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Of particular significance to biological locomotion is vortex ring interaction. In the
wakes of animals, this unsteady process determines the changes in the impulse of
counter-rotating vortex ring pairs (VRPs), which consist of two vortex rings with
opposite sense of rotation. In this paper, these VRPs are proposed to be of particular
importance to unsteady force generation. We carry out numerical computations,
simulating the piston–cylinder apparatus, to study the transient changes in the impulse
of counter-rotating VRPs composed of a positive and a negative vortex ring. We model
the negative vortex ring (NeVR) of a VRP by making reasonable assumptions about
their vorticity distributions and spatial locations, which are initially prescribed. The
result of modelling is superimposed on the flow, which has a pre-existing positive
vortex ring (PoVR), leading to a VRP. The simulation quantitatively demonstrates
that the unsteady force resulting from a VRP is significantly larger compared with an
isolated PoVR (without an NeVR). The force enhancement is also correlated to vortex
configurations. A normalised force coefficient characterising force augmentation over
the entire stroke is given. The force augmentation coefficient grows significantly and
then reaches a plateau as the momentum input increases. The results are consistent
with those in fully unsteady vortex interaction, which involves the generation of an
NeVR. It is suggested that counter-rotating VRPs could offer a new perspective to
explain unconventional force generation for biological swimming and flying.

Key words: biological fluid dynamics, swimming/flying

1. Introduction
The dynamics of vortex rings has long been an intriguing subject for researchers

studying fluid dynamics (Lamb 1932; Batchelor 1967; Saffman 1992). Interest has
been shown in establishing analytical models of an ideal vortex ring, such as those of
Fraenkel (1972) and Norbury (1973). Experimental research on vortex rings is usually
carried out by using the piston–cylinder apparatus. It consists of a piston moving
through a tube, leading to the generation of an isolated starting vortex ring at the
exit orifice (Dabiri & Gharib 2004). It is prescribed here that vortex rings with the
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same sense of rotation as this kind of starting vortex ring are positive vortex rings
(PoVRs) and that vortex rings with the opposite sense of rotation are negative vortex
rings (NeVRs).

Counter-rotating vortex ring pairs (VRPs) which consist of a pair of a PoVR
and an NeVR are prevalent in biological unsteady locomotion. Flying insects leave
a linked vortex chain formed by a series of combined vortex rings with opposite
sense of rotation in their wakes (Brodsky 1991). Such VRPs are also observed
in high-resolution experiments at the ends of wing strokes in flying insects (see
Dickinson et al. 2000; Thomas et al. 2004; Lehmann, Sane & Dickinson 2005;
Hubel et al. 2010) and in the wakes of self-propelled swimming animals (see Dabiri
et al. 2005; Drucker & Lauder 2005; Bartol et al. 2009; Stewart, Bartol & Krueger
2010). In addition, VRPs are also presented in high-resolution computational studies
(for instance Aono, Liang & Liu 2008; Sahin, Mohseni & Colin 2009; Hamlet,
Santhanakrishnan & Miller 2011).

Considering the widespread biological evidence above, it is essential to study the
effect of a VRP on biological propulsion. These correlated vortex rings involve
unique dynamical behaviours. Regarding vortex formation, some visualisation results
have shown that far less circulation is shed in the upstrokes than in the downstrokes
(Dickinson & Götz 1996; Warrick, Tobalske & Powers 2005). The formation of an
NeVR is constrained by the prior PoVR. In terms of wake dynamics, it has been
conjectured that the correlated vortex rings cause an increased mass flow in the wake,
thus generating a larger force (Srygley & Thomas 2002; Dabiri et al. 2005).

Vortex ring pairs take on various vortical configurations, which embody the
dynamics of biological propulsion, as locomotive force is generated from a change in
the vortical impulse in the fluid. Different patterns of vortical configurations can exist
in the wakes of animals, and the patterns may correspond to propulsion performance
characterised by different features (high efficiency, rapid acceleration, etc.) (Dickinson,
Lehmann & Sane 1999; Lehmann 2008; Stewart et al. 2010).

Experimental examples of NeVRs are generated by time-dependent kinematics of
physical bodies (Dabiri et al. 2005; Weathers et al. 2010; Liu et al. 2012). The
circulation of NeVRs created in this way can be controlled by setting the flow
parameters (Weathers et al. 2010; Liu et al. 2012), but the overall configuration is
fixed by the experimental set-up. In contrast to this, numerical simulations can use
artificial set-ups to gain deeper insight into vortex dynamics (Pradeep & Hussain
2004; Bergdorf, Koumoutsakos & Leonard 2007; O’Farrell & Dabiri 2012).

Researchers are faced with two main challenges in studying VRPs: (i) time-
dependent wake measurement and (ii) control of the wake configuration. Vortex ring
pairs, which appear as highly complicated three-dimensional vortical structures (for
instance, see Warrick et al. 2005), are difficult to measure accurately, making it
challenging to reveal the unsteady mechanisms in the wake. In addition, it is hard to
actively vary vortical configurations by using a single experimental set-up. Since the
evolution of wake vortex configurations is related to the direction and magnitude of
the wake impulse, control of the wake implies control of the transient forces. However,
because of the experimental difficulties outlined above, we do not know how transient
forces and the locomotion performance respond to vortical configurations, and whether
biological locomotion can be evaluated from the perspective of the dynamics of VRPs.

In this paper, numerical simulation is performed to investigate VRPs based on the
piston–cylinder apparatus. We model the NeVR of a VRP by making reasonable
assumptions about their vorticity distributions and spatial locations, which are initially
prescribed. The flow induced by the NeVR is then superimposed on the flow where
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a PoVR is just generated from the apparatus (the stroke length is temporarily quite
small). The result of superimposition is processed through pre-simulation, and then
treated as the initial condition of the simulation. After the simulation begins, the fluid
ejected from the apparatus rolls up into a much bigger PoVR. The counter-rotating
VRP composed of a PoVR and an NeVR evolves with time under the interaction. The
transient forces, calculated from the vortical impulse in the entire wake, are compared
with those in the isolated PoVR flow under the same velocity inlet conditions.

The current study aims to quantitatively reveal the effect of VRPs on transient
changes in vortical impulse, which is referred to as the force due to VRPs. The force
generation is expected to be correlated to certain vortex configurations. It is also
intended to study stroke-averaged forces for different amounts of momentum input.

The remainder of the paper is organised as follows. Section 2 introduces the
computational set-up, flow initialisation and modelling of NeVRs. Section 3
investigates transient force augmentation at the beginning stage of a stroke, including
the effects of circulation, vortex spacing and vortex configurations. Section 4 studies
force augmentation over the entire stroke. A normalised force coefficient characterising
the stroke-averaged force augmentation is given. Section 5 shows fully unsteady
simulation of a VRP, including physical generation of a PoVR. The results are
compared with those in § 4. Section 6 gives concluding remarks and future work.

