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Abstract

An upper bound for the hazard rate function of a convolution of not necessarily
independent random lifetimes is provided, which generalizes a recent result established
for independent random lifetimes. Similar results are considered for the reversed hazard
rate function. Applications to parametric and semiparametric models are also given.
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1. Introduction

One of the most important functions in the context of reliability and survival analysis is
the hazard rate function. Given a non-negative random variable X that represents the random
lifetime of a system or a living organism with density function f , distribution function F, and
survival function F ≡ 1 − F, the hazard rate function of X is defined by

rX(t) = lim
h→0+

P(t < X < t + h | X > t)

h
= f (t)

F(t)

for all t such that F(t) > 0. The hazard rate is probably the main function to describe the ageing
process of a unit or a system (see Lai and Xie (2006) for further details and references) and
it is usually considered as the instantaneous failure rate of an item which has survived up to
time t. It is quite common to observe increasing failure rates, and in such a case the random
variable is said to be IFR (increasing failure rate). In addition, there is a wide literature on the
hazard rate function of the convolution of two random variables. Recall that convolution is the
name for the mathematical operation of the sum of random variables. Convolution arises in
reliability when we consider a two-component standby system where a failed unit is replaced
by a new one, which is not necessarily distributed identically to the former one. Another
context where convolution appears in a natural way is that of insurance. The individual risk
model corresponds to the situation where a portfolio consists of a fixed number of different
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insurance policies and the total claim of the portfolio is the sum (convolution) of the random
claims of each policy.

Many authors have provided different reliability properties of the hazard rate function of a
convolution. In particular, a well-known result is that the hazard rate function of a convolution
of independent random lifetimes with increasing hazard rate functions is also increasing (see
Barlow et al. (1963), p. 380). Recently, two more problems dealing with the hazard rate
function of a convolution have been considered. The first one is the limiting behaviour of
the hazard rate function of a convolution (see Block et al. (2014), (2015)), and the second one
is the domination of the hazard rate function of a convolution by the hazard rate function of
one of its components with an increasing hazard rate function. Specifically, Block and Savits
(2015) have stated that the hazard rate of a convolution of two independent components lies
below the hazard rate function of any of the components with an increasing hazard rate, if any.

The purpose of this paper is to generalize the above-mentioned result to the case of
dependent components. This result is given in Section 2 along with some applications for
parametric and semiparametric models of bivariate random vectors.

Additionally, we will consider this result for the reversed hazard rate function. Recall that,
given a non-negative random variable X with density function f and distribution function F,
the reversed hazard rate function of X is defined by

rX(t) = lim
h→0−

P(t + h ≤ X ≤ t | X ≤ t)

h
= f (t)

F(t)

for all t such that F(t) > 0. It is said that X is DRHR if the reversed hazard rate function
decreases. See Block et al. (1998), Finkelstein (2002), and Chechile (2011) for further
details and properties. In Section 3, similar results for the reversed hazard rate functions are
established. Finally, some additional comments and considerations are made in Section 4.

2. Main results and examples

As mentioned in the introduction, Block and Savits (2015) have proved that, for two
independent random lifetimes X and Y , whenever X is IFR then

rX+Y (t) ≤ rX(t) for all t ≥ 0,

where rX+Y denotes the hazard rate of X + Y .
Unfortunately, there are many situations where the components are dependent, which means

that the previous theorem cannot be applied. Therefore, a natural question arises in this context.
Is the thesis of the previous result still valid for dependent random lifetimes? The following
example shows that the answer to this question is not always positive.

Example 2.1. Let us consider a bivariate random vector (X, Y) with Fairlie–Gumbel–
Morgernstern copula given by

C(u, v) = uv[1 + θ (1 − u)(1 − v)] for all 0 ≤ u, v ≤ 1,

where −1 ≤ θ ≤ 1 is a dependence parameter such that the dependence is positive for 0 <

θ ≤ 1, negative for −1 ≤ θ < 0, and the components are independent for θ = 0. The marginal
distributions follow a gamma-distributed model, denoted by G(r, σ ), with density function
given by

f (x) =
( x

σ

)r−1 e− x
σ

�(r)
for all x ≥ 0,
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FIGURE 1: Plot of the hazard rate function of X + Y (continuous line), X (dashed and dotted line), and Y
(dashed line).

where r is the shape parameter and σ is the scale parameter. Let us consider X ∼ G(1.5, 1),
Y ∼ G(1.25, 1), and θ = 0.5. In such a case, the hazard rate function of the convolution X + Y
crosses the hazard rate functions of both components (see Figure 1). Analogously, taking θ =
−0.5 (in other words, assuming negative association), the conclusion remains the same (see
again Figure 1).

