N0
ω0 − ∆ωn(t), (63)

where ∆ωn and ∆N (ef ) are determined by (14) and (49). It follows from (63) that
the frequency δω0,n decreases with increasing eigenmode number n of the trapped
Langmuir wave. Equations (61) and (62) describe the interaction of high-frequency
and low-frequency waves in a nonstationary cavity.

To investigate the parametric decay instability in the cavity, we single out the
time dependence exp(iω2t) in the low-frequency plasma perturbation n2 and repre-
sent it in the form n2 = ns exp(iω2t).

It is more convenient to analyze the decay instability in k-space. So we apply
a Fourier transform with respect to k to (61) and (62). As a result, the system of
coupled equations takes the form[

∂2

∂k2 + a2ω
2
1 − (ω(0)2

Pe − θ2ω2
He + 3k2v2

Te) + iν
(L)
1 ω1

ω
(0)2
Pe

+ i2a2 ω1

ω
(0)2
Pe

∂

∂t

]
Φ(1)∗
n (k)

=
a2

N0
E∗(0)
z ns(k) exp

(
−i
∫ t

δΩ dt1

)
, (64)

[
ω2(ω2 − iν2)− k2v2

s − 2iω2
∂

∂t

]
n2 = k2 ε0

4M
E(0)
z Φ(1)∗

n exp
(
i

∫ t

δΩ dt1

)
. (65)

Here Φ(1)∗
n (k) and ns(k) are the Fourier transforms of E(1)∗

z and n2, and δΩ = ω0 −
ω1(t) − ω2. The frequency difference δΩ of the three interacting waves, and hence
the phase F (t)

∫ t
δΩ(t1) dt1, vary in time due to modification of the cavity.

Let us suppose first that the frequency difference of the interacting waves is equal
to zero: δΩ = 0. By setting Φ1,n = Φ̃1,n exp(Γt) and ns = ñs exp(Γt) and eliminating
the ion-sound perturbation with the help of (65), we arrive at the following equation
for the growth rate of the parametric decay instability in the cavity.[

∂2

∂k2 + a2ω
2
1 − (ω(0)2

Pe θ
2ω2
He + 3k2v2

Te) + iν
(L)
1 ω1

ω
(0)2
Pe

+ i2a2 ω1

ω
(0)2
Pe

Γ

]
Φ̃(1)∗
n

=
m

4M
v2
E

k2a2

ω2(ω2 − i(2Γ + νi))− k2v2
s

Φ̃(1)∗
n . (66)
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Here vE is the quiver velocity of electrons in the pump field, vE = eE0/mω0. The
parameter Γ determines the growth rate of instability (the real part of Γ) and
corrections to the eigenfrequencies of Langmuir waves in the cavity (the imaginary
part of Γ). If the imaginary part in the denominator of (66) is small enough, the
resonance region ω2

2 ≈ k2v2
s provides the main contribution to the growth rate. In

this case, the simple approximate value of the growth rate follows from (66):

Re Γn ≈ 0.3
m

M
ω2
v2
E

v3
s

(ω(0)
PevTea)1/2 |Φ̃(1)

n |2(kr)∫ |Φ̃(1)
n |2 dk

− 1
2ν

(L)
1,n (67)

With increasing mode number n, the resonant frequency ω2 = ω0 − ω1 and the
corresponding wavenumber kr = ω2/vs decrease. At the same time the Fourier
component Φ̃1,n contains wavenumbers k 6 (2n + 1)1/2(ω1/avTe)1/2 that increase
with n. This means that resonance conditions are achieved at some intermediate
values of n. The results obtained above are valid if the frequency shift between two
adjacent eigenmodes, ∆Ω, is larger than the growth rate: ∆Ω�Γ. Numerical esti-
mates show that the characteristic growth rate (67) is Γ ≈ 103 s−1. The difference
of two adjacent eigenfrequencies of Langmuir waves depends on the cavity scale,
and can be of the same order of magnitude. This causes significant difficulties in
the investigation of instability. But in the limiting case ∆Ω � Γ � ω2, it is also
possible to find approximately the growth rate from (67).

Γ ≈ 0.3
(m
M

)1/2
(ω(0)
Peω2)1/2

(∫ κr+∆κ

κr−∆κ
|Φ1|2 dk

)1/2

. (68)

Here

κr =

(√
3avTe
ω

(0)
Pe

)1/2
ω2

Vs
, ∆κ =

√
3avTe
ω

(0)
Pe

ω2Γ
v2
sκr

.

It is assumed that the eigenfunctions Φ1 are normalized:
∫ |Φ1|2 dκ = 1. The esti-

mate (68) gives a value Γ ≈ 104 s−1 that is approximately one order of magnitude
larger than in the previous case. It is possible to expect that, in real ionospheric
conditions, the typical magnitude of the growth rate is between these two limiting
values.