2. Numerical approach
2.1. Computational set-up

Axisymmetric flows are assumed throughout the current study. The governing
equations in the numerical approach are the axisymmetric, unsteady, incompressible
and laminar Navier–Stokes equations, given by
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(2.1)

where ux and ur stand for the velocity components in the axial (x) and radial (r)
directions respectively, with t being time; p, ρ and ν are the pressure, density and
kinematic viscosity of the fluid respectively.

The computational domain is sketched in figure 1 (not to scale in order to clearly
show different regions of the domain). Since axisymmetric flows are assumed, the
domain above the axis is shown. A squared-off lip at the orifice is adopted to avoid
singularity, which follows Rosenfeld, Rambod & Gharib (1998). In the domain, the
straight tube between the inlet and the orifice is 30D in length, where D is the inner
diameter of the tube. The outer boundary is placed at a distance of 4D from the
axis. The horizontal distance between the wall and the orifice is also 4D, while the
downstream boundary is placed at a distance of 30D from the orifice. The size of
the domain is sufficiently large that the computational results are independent of it.
The physical scale of the domain in the simulation is chosen to be similar to that
in the experiment of Gharib, Rambod & Shariff (1998), and the choice of the scale
of the domain (normalised by D) is close to that of previous studies using numerical
simulation (Rosenfeld, Katija & Dabiri 2009; Fu, Qin & Liu 2014).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

63
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.637


Transient force augmentation due to counter-rotating vortex ring pairs 327

Tube
Wall

Outer boundary

Downstream
 boundary

Velocity
inlet

Orifice

Axis

FIGURE 1. A sketch of the computational domain (not to scale). The fluid enters the
straight tube from the inlet, goes through the tube, exits from the orifice and rolls up
into a PoVR. The velocity program at the inlet simulates the piston motion.

The piston used in experiments is modelled as a velocity inlet condition during the
simulation; thus, no rigid body simulates the piston in the computation. The velocity
profile at the inlet is independent of the radial direction. A no-slip condition is set at
the walls. On the outer and downstream boundary, the gauge pressure of the fluid is
fixed as zero and flow entrainment is allowed.

The commercial finite volume package ANSYS Fluent 12.0 is employed. Second-
order temporal and spatial schemes are used with pressure-implicit with splitting
of operators (PISO) pressure–velocity coupling. For each time step, the relative
convergence criterion is 10−3 for every variable calculated in the solver.

The Reynolds number (Re) is defined as Re= uD/ν, where u is the inlet velocity.
In the current study, the Reynolds number ranges from 750 to 1500. In this range,
various numerical and experimental studies have confirmed that laminar vortex rings
are generated (Cater, Soria & Lim 2004; Rosenfeld et al. 2009), which validates
our assumption of laminar flows in the simulation. In addition, the current Reynolds
numbers are in the same order of magnitude as those in previous studies (Re∼ 103).
Previous studies (Dabiri & Gharib 2004; Linden & Turner 2004; Dabiri 2009) have
found that the flow behaviour is reasonably independent of Re, for this range of
values of Re.

The inlet velocity is constant in each stroke throughout this paper, whereas its value
varies from stroke to stroke in §§ 4 and 5 in order to reach different effective stroke
lengths (L) over the entire period. In the simulations, a normalised velocity is used,
defined as u∗ = u/u0, where u0 is the reference inlet velocity. It is chosen to satisfy
u0T/D=4, where T is the period of the entire stroke. In the recent literature on vortex
rings (Dabiri 2009; O’Farrell & Dabiri 2014), the formation time (t∗) is often used to
describe unsteady vortex formation, defined as t∗ = ut/D = L(t)/D. When the stroke
is over, the PoVR has a final stroke ratio T∗ given by T∗ = L/D= uT/D.

Based on the computational results showing vorticity contours, the boundary of a
vortex is empirically determined as the closed curve inside which the magnitude of the
vorticity is not smaller than 3 % of the local maximum (Rosenfeld et al. 1998, 2009;
Fu et al. 2014). The area enclosed by the boundary is referred to as the core of a
vortex ring. The circulation is calculated by integrating the vorticity inside the defined
vortex boundary. Other physical parameters associated with vortices (e.g. impulse) are
also evaluated in a similar way in the rest of the paper.

2.2. Flow evolution and validation
The grid and time dependence are checked with the experimental result (Gharib et al.
1998) on an isolated PoVR, shown in figure 2. The horizontal axis plots the formation
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FIGURE 2. (Colour online) Total circulation in the computational domain downstream of
the orifice. The current numerical result is compared with the experimental result (Gharib
et al. 1998) for (a) mesh dependence and (b) time step dependence.

time of the vortex ring; the vertical axis plots the non-dimensional circulation, where
Γto is the time-dependent total circulation integrated over the entire computational
domain downstream of the orifice. In the validation, an isolated PoVR is generated
with ut/D= 6, where the inlet velocity is constant. After ut/D= 6, the inlet velocity
drops to zero instantly, with the vortex ring propagating and the shear layer rolling
up into secondary vortices. The total number of grids (N) ranges from 0.9 × 104

to 11 × 104 in figure 2(a), where the time step (1t∗) is fixed to be 0.01 (1t∗ =
u1t/D, where 1t is the physical time step). It can be seen from figure 2(a) that
good agreement with the experiment is obtained for the stages of vortex ring formation
(ut/D6 6) and propagation (ut/D> 6). In figure 2(b), the time step ranges from 0.005
to 0.02, while the total number of grids is fixed to be 2.9× 104. It can be seen that
nice agreement is also obtained regardless of the time step employed. For ut/D> 6,
the total circulation in the simulation is still close to the experiment value, without a
decaying behaviour, suggesting that the numerical viscosity is not high in the current
solver. Considering computational efficiency, a grid size of 2.9× 104 and a time step
of 0.01 are chosen in the rest of the paper, so that the maximum difference relative
to the experimental result is restricted to 5 %.

Figure 3 shows the axial velocity profile at the nozzle exit, where ue is the axial
velocity at the nozzle exit. For the total number of grids equal to 0.9 × 104, 2.9 ×
104 and 11 × 104, there are 10, 20 and 40 grid points across the boundary layer
near the wall at t∗ = 2 respectively. The results are obtained with different grid sizes
and compared with a previous numerical study (Rosenfeld et al. 2009) at different
formation times (t∗ = 2 and 4). Here, we use the same flow parameters as were used
there. It can be seen in figure 3 that the agreement of the velocity profile is very good
for different grid sizes and it shows a convergent behaviour, which suggests that we
can resolve the flow well at the nozzle tip.