Therefore, in order to obtain a bound for the hazard rate of a convolution of dependent
random lifetimes, we need to consider a different approach. Next, we provide a set of
conditions which generalizes the result given for the case of independent components. Let us
fix the following notation prior to stating the result. Given a bivariate random vector (X, Y),
we denote the hazard rate function of the conditional random variable (X | Y = y), where y
belongs to the support of Y , by rX(t | Y = y).

Theorem 2.1. Let (X, Y) be a non-negative bivariate random vector with joint density
function f . If

rX(t | Y = y) is increasing in y for all t ≥ 0 (2.1)

and

rX(t | Y = y) is increasing in t for all y ≥ 0, (2.2)

then rX+Y (t) ≤ rX(t | Y = t) for all t ≥ 0.

Proof. Let us denote by h and H respectively the density and the survival function of the
convolution X + Y . Then

h(t) =
∫ t

0
f (t − y, y) dy for all t ≥ 0
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and

H(t) =
∫ ∞

0

∫ ∞

t−y
f (x, y) dx dy

=
∫ t

0

∫ ∞

t−y
f (x, y) dx dy +

∫ ∞

t

∫ ∞

0
f (x, y) dx dy

=
∫ t

0

∫ ∞

t−y
f (x, y) dx dy + G(t)

for all t ≥ 0, where G is the marginal survival function of Y . Consequently, the condition

rX+Y (t) ≤ rX(t | Y = t) for all t ≥ 0

is equivalent to

h(t) − rX(t | Y = t)H(t) ≤ 0 for all t ≥ 0.

Let us prove the previous inequality. Under the assumptions, the following chain of equalities
and inequalities holds:

h(t) − rX(t | Y = t)H(t) =
∫ t

0
f (t − y, y) dy

− rX(t | Y = t)
∫ t

0

∫ ∞

t−y
f (x, y) dx dy + G(t)

=
∫ t

0

[
f (t − y, y) − rX(t | Y = t)

∫ ∞

t−y
f (x, y) dx

]
dy

− rX(t | Y = t)G(t)

=
∫ t

0

[
r(t − y | Y = y)

∫ ∞

t−y
f (x, y) dx

− rX(t | Y = t)
∫ ∞

t−y
f (x, y) dx

]
dy

− rX(t | Y = t)G(t)

=
∫ t

0
[r(t − y | Y = y) − rX(t | Y = t)]

∫ ∞

t−y
f (x, y) dx dy

− rX(t | Y = t)G(t)

≤ −rX(t | Y = t)G(t) ≤ 0

for all t ≥ 0, where the first inequality follows by taking into account that conditions (2.1) and
(2.2) imply that

r(t − y | Y = y) ≤ r(t − y | Y = t) ≤ rX(t | Y = t) for all t, y ≥ 0.

Therefore, we conclude that rX+Y (t) ≤ rX(t | Y = t) for all t ≥ 0. �

Let us make several remarks on the previous result.
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Remark 2.1. Condition (2.1) has already been considered as a negative dependence property.
In particular, Shaked (1977) and Lee (1985) defined the DRR(0,1) notion (dependence by
reversed regular rule) for a bivariate random vector (X, Y) by means of Condition (2.1).
Analogously, if the roles of X and Y are exchanged in Condition (2.1), (X, Y) is said to be
DRR(1,0). Furthermore, given (X, Y) with an RR2 (reversed regular of order 2; see Karlin
(1968)) joint density function, then (X, Y) is DRR(0,1) and DRR(1,0).

Recently, Navarro and Sordo (2018) have characterized Condition (2.1) in terms of the
survival copula. In particular, denoting by Ĉ the survival copula of a bivariate random vector
(X, Y), Navarro and Sordo (2018) proved that (2.1) is satisfied if, and only if,

∂1Ĉ(u, v2)

∂1Ĉ(u, v1)
is increasing in u for all 0 ≤ v1 ≤ v2 ≤ 1.

Remark 2.2. As far as the case of independent components is concerned, we want to point out
that Condition (2.1) is trivially satisfied and Condition (2.2) is equivalent to the IFR property
of the random variable X; in such cases the previous theorem is reduced to the one given by
Block and Savits (2015). This means that Theorem 2.1 generalizes the result given by Block
and Savits (2015) to the case of not necessarily independent components.