Let us discuss now the influence of cavity modification on the amplification of
waves. The time interval ∆t within which resonance conditions are fulfilled can be
estimated as

∆t ≈
∣∣∣∣ ddtδΩ

∣∣∣∣−1/2

(69)

Substituting into (69) the dependence δΩ(t) from (63), we arrive at the relation

∆t ≈ 5

(
Mν2

mω
(0)
Pe

)1/2
b

vE
. (70)

It follows that the amplification of Langmuir and ion-sound waves A = Γ ∆t is
significant: A ≈ 5–7.

The characteristic vertical scale of the cavity should not be too small. Otherwise,
collisionless damping becomes very strong and suppresses the parametric decay
instability. According to Figs 1 and 2, the damping rate for the eigenstate with
n = 10 becomes of the order of the growth rate Γ obtained above at (a/rd)1/2 > 17.
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Hence, the scale of the cavity a should be a > 300/rd. At the same time, the
maximum k-number of the excited eigenmode with number n is determined by the
scale a. The corresponding value kn,max is easily obtained with the help of (29):

kn,max ≈ 0.6
rd

[
(n + 1

2 )
rd
a

]1/2
. (71)

Hence the smaller the scale a, the larger is the maximum excited k-number of the
trapped Langmuir waves.

The generation of ion-acoustic waves with large k is possible only if such values
of k exist in the spectrum of the corresponding Langmuir mode. For example, UHF
radar can detect ion-acoustic waves near the reflection height of the pump wave in
a small-scale cavity a ≈ 5× 102 cm if Langmuir waves with mode numbers n > 60
are strongly amplified. However, high-order modes of the trapped Langmuir waves
cannot be excited due to strong damping by resonant electrons. This means that
it is difficult to imagine how UHF radar could measure low frequency small-scale
plasma perturbations excited by the decay of the HF pump wave into Langmuir
and ion-acoustic waves near its reflection height. Indeed, for k = 0.4 cm−1 and
rd = 0.5 cm, it follows from (68) that a/rd ≈ 9(n + 1/2). Substituting this estimate
into (30), we find that the collisionless damping rate is higher than the expected
growth rate of the parametric decay instability. At the same time, damping by
the resonance electrons decreases exponentially with decreasing k. So Langmuir
waves with smaller characteristic k-numbers can be efficiently generated near the
reflection height of the HF pump radio wave. Hence, the decay of trapped large-
amplitude Langmuir waves into other Langmuir waves and ion-acoustic waves may
produce small-scale low-frequency plasma perturbations measured by UHF radar.
This also explains why only an ion line was measured by UHF radar in the exper-
iment by Isham et al. (1990), while the enhanced plasma line was not detected.

It follows from the analysis presented above that high collisionless damping is
probably the main reason why it is difficult to measure simultaneously enhanced
plasma and ion lines by UHF radar at the reflection height of the pump wave.
One may expect that it is easier to perform such measurements for higher pump
frequencies. The higher the pump frequency, the smaller is the Debye radius rd at
the reflection height. Hence, the smaller is the attenuation. Also, it should be easier
to measure the enhanced plasma and ion perturbations near the reflection height
by VHF rader.

7. Discussion
It has been shown that the plasma cavity created in the main Airy maximum of
an HF ordinary electromagnetic wave may play a significant role in the excitation
of enhanced plasma and ion lines nearthe reflection level of the pump wave. After
the heater is switched on, such a cavity is able to retain Langmuir waves that grow
due to the parametric decay instability in a few milliseconds. The instability for the
trapped Langmuir waves is an absolute one, which is why the waves grow quickly in
time. It is argued that the direct decay process T→ L+S when the natural electron
temperature is high enough is not able to provide the excitation of very small-scale
ion-acoustic perturbations due to strong resonance damping of the Langmuir wave.
However, in this case, the decay of the trapped Langmuir wave with large amplitude
into another Langmuir wave and an ion-acoustic wave is thought to be the main
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process for the excitation of enhanced ion line measured by UHF radar near the
reflection height of the pump wave.

The electron temperature in the F-region rises considerably in a few hundreds
of milliseconds under the action of a strong HF radio wave. Besides that, the con-
centration of suprathermal electrons in the resonance region grow in time due to
elastic scattering from molecules. Both of these effects cause a substantial increase
in collisionless damping. Due to this, one may expect UHF radar to be able to mea-
sure the enhanced ion line only within a restricted period from the cold start. If
the natural electron temperature is not enhanced enough and a rather high pump
frequency is used, the plasma line can also be detected for such time intervals by
UHF radar. It is possible to expect the appearance even of several plasma lines
with different frequencies coming from the same height. Such lines correspond to
different eigenmodes in a cavity. According to our estimates, the maximum value
of k excited in the direct process T → L + S is approximately half the value of k
detected by the EISCAT UHF radar. So VHF radar should be able to measure the
enhanced plasma line even when it is not seen by UHF radar.
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