Figure 4 shows the rolling-up process of a vortex ring at the circular nozzle, and
figures 4(a) and 4(b) are previous experimental and numerical results of Didden (1979)
and Nitsche & Krasny (1994) respectively. Here, we adopt the same values of the
velocity program and diameter as they used. The piston starts from a stationary state,
with its velocity increasing to a steady state, and suddenly stops. It can be seen that
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FIGURE 3. (Colour online) Axial velocity profile at the nozzle exit: (a) t∗= 2; (b) t∗= 4.
The black squares mark the results of Rosenfeld et al. (2009).

Flow

(a) (b) (c) (d)

( f ) (g) (h)(e)

( j) (k) (l )(i)

FIGURE 4. The rolling-up process of a vortex ring at a circular nozzle for different
formation times: (a,e,i) = 0.29; (b,f,j) = 0.96; (c,g,k) = 1.53; (d,h,l) = 2.10. The black
arrow indicates the flow direction. (a–d) Visualisation with dye filaments (Didden 1979);
(e–h) numerical simulation (Nitsche & Krasny 1994); (i–l) current results (white and black
regions for positive and negative vorticity contours respectively).

when the flow starts, the fluid goes out of the nozzle exit and rolls up into a small
vortex ring. The ring increases in diameter and goes further downstream. The nozzle
lip results in a small secondary vortex with opposite vorticity. After the piston stops,
the leading vortex ring stops growing but the secondary vortex continues to grow.

We also compare quantitatively the circulation shedding rate dΓi/dt with experimental
measurements (Didden 1979) and numerical simulation (Nitsche & Krasny 1994); Γi
is defined in equation (6) of Didden (1979). The shedding rate is closely associated
with the unsteady process of vortex ring formation, because the shear layer shed
from the inner edge of the nozzle feeds vorticity into the vortex ring. The result is
plotted in figure 5. It can be seen that the current results agree reasonably well with
the experimental measurement (Didden 1979). For ut/D< 0.2, the current simulation
captures the rapid increase of dΓi/dt. For ut/D> 1, the change of circulation remains
almost invariant, and the differences between the current simulation and previous
results are minor. From these results, we can conclude that the current simulation
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FIGURE 5. Comparison of the circulation shedding rate dΓi/dt between the previous
experiment (squares, Didden (1979)), numerical simulation (dash-dotted line, Nitsche &
Krasny (1994)) and the current results (solid line).

is capable of obtaining reliable results for vortex ring formation and evolution,
particularly the vorticity close to the nozzle tip.

2.3. Flow initialisation
In general, the steps of setting up the initial conditions for simulation are given as
follows.

(i) A small PoVR (L/D= 0.2) is generated from the apparatus, and its velocity field
is calculated based on the numerical set-up presented in § 2.1. The location of the
small PoVR is regarded as the reference point so that we can prescribe the location
of the NeVR based on the location of the small PoVR. It should be noted that a
typical PoVR in biological flows is much larger (L/D> 2, shown by Linden & Turner
(2004)), so the response after the jet starts can still represent the true response without
the small PoVR.

(ii) An NeVR is modelled with a vorticity distribution and assigned a spatial
location in order to create the configuration of PoVR and NeVR as desired. The
details of the modelling will be discussed in § 2.3.1. The velocity field induced by
the NeVR is found using the Biot–Savart law.

(iii) The flow induced by the NeVR calculated in (ii) is superimposed on the flow
induced by the PoVR calculated in (i).

(iv) The velocity field obtained in (iii) is imported into the numerical solver, and
then the computation referred to as pre-simulation is performed. The computation lasts
for one time step, with the same numerical set-up as presented in § 2.1. This step
ensures that the flow satisfies the governing equations. This process will be discussed
in more detail in § 2.3.1.

(v) The velocity field calculated by the pre-simulation process is regarded as
the initial condition, and imported into the solver. From this initial condition, the
numerical investigation actually commences, allowing the calculation of the transient
force from the fluid.
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In §§ 3 and 4, the inlet velocity in step (i) for generating the small PoVR and in
step (iv) for pre-simulation is consistent with that in the subsequent actual simulation.
The details of NeVR modelling and pre-simulation are presented below.

2.3.1. Modelling of NeVRs
We prescribe a vorticity distribution and a spatial location to an NeVR. The vorticity

distribution of the NeVR is modelled using the expression (Pozrikidis 2009)

ω(x, r)=
−

πΓ −

(π2 − 4)a2

[
1+ cos

πq(x, r)
a

]
, 0< q< a,

0, q> a,
(2.2)

where
q(x, r)= [(x− x−c )

2 + (r− r−c )
2]1/2. (2.3)

In the equations above, ω and Γ − are the vorticity and magnitude of circulation of
the NeVR, with a being the radius of the vortex ring core. Vorticity is defined as
positive when the vortex has counterclockwise rotational motion in the plane shown
in figure 1. This definition is consistent with the definition of a PoVR. The spatial
location of the NeVR is determined by x−c and r−c , which are the coordinates of the
vortex core centre (indicating the local extreme value of vorticity) in the (x, r) plane,
and rc is defined as the radius of the axisymmetric ring. Through the assignment of
the coordinates of the NeVR, the configuration of a VRP can thus be manipulated.
In the rest of the paper, the NeVR is modelled with (2.2) and (2.3) unless otherwise
stated.

We do not intend to discuss how to realise the prescribed configurations of VRPs in
laboratory experiments. The realisation is related to active control of flow structures,
which is beyond the scope of the current study. It appears to be a standard procedure
to examine the vortex interaction numerically by giving a vorticity distribution as an
initial condition, although the configuration may not be easily achieved in reality (e.g.
Aref & Zawadzki 1991; Pozrikidis 2009).

A physically relevant flow is also ensured by choosing a reasonable vorticity
distribution for the NeVR. Direct numerical simulation of the flow generated by
a circular tube has shown that the strongly correlated PoVR and NeVR share a
similar vorticity distribution (Nitsche & Krasny 1994). Thus, in order to confirm the
reasonableness of the current modelling, we compare the vorticity distributions of the
PoVR and NeVR. Specifically, three cases are studied: (1) the NeVR modelled by
(2.2) and (2.3); (2) the NeVR after pre-simulation; (3) the isolated PoVR. In case
(3), the isolated PoVR is generated by constant inlet velocity to reach a given L/D
(2 or 4, see below). For case (1), the NeVR is modelled with the same magnitude of
circulation as the PoVR generated in case (3), while its spatial location is relative to
the small PoVR indicated in step (i) of § 2.3.