Remark 2.3. Let us assume that (X, Y) is DRR(1,0) and DRR(0,1), and let us denote by
rY (t | X = x) the hazard rate function of (Y | X = x), for any x in the support of X. If rX(t | Y =
y) satisfies Condition (2.2) and rY (t | X = x) is increasing in t, for all x in the support of X, then,
by applying Theorem 2.1, we obtain

rX+Y (t) ≤ min{rX(t | Y = t), rY (t | X = t)} for all t > 0.

Next, we apply the previous theorem to several examples of bivariate random vectors. First,
we consider Gumbel’s bivariate exponential, Model I (see Kotz et al. (2000), p. 350).

Example 2.2. (Gumbel’s bivariate exponential (Model I).) Let (X, Y) be a bivariate random
vector with joint density function given by

f (x, y) = exp ( − x − y − θxy){(1 + θx)(1 + θy) − θ} for x, y > 0,

where 0 ≤ θ ≤ 1.
It is easy to see that the hazard rate function of (X | Y = y) is given by

rX(t | Y = y) = (1 + θy)(1 + θ t) − θ

1 + θ t
for t ≥ 0.

Analogously, (Y | X = x) has a hazard rate function given by

rY (t | X = x) = (1 + θx)(1 + θ t) − θ

1 + θ t
for t ≥ 0.

On the one hand, it is obvious that rX(t | Y = y) and rY (t | X = x) are increasing in y and
x, respectively, for all t ≥ 0. On the other hand, it is not difficult to see that rX(t | Y = y)
and rY (t | X = x) are increasing in t ≥ 0 for all y ≥ 0 and x ≥ 0, respectively. Therefore, the
sufficient conditions in Theorem 2.1 are satisfied and, consequently, it is ensured that

rX+Y (t) ≤ (1 + θ t)2 − θ

1 + θ t
for all t ≥ 0.

Figure 2 shows the particular case for θ = 0.2.
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FIGURE 2: Left: The hazard rate of the convolution X + Y (continuous line) and the bound
((1 + θ t)2 − θ )/(1 + θ t) (dashed line). Right: The joint density function of (X, Y).

Next, we consider a parametric family where the conditional distributions are gamma
distributed (see Arnold et al. (1999)). Let us apply Theorem 2.1 to this model.

Example 2.3. (Gamma conditionals (Model II).) Let (X, Y) be a bivariate random vector with
joint density function given by

f (x, y) = kr,s(θ )

σ r
1σ s

2�(r)�(s)
xr−1ys−1 exp

{
− x

σ1
− y

σ2
− θxy

σ1σ2

}
for x, y > 0,

where σ1, σ2, r, s > 0 are non-negative, θ ≥ 0, and kr,s(θ ) is a normalizing constant. Observe
that σ1 and σ2 are scale parameters, r and s are shape parameters, and θ is a dependence
parameter.

In this case it is known that (X | Y = y) follows a gamma distribution with shape parameter
r and scale parameter (1 + cy/σ2)/σ1. Analogously, (Y | X = x) follows a gamma distribution
with shape parameter s and scale parameter (1 + cx/σ1)/σ2.

It is not difficult to see that rX(t | Y = y) and rY (t | X = x) are increasing in y and x,
respectively, for all t ≥ 0 (see Table 1 in Belzunce et al. (2016)). In addition, it is well known
that gamma-distributed random variables have increasing failure rates if the shape parameter
is greater than or equal to 1. Therefore, rX(t | Y = t) [rY (t | X = t)] is increasing in t ≥ 0 if the
parameter r ≥ 1 [s ≥ 1]. To summarize, if r ≥ 1 [s ≥ 1], then

rX+Y (t) ≤ rX(t | Y = t) [rY (t | X = t)] for all t ≥ 0

by applying Theorem 2.1.
Figure 3 shows the particular case for θ = 0.5, r = 1.2, s = 1.5, σ1 = 4, and σ2 = 3.

Next, let us apply the result to two semiparametric models. The first one was introduced by
Navarro and Sarabia (2013).
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FIGURE 3: Left: The hazard rate of the convolution X + Y (continuous line), the function rX(t | Y = t)
(dashed line), and the function rY (t | X = t) (dashed and dotted line). Right: The joint density function

of (X, Y).

Example 2.4. (Bivariate conditional proportional hazard rate model.) Let (X, Y) be a
bivariate random vector with joint density function given by

f (x, y) = k(φ)σ1σ2λ1(x)λ2(y) exp{−σ1�1(x) − σ2�2(y) − φσ1σ2�1(x)�2(y)}
for x, y > 0,

where σ1, σ2 > 0 are scale parameters, φ ≥ 0 is a dependence parameter, and k(φ) is a
normalizing constant. The functions �i, i = 1, 2, are cumulative hazard rate functions for non-
negative random variables with hazard rates λi(x) = �′

i(x), i = 1, 2, respectively. It is known
that the hazard rate function of (X | Y = y) is given by

rX(t | Y = y) = σ1[1 + φσ2�2(y)]λ1(t).