The vorticity distributions are plotted in figure 6. In both figures 6(a) and 6(b), σ =
r− rc, where rc is the radial coordinate of the core centre for either the PoVR or the
NeVR; ωex is the local extreme value of vorticity. For case (1), (x−c − x+c )/D = 0.4
and r−c /D= 0.6, where x+c stands for the x coordinate of the core centre of the small
PoVR generated in step (i) of § 2.3; a/D= 0.25 in figure 6(a) or 0.3 in figure 6(b),
where the values are chosen consistent with the PoVR in case (1). For case (2), the
normalised inlet velocity is u∗= 0.5 in figure 6(a) or 1.0 in figure 6(b). These values
are also consistent with the formation time of the PoVR in case (1), based on the
definition of normalised velocity.
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FIGURE 6. (Colour online) Vorticity distributions in three cases for (a) L/D= 2 and (b)
L/D= 4. The squares, circles and triangles denote respectively (1) the NeVR modelled by
(2.2) and (2.3), (2) the NeVR after the pre-simulation and (3) the isolated PoVR.

It is indicated in both figures 6(a) and 6(b) that all of the vorticity distributions
generally share a similar bell-shaped profile. For σ/a > 0, it can be seen that the
model captures the vorticity distribution of the PoVR well. For σ/a<−0.5, PoVRs
have larger vorticity because of the shear layers. The vorticity distributions after the
pre-simulation have smaller magnitude because of the interaction between the PoVR
and the NeVR. Pozrikidis (2009) points out that the precise vorticity distribution of
the vortex ring core has little effect on propagation of a vortex ring. Considering
the similar bell-shaped vorticity profile, it is hence believed that the modelling can
represent reasonably the dynamics of real vortex rings.

2.4. Calculation of the force due to VRPs
The hydrodynamic force (F) exerting on a solid body inside an infinite flow field can
be obtained from the vorticity field of the fluid and the velocity field of the solid body,
as given by Wu (1981, 2005),

F=−1
2
ρ

d
dt

∫
V

x×ω dV + ρ d
dt

∫
Vs

vs dV, (2.4)

where x and ω are displacement and vorticity vectors, and vs is the velocity of the
solid body immersed in the fluid. In the first term on the right-hand side of (2.4), V
is the total volume of fluid (Vf ) and the solid body (Vs), and ω takes into the account
the rotational motion of the solid body, equal to twice its angular velocity. It should
be noticed that (2.4) is not valid for the domain shown in figure 1, because the tube
extends to the boundary of the domain so that it does not include all of the vorticity.

On the other hand, (2.4) is valid for the hypothetical domain shown in figure 7,
where the domain includes all of the vorticity and the moving solid body (piston).
For this case, the first term on the right-hand side of (2.4) can be split into two terms,
namely the volume integral for V1 and another one for V2,

F=−1
2
ρ

d
dt

(∫
V1

x×ω dV +
∫

V2

x×ω dV
)
+ ρ d

dt

∫
Vs

vs dV. (2.5)
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Axis

Piston

VRP

u

FIGURE 7. The hypothetical domain to be analysed for force calculation with notation (not
to scale). Two blocks enclosed by the dashed lines are denoted by V1 and V2 respectively.
The area enclosed by the grey box corresponds to the computational domain shown in
figure 1. The empty or filled circles denote vortices with positive or negative vorticity
respectively.

The grey box denotes the computational domain shown in figure 1. This includes
a VRP downstream of the nozzle exit. It is important to note that, in terms of the
vorticity field downstream of the nozzle exit, the numerical results (e.g. circulation,
circulation shedding rates) driven by a velocity inlet condition agree well with the
experimental results driven by a piston, as validated in § 2.2. Therefore, the values of
the V2 term are consistent for the cases shown in figures 1 and 7.

In the current study, the time derivative of the V2 term is examined (not the
total force acting on the solid body). The motivation is that VRPs are widespread in
biological propulsion. We would like to study the contribution solely from a VRP and
to remove the contributions from other vortical structures inside the tube. Although
the time derivative of the V2 term is not equivalent to the transient force acting on the
solid body, this term is of particular significance to propulsion because it is directly
related to the wake-capture mechanism (Dickinson et al. 1999), and it is the major
contribution to the enhancement of transient force given in (2.5).

The time derivative of the impulse of the VRP in V2 is given by

dIV2

dt
=−1

2
ρ

d
dt

∫
V2

x×ω dV, (2.6)

where IV2 means the impulse of the VRP in V2. Considering the assumption of
axisymmetric flows, the impulse has only an axial component. After some simple
vector calculation, we have

dIV2

dt
=−ρ

2
d
dt

∫
V2

rω dV =−ρ
2

d
dt

∫
S2

rω 2πr dx dr=−πρ
d
dt

∫
S2

r2ω dx dr, (2.7)

where IV2 stands for the axial component. Hereafter, the time derivative of the impulse
of a VRP is referred to as the force due to a VRP. This force is calculated according
to the rightmost expression of (2.7). The integration of the vorticity field is carried
out above the axis in the entire wake downstream of the nozzle exit.

The force due to a VRP is compared with the force generated in the flow with
only an isolated PoVR. The flow with the isolated PoVR shares the same velocity
inlet condition as the current flow with a VRP. In this way, we ensure that the same
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FIGURE 8. The contribution to the change of hydrodynamic impulse from all of the
vorticity in V2 (CF1, solid line) and from the tip vortex (CF2, dash-dotted line).

impulse is delivered to the wake in both kinds of flows. To compare these two cases,
we define an augmentation ratio of force (F∗), which is given by

F∗ =
(
dIV2/dt

)
VRP(

dIV2/dt
)

PoVR

, (2.8)

where, under the same inlet velocity, (dIV2/dt)VRP is the force for the current flow with
a VRP and (dIV2/dt)PoVR is the force for the flow with an isolated PoVR. It should be
noted that the axial component of the force is considered, as the flow is axisymmetric,
and that the ratio is time-dependent since the impulse of a VRP varies with time.

Since all vorticity in V2 is included for calculating the impulse change, the effect of
the tip vortex at the nozzle tip just on the boundary of V2 is also taken into account.
It should be recalled that this tip vortex, which has negative vorticity and stays at the
nozzle lip, is present in isolated vortex ring flows, as shown in figure 4; therefore,
(dIV2/dt)PoVR includes the impulse change of the tip vortex. Figure 8 shows the force
contribution from all of the vorticity (solid line) in V2 and solely from the tip vortex
(dash-dotted line), where CF is dIV2/dt normalised by ρu2D2. We use the same velocity
program and nozzle diameter here as in figure 5.

It can be found in figure 8 that the changing rate of total hydrodynamic impulse
(CF1) reaches a peak at ut/D ≈ 0.2, goes down to a minimum at ut/D = 0.45, and
recovers to an almost constant value afterwards. On the other hand, the changing
rate of the hydrodynamic impulse of the tip vortex (CF2) has a negative contribution
to the changing rate of the total hydrodynamic impulse for ut/D < 0.8. Its negative
contribution peaks at ut/D= 0.45. On comparing the contribution from the tip vortex
with the contribution from all of the vorticity in V2, we can find in figure 8 that at
the beginning of the simulation (L/D = 0.2, as indicated in § 2.3), CF2 is not very
significant (approximately 10 % of CF1), but at L/D = 0.45, CF2 can contribute to
40 % of CF1, and afterwards it gradually decays. This trend is consistent with the
measurement of the shedding rate of the outer edge which is responsible for the
formation of negative vorticity at the nozzle lip (Didden 1979). From the previous
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flow visualisation in figure 4(a,b), before the piston stops, the tip vortex cannot be
clearly seen. However, in the current study we include the contribution from the tip
vortex so that we take into account the effect of the boundary (nozzle tip) on the
growth of a VRP downstream.

Apart from the tip vortex, the shear layer close to the nozzle tip is also taken into
account in figure 8 (CF1). Previous studies have shown that the shear layer shed from
the solid body and the leading and trailing edge vortices (counterparts of the leading
vortex ring here) are the main sources of unsteady force (e.g. figure 7(a) of Lee et al.
(2012)). This is consistent with the conclusion in some review articles on propulsion
performance for biological swimming and flying (Peng & Dabiri 2008; Dabiri 2009).

3. Force augmentation at the beginning stages of strokes
To simulate the formation of a PoVR, a constant normalised inlet velocity is chosen

as u∗ = 0.75 for both flow initialisation and actual simulation. A velocity with this
value can generate an isolated PoVR of L/D = 3 when the entire stroke is over,
according to our definition of normalised inlet velocity given in § 2.1. For modelling
of an NeVR, the radius of its ring core is chosen as a/D= 0.27 in (2.2). This choice
is consistent with the value obtained from the isolated PoVR. The augmentation ratio
F∗ is evaluated at t/T = 0.05, and the contours are also extracted at this time instant.

3.1. Effects of circulation and vortex spacing
Thanks to the presence of the NeVR, augmentation may result from the interaction
between the vortices. The interaction induces velocity and change of the vortical
impulse in the flow field. According to the formulation of the Biot–Savart law, the
induced effect is dependent on the circulation of the NeVR (Γ −) and the spacing (d)
between the NeVR and the PoVR. The spacing is defined as the horizontal distance
between the centres of vortex cores, i.e. d= x−c − x+c . Therefore, we examine the effects
of the circulation of the NeVR and vortex spacing on transient force augmentation in
this subsection, where the radius of the NeVR is set to be r−c /D= 0.60 as the initial
condition.

For the study on the effect of the circulation of the NeVR, we assign it different
values with the vortex spacing set to be 0.76D as the initial condition. Figure 9(a)
plots the augmentation ratio as a function of the normalised circulation of the NeVR.
The circulation of the NeVR is normalised by the inlet velocity and the inner diameter
of the tube. It can be seen from the squares in figure 9(a) that the augmentation ratio
is approximately a linear function of the circulation of the NeVR. The linear fitting
line shows a slope of 0.51.

It should be recalled that in § 2.3 it has been mentioned that the pre-simulation lasts
for one time step, with non-zero inlet velocity after the generation of a small PoVR
of L/D= 0.2. Here, we provide validation cases for this approach. The procedure for
the validation cases is as follows: (1) introduce an NeVR; (2) run a pre-simulation
with multiple time steps and a slip boundary condition; (3) continue the simulation
with a no-slip boundary condition and inlet flow to generate a PoVR. The purpose
of calculating for multiple time steps is to let the flow relax to a normal state. The
slip boundary condition is used to avoid the generation of secondary vortices close to
the wall (Lim & Nickels 1995). The validation test is conducted with a range of time
steps (10, 20 and 30) used in the pre-simulation, as shown in figure 9(a). As can be
seen in the figure, slight differences are observed among the results obtained by using
a range of time steps for the pre-simulation. A converging behaviour is also seen as
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FIGURE 9. (a) The augmentation ratio as a function of the normalised circulation of the
NeVR. The circulation is extracted after the pre-simulation. The squares indicate results
by using the set-up described in § 2.3. The triangles, circles and stars mark the results
for 10, 20 and 30 time steps used in the pre-simulation respectively. The straight lines
indicate the results of linear fitting, with slopes of 0.51 (squares), 0.48 (triangles), 0.46
(circles) and 0.45 (stars). (b) The augmentation ratio as a function of the normalised vortex
spacing. The spacing is extracted after the pre-simulation, with each axis of the plot on
a logarithmic scale. The squares indicate simulation results, while the straight line shows
the power-law fitting. The fitting line indicates a power of −0.31.

the number of time steps increases. The differences are probably due to the relaxation
of the flow to a natural state. Given the fact that the differences between the results of
pre-simulations with different numbers of steps are small, the current results are still
useful for describing the general character of the flow. Thus, the procedure described
in § 2.3 is acceptable and is followed in the rest of the paper.

For the study on the effect of the spacing between the vortices, we assign it
different values with the normalised circulation of the NeVR set to be 1.5 as
the initial condition. Figure 9(b) plots the augmentation ratio as a function of the
normalised vortex spacing, with each axis on a logarithmic scale. Its power-law fitting
shows F∗ ∼ (d/D)−0.31. It shows that the force augmentation ratio (F∗), representing
the interaction effect, decreases with increasing d/D. This indicates that the effect
of interaction becomes weaker with the initial position of an NeVR going further
downstream. It can be inferred from the result that the transient force augmentation
decays slowly if the NeVR stays in the near downstream.

It can be concluded from figure 9 that the presence of an NeVR can give rise to
remarkable force augmentation relative to the force generated from an isolated PoVR,
at least at the beginning stage of a stroke.

3.2. Discussion
The vorticity contours computed in § 3.1 are shown in figure 10(a,b). This simulation
is initialised with Γ −/uD= 2.0 and d/D= 0.76. For comparison, figure 10(b) shows
the contours of the isolated PoVR with the same velocity input as the case shown in
figure 10(a). The coordinates are normalised with D. The normalised vorticity (ω∗) is
defined as ω∗=ωD/u. As indicated in figure 10(a,b), the shape of the PoVR remains
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FIGURE 10. (Colour online) (a) The contour plot of the normalised vorticity for the flow
composed of the PoVR and NeVR. (b) The contour plot of the normalised vorticity for
the isolated PoVR flow with the same inlet velocity as in (a). (c) The contour plot of F∗s
corresponding to the flow shown in (a). (d) The contour plot of F∗s corresponding to the
flow shown in (b). In all figures showing contours hereafter, the orifice is located in the
range of r/D< 0.5 at x/D= 0. The flow comes from the left, and the fluid rolls up into
a small vortex ring in the vicinity of the orifice edge (i.e. x/D≈ 0 and r/D≈ 0.5). The
structures are independent of azimuthal angles, so the cross-sections above the axis are
shown hereafter.

generally the same despite the presence of an NeVR downstream of the orifice in
figure 10(a).

We also calculate the rightmost expression of (2.7) in every cell in the domain.
Similar approaches to find the sources of force have been taken by Lee et al. (2012)
and Fu et al. (2014). Between two adjacent time frames, the rate of the impulse
change in each grid cell is then regarded as the contribution of force from each fluid
element. The force from every fluid element is normalised and is given by

F∗s =−
dIcell/dt
ρu2Scell

≈ π

u2

1(r2ω)

1t
, (3.1)

where F∗s stands for the source of force from each fluid element; Scell and dIcell/dt
are the area of the grid cell and the force due to the fluid element in the grid cell
given by (2.7) respectively. It should be noted that we add a minus sign in order to
show positive values for the sources leading to thrust. The difference in r2ω between
two time steps is evaluated in every grid cell. The contours of F∗s are shown in
figure 10(c,d) for the VRP and for the isolated PoVR respectively. It should be
noted that, in the regions without vorticity, r2ω is simply zero, and therefore the
expression for F∗s given by (3.1) represents the force contribution from the impulse
of the vortices.

It is indicated in figure 10(c) that the NeVR contributes to overall positive force
generation. This is attributed to the interaction effect between the PoVR and the
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Jet

Axis

Tube

NeVR

PoVR

FIGURE 11. A sketch of a vortex configuration dictating the relative positions of the
vortices. The empty circle stands for the PoVR, while the filled circle stands for the NeVR.
The configuration varies by changing θ , which is defined as the angle between the axis
and the line connecting the centres of the vortex cores.

NeVR. With the evolution of the VRP, the PoVR increases in the magnitudes of
circulation and impulse, while the NeVR decreases in them. According to (2.7),
either the increase in the magnitude of the impulse of the PoVR or the decrease in
the magnitude of the impulse of the NeVR contributes to positive force generation.
Moreover, the NeVR induces a velocity vector pointing in the positive radial direction
in the location of the PoVR. The overall effect is that the vortices increase in their
radii and impulses, resulting in force augmentation. It is also reported by Fu et al.
(2014) that the interacting vortex rings embody another time scale, independent of
vortex ring formation, related to thrust enhancement due to multiple vortex rings.

3.3. Effect of vortex configurations
3.3.1. Relative positions between PoVRs and NeVRs

While §§ 3.1 and 3.2 discuss force augmentation for a generally fixed configuration
(i.e. an NeVR downstream of a PoVR), the combination of the PoVR and the NeVR
can take on various configurations. The configuration can be defined by θ , as shown
in figure 11, assuming one NeVR. It is shown that θ is defined as the angle between
the axis and the line connecting the centres of the vortex cores. The distance between
vortex core centres is defined as l, where l2 = (x−c − x+c )

2 + (r−c − r+c )
2. The vortex

spacing defined in § 3.1 satisfies d= l cos θ .
We calculate the force augmentation ratio for six configurations (different values of

θ ), all of which use Γ −/uD = 2.0 and l/D = 0.4 as the initial conditions. With the
values of l and θ , the spatial location of the NeVR (i.e. x−c and r−c ) is determined.
The results for different configurations varying in θ are shown in table 1. According
to the rightmost expression of (2.7), the thrust is dependent on r2. With the given
vorticity distribution and circulation, the vortical impulse of the NeVR can therefore
be represented by (r−c /D)

2, which is shown in the third row in table 1. In the last row,
the ratio of (F∗)/[(r−c /D)2], namely the force augmentation divided by its impulse,
suggests the capability of utilising the impulse from the surrounding fluid to generate
force enhancement, because a larger ratio means that the system can gain more force
augmentation from the given impulse of the NeVR.

It can be seen in table 1 that in general the augmentation ratio shows an upward
trend with increasing impulse of the NeVR, indicated by (r−c /D)

2. In terms of the
relative positions between PoVRs and NeVRs, the force augmentation ratio increases
when the NeVR moves from the inner side of the PoVR to the outer side. The last
row suggests that we can gain more force augmentation for θ < 0 than θ > 0 given
the same amount of impulse of an NeVR.
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Axis

Tube PoVR Negative
vorticity

Jet

FIGURE 12. A sketch of the special configuration. The empty circle stands for the PoVR,
while the filled region stands for the negative vorticity. The jet comes from the tube exit
and generates a PoVR surrounded by vorticity of opposite sense.

θ −π/2 −π/4 0 π/4 π/2 3π/4

F∗ 1.61 2.50 1.93 3.20 3.00 3.71
(r−c /D)

2 0.04 0.10 0.36 0.78 1.00 0.78
(F∗)/[(r−c /D)2] 40.3 25.0 5.36 4.10 3.00 4.76

TABLE 1. The results for six configurations defined by θ . The first row shows the values
of θ , defining the configurations. The values of θ and (r−c /D) are extracted after the pre-
simulation.

3.3.2. Cross-sectional shape of an NeVR
A flexible shape of the cross-section (not always circular) of an NeVR allows

closer spacing between the PoVR and the NeVR, as previously observed (Sahin et al.
2009). The force augmentation has been found to increase significantly for sufficiently
small vortex spacing (Fu et al. 2014). In the following case we consider a ‘special’
configuration, illustrated in figure 12, where the vortex spacing is very small. The jet
comes from the tube exit and generates a PoVR surrounded by vorticity of opposite
sense. This special configuration is found in some numerical simulations for jellyfish
propulsion (e.g. see Sahin et al. 2009). For this configuration, the philosophy is that
the negative vorticity is kept as close to the PoVR as possible. The negative vorticity
is modelled as

ω(x, r)= ωex

2
cos
(

πθ

θ2 − θ1

)(
1+ cos

2q(x, r)− a1 − a2

a2 − a1
π

)
, (3.2)

where a1 6 q6 a2 and θ1 6 θ 6 θ2. The value of q here is defined in a similar way to
(2.3), but xc and rc refer to the core centres of the PoVR. The parameters a1, a2, θ1
and θ2 are chosen as a1= 0.27D, a2= 0.4D, θ1=−5π/6 and θ2= 5π/6. By changing
ωex, we get different circulation of the negative vorticity. We use a cosine function to
characterise the vorticity profile from the core centre of the PoVR to the boundary of
the negative vorticity in (3.2). With increasing θ , the negative vorticity is also assumed
to have a cosine distribution. The resemblance between the model and what appears
in practice is improved by pre-simulation.

The augmentation ratio is plotted in figure 13 as a function of the circulation
of the negative vorticity. Surprisingly, the augmentation ratio for this special
configuration shows an exponential behaviour as a function of the circulation. The
simulation results are fitted with the exponential function, giving the relationship as
F∗ ∼ exp(0.5 · Γ −/uD). For Γ −/uD = 2.0, the augmentation ratio is as high as 3.9.
The exponential behaviour may be attributed to the sufficiently small spacing between
the vortices for this special configuration.
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FIGURE 13. The augmentation ratio as a function of the non-dimensional circulation for
the ‘special’ configuration. The circulation is extracted after the pre-simulation. The plot
uses a linear scale for the horizontal axis and a logarithmic scale for the vertical axis.
The squares indicate simulation results, while the line shows the exponential fitting. The
line shows the expression given by F∗ ∼ exp(0.5Γ −/uD).
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FIGURE 14. (Colour online) (a) The contour plot of normalised vorticity for the special
configuration. A PoVR is surrounded by negative vorticity. (b) The contour plot of force
source, F∗, corresponding to the flow shown in (a).

The normalised vorticity contour plot of the special configuration is shown in
figure 14(a), where the flow is initialised with Γ −/uD = 2.0. It can be seen that
the PoVR is surrounded by negative vorticity, whereas there are differences between
the vorticity distribution shown and modelled. The contour plot of F∗ is shown in
figure 14(b). It can be found that the interacting vortical structure induces an area of
force source located at x/D < 0.2 and 0.5 < r/D < 0.8. As the negative vorticity is
kept sufficiently close to the PoVR, the configuration allows stronger interaction (Fu
et al. 2014).

4. Force augmentation over the stroke period
In biological flows, the impulse of an NeVR is related to momentum input. The

NeVR has a larger impulse for larger momentum input that generates the PoVR,
assuming that the NeVR has the same circulation as the PoVR (conservation of
circulation). Quantitatively, for the isolated PoVR, the circulation generated by the
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FIGURE 15. (Colour online) Augmentation ratios as functions of time normalised by the
stroke period T for normalised inlet velocities equal to 0.6, 0.8, 1.0 and 1.2. (a) The ratio
over the entire stroke. (b) A magnification of (a) for t/T < 0.25.

piston–cylinder apparatus can be estimated by the slug model (Didden 1979; Lim &
Nickels 1995; Dabiri 2009). The model assumes that, within the boundary layer of
thickness δ � D, the r component of velocity is much less than the x component.
Moreover, the flow outside the boundary layer is assumed to be spatially uniform
and equal to the constant u. Under these assumptions, the circulation of the PoVR
can be approximated as

Γ ≈
∫ T

0

∫ D/2

D/2−δ
uω dr dt≈

∫ T

0

∫ D/2

D/2−δ
u
(
−du

dr

)
dr dt=

∫ T

0

(
−u2

2

)D/2

D/2−δ
dt= 1

2
u2T.

(4.1)
Some revisions have been made to this model (Krueger 2005; Gao & Yu 2010), but
the slug model still reflects the fundamental relationship between the circulation of
the vortex ring and the impulse delivery. The NeVR is assumed to have the same
magnitude of circulation as the PoVR. Symmetric oscillatory motion leads to counter-
rotating vortices with roughly the same amount of circulation. Thus, this assumption
would tell us the general situation of force augmentation due to a VRP. According to
the slug model, it is estimated here that the circulation of the NeVR is proportional to
the square of the inlet velocity in order to reflect the relationship between the velocity
input and the defined NeVR.

In this section, the normalised velocity varies from 0.6 to 1.2 in different cases, and
is constant in each individual case. According to the definition introduced in § 2.1,
these velocities correspond to final stroke ratios ranging from 2.4 to 4.8. The initial
position of the NeVR is chosen as d/D = 0.5 and r−c /D = 0.6, and the core size is
chosen as a/D= 0.28 (see (2.2)). In this way, the NeVRs are constructed to resemble
biological flows (Dabiri et al. 2005).

The force augmentation ratios are plotted in figure 15, as functions of normalised
time for normalised inlet velocities equal to 0.6, 0.8, 1.0 and 1.2. Figure 15(a)
indicates that large variations in the ratios occur during the first half of the period,
whereas there is no evident force augmentation during the second half. It is also
shown that for all of the cases the augmentation ratio increases and then declines,
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FIGURE 16. The force augmentation coefficient ε as a function of the normalised velocity.

stabilising at 1 eventually. Different trends of the relatively large augmentation ratio
are clearly observed in figure 15(b). It can be seen that for larger velocity input, the
augmentation ratio peaks at a larger value at an earlier time instant, but drops more
rapidly.

We define a force coefficient (ε) reflecting the force augmentation over the entire
stroke, which is given by

ε= (dIV2/dt)VRP − (dIV2/dt)PoVR

ρu2A
, (4.2)

where A is the area of the nozzle exit and the overbar means a stroke-averaged
value. In the equation above, the numerator stands for force augmentation and the
denominator stands for the inlet momentum flow. The values of ε for the different
normalised velocities are shown in figure 16. It is shown that the maximum ε
corresponds to u∗ = 1.1. This normalised velocity corresponds to a final stroke ratio
of T∗ = 4.4. For smaller inlet velocity, the system can only generate quite limited
force augmentation. With the delivered momentum increasing, the force augmentation
rises significantly, at a larger rate than the delivered momentum. Thus, for this range
of inlet velocity, the value of ε still increases. For larger inlet velocity, the force
coefficient reaches a plateau for u∗ > 1.

The contours of the normalised vorticity are shown in figure 17. Figure 17(a,b)
shows the contours for u∗= 0.8, while figure 17(c,d) shows the contours for u∗= 1.2.
Figure 17(a,c) corresponds to t/T=0.05, while figure 17(b,d) corresponds to t/T=0.2.
It is shown in figure 17(a,b) that for u∗ = 0.8, the vortices are getting closer during
the beginning of the stroke. As the stroke continues, the radii of the vortices increase,
arriving at a value of rc/D≈ 0.9. In comparison, it is indicated in figure 17(c,d) that
for u∗= 1.2, the vortices are getting closer more rapidly after the stroke begins. This
results in greater force augmentation at the very beginning of the stroke. Due to the
larger momentum delivered to the fluid and the stronger induced effect during their
evolution, the radii of the vortices increase more rapidly.

The momentum is not effectively delivered to the VRP or entrained as vortical
impulse as the momentum input increases. The circulation of the PoVR is calculated
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FIGURE 17. (Colour online) The temporal evolution of the normalised vorticity: (a) u∗=
0.8 at t/T = 0.05; (b) u∗ = 0.8 at t/T = 0.2; (c) u∗ = 1.2 at t/T = 0.05; (d) u∗ = 1.2 at
t/T = 0.2. It should be noted that in (d) different ranges for the x and r axes are used to
show the vortices clearly.

after it pinches off from the trailing jet. The normalised circulation is 0.76, 1.09,
1.16 and 1.06 for u∗ = 0.6, 0.8, 1.0 and 1.2 respectively. For the isolated vortex ring
flow, if the injected momentum is completely absorbed into the ring, the normalised
circulation should be increased with increased u∗ (or formation time), as suggested
by figure 2. On the other hand, it can be seen for the VRP flows that, for gradually
increasing u∗, the normalised circulation increases slowly and then saturates. This
trend suggests that, for relatively large u∗, the momentum input is not as effectively
absorbed into the PoVR as for small u∗. We note that this trend is well beyond the
numerical uncertainty resulting from using the threshold to determine pinch-off. As
stated in § 2.1, the threshold of the vortex boundary is chosen as 3 % of the core
vorticity (local maximum). We use this threshold to determine whether the PoVR
has pinched off from the trailing jet. When we change the threshold, the trend in
normalised circulation, however, does not change. Furthermore, one can find that
the VRP has moved upstream by t/T = 0.2 for u∗ = 1.2 in figure 17(d). This flow
phenomenon corresponds to the thrust in the opposite direction to the jet. It cancels
out some of the thrust gained by fluid ejected downstream. These explain that the
augmentation ratios drop below 1 after t/T = 0.2 for u∗ = 1.2. However, for u∗ = 0.8,
the moderate interaction between the correlated vortices enables the augmentation
ratio to maintain relatively high values over the first half of the stroke.

5. Fully unsteady interaction between the vortices
In the previous sections, NeVRs are introduced to the simulated flows as initial

conditions. The generation of these NeVRs is not taken into account in the previous
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FIGURE 18. (Colour online) The contour plots of the normalised vorticity with the
normalised inlet velocity of 0.8: (a,b) interaction with the proposed NeVR, copied from
figure 17(a,b); (c,d) fully unsteady interaction with the NeVR. Here, (a,c) correspond to
t/T = 0.05 and (b,d) to t/T = 0.2.

simulation. In this section, fully unsteady interaction between the NeVR and the
PoVR is directly simulated. The NeVR is generated by forcing a negative velocity
(−x direction) at the inlet, and subsequently a positive velocity (+x direction) is
given so that a PoVR is formed in the presence of the NeVR. The velocity program
models a piston moving to the left (generating an NeVR) and then to the right
(generating a PoVR). The velocity program is given by u∗ =−u1 (t< 0) and u∗ = u2
(t > 0), where u1 and u2 are both positive constants in each simulation. The values
of u1 are determined by equating the circulation of the NeVR to the corresponding
circulation of the proposed NeVR in § 4 for each normalised velocity u∗ at t = 0+.
The values of u2 are the same as those in the corresponding cases in § 4 for t> 0. It
is expected that we would have different vortex configurations from those proposed
in § 4. The purpose here is to compare the force and the structures, as the result of
fully unsteady interaction, with those as the result of ‘prescribed’ interaction in § 4.

The contours of the normalised vorticity during the fully unsteady interaction are
shown in figure 18(c,d). For comparison, the contours with the prescribed NeVRs
are copied from figure 17(a,b) and shown in figure 18(a,b). The normalised inlet
velocity is 0.8 in all of the panels. It can be seen in figure 18(c,d) that, by forcing a
negative velocity at the inlet, the NeVR is generated at the inner side of the PoVR,
and that it is closer to the PoVR compared with figure 18(a,b). In addition, the cross-
section of the NeVR is stretched alongside the PoVR thanks to the strong induced
effect during the fully unsteady interaction between the vortices. Since the NeVR can
induce an axial component of the velocity, the vortex pair goes further downstream in
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FIGURE 19. (Colour online) (a) The complete time history of the force ratio; (b) the ratio
during t/T < 0.25. The results shown by the dashed lines are copied from figure 15 for
comparison. The lines with the same symbols share the same inlet velocity.

figure 18(d) than in figure 18(b). It is worth mentioning that the vortex configuration
proposed in § 4 (the NeVR is downstream of the PoVR) could still exist in biological
locomotion, as sketched by Dickinson (1996).

The unsteady force ratio is shown in figure 19. The complete time history of
the force ratio is indicated in figure 19(a). The ratio during t < 0.25 is shown in
figure 19(b), where the results indicated by the dashed lines are copied from figure 15
for comparison. It is shown that in general the force ratio has a similar temporal
trend in this figure to the one it has in figure 15. It shows remarkably high values at
the beginning stage of the stroke, and then decays to 1 for t/T > 0.5. However, the
comparison in figure 19(b) indicates clearly that, in the current case, the force ratio
is even higher at the beginning stage. This is not surprising since the NeVR is much
closer to the PoVR in this case.

The force coefficient ε is also plotted for the current cases in figure 20. The results
marked by the squares are copied from figure 16 for comparison. We see that the
coefficients are larger in the current cases than in the previous cases of § 4. This
is attributed to the smaller spacing between the vortices and the resultant stronger
interaction, as discussed in §§ 3.1 and 3.3.2. As we have observed in § 4, the force
coefficient ε grows rapidly for 0.6 < u∗ < 0.8, and then reaches a plateau for large
u∗. The difference is that for fully unsteady interaction the force coefficient increases
more rapidly and its peak occurs at u∗ = 0.8. The changing cross-sectional shape of
the NeVR during the fully unsteady interaction may be a factor. This could be an
interesting research topic for further study.

6. Conclusions

Biological swimming and flying usually involve counter-rotating VRPs through
ejection of fluid and boundary layer separation at the edges of solid bodies. In this
respect, the model flow generated by the piston–cylinder apparatus is a reasonable
representation of the interaction between PoVRs and NeVRs in nature or in laboratory
experiments. In this paper, we have demonstrated numerically that the force due to a
VRP is considerably larger than the force due to an isolated PoVR. The augmentation
is directly related to the vortical configuration. The stroke-averaged force augmentation
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FIGURE 20. The force coefficient ε as a function of the normalised velocity. The circles
indicate the results obtained from fully unsteady interaction between the vortices, and the
results marked by the squares are copied from figure 16 for comparison.

coefficient grows rapidly but then reaches a plateau as the momentum input increases.
These results are consistent with the simulation in which the generation of an NeVR
is included.

Future efforts could be directed towards oscillatory three-dimensional wings with
spanwise flows. It would be intriguing to study both the common features and the
differences between the fluid ejected from the tube and that going past the wing.
Detailed understanding of counter-rotating VRPs is also significant to engineering
applications. Bio-mimic machines can be designed to realise favourable vortical
structures for high-performance self-propulsion. Moreover, the Lagrangian skeleton of
VRPs could be uncovered to reveal the process of fluid transport.
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