Analogously, the hazard rate function of (Y | X = x) is given by

rY (t | X = x) = σ2[1 + φσ1�1(x)]λ2(t).

Since �1 and �2 are cumulative hazard functions, it is obvious that rX(t | Y = y) and
rY (t | X = x) are increasing in y and x, respectively, for all t ≥ 0. Moreover, if the hazard rates
λ1 and/or λ2 are increasing (IFR), then rX(t | Y = t) and/or rY (t | X = t) are also increasing in
t ≥ 0. To sum up, if λ1 [λ2] is increasing, then

rX+Y (t) ≤ σ1(1 + φσ2�2(t))λ1(t) [σ2(1 + φσ1�1(t))λ2(t)] for all t ≥ 0.

Next, let us consider the semiparametric family given by Navarro et al. (2015).

Example 2.5. (Bivariate conditional proportional generalized odds rate model.) Let (X, Y) be
a bivariate random vector with joint density function given by

f (x, y) = Kσ1σ2λ1(x)λ2(y)

[σ0 + θσ1�1(x) + θσ2�2(y) + θφσ1σ2�1(x)�2(x)]1+ 1
c

for x, y > 0,
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where σ1, σ2, θ, K > 0 and σ0, φ ≥ 0. The functions �i, i = 1, 2, are univariate generalized
odds functions such that λi(x) = �′

i(x), i = 1, 2.
Let us define the functions

θ1(y) = σ0 + θσ2�2(y)

σ1 + φσ1σ2�2(y)
, θ2(x) = σ0 + θσ1�1(x)

σ2 + φσ1σ2�1(x)
.

It is known that the hazard rate function of (X | Y = y) is given by

rX(t | Y = y) = λ1(t)

θ1(y) + θ�1(t)

and, analogously, the hazard rate function of (Y | X = x) is given by

rY (t | X = x) = λ2(t)

θ2(x) + θ�2(t)
.

It is easy to see that if θ < [ > ] φσ0 then rX(t | Y = y) and rY (t | X = x) increase [decrease]
in y and x, respectively. Furthermore, if θ1(y) + θ�1(t) is logconvex [logconcave] in t then
rX(t | Y = y) increases [decreases] in t, and analogously for rY (t | X = x). To sum up, if θ <

φσ0 and θ1(y) + θ�1(t) [θ2(y) + θ�2(t)] is logconvex in t, then

rX+Y (t) ≤ λ1(t)

θ1(t) + θ�1(t)

[ λ2(t)

θ2(t) + θ�2(t)

]
for all t ≥ 0.

3. Results for the reversed hazard rate function

In this section similar results to the previous ones given in Section 2 are provided for the
reversed hazard rate function. First, we provide a lower bound for the reversed hazard rate
function of a convolution of not necessarily independent components. Let us fix some notation
prior to stating the result. Given a bivariate random vector (X, Y), we denote by rX(t | Y = y)
the reversed hazard rate function of (X | Y = y), where y is a value in the support of Y .

Theorem 3.1. Let (X, Y) be a non-negative bivariate random vector with joint density
function f . If

rX(t | Y = y) is decreasing in y for all t ≥ 0 (3.1)

and
rX(t | Y = y) is decreasing in t for all y ≥ 0, (3.2)

then rX+Y (t) ≥ rX(t | Y = t) for all t ≥ 0.

Proof. According to the proof of Theorem 2.1, h and H denote the density and the
distribution function of the convolution X + Y and we will equivalently show that h(t) −
rX(t | Y = t)H(t) ≥ 0, where

H(t) =
∫ t

0

∫ t−y

0
f (x, y) dx dy,

for all t ≥ 0.
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Since conditions (3.1) and (3.2) imply that

r(t − y | Y = y) ≥ rX(t | Y = y) ≥ rX(t | Y = t) for all t ≥ y ≥ 0,

we have that

h(t) − rX(t | Y = t)H(t) =
∫ t

0

(
f (t − y, y) dy − rX(t | Y = t)

∫ t−y

0
f (x, y) dx

)
dy ≥ 0

for all t ≥ 0. Therefore, we conclude that h(t) − rX(t | Y = t)H(t) ≥ 0 or, equivalently,
rX+Y (t) ≥ rX(t | Y = t), for all t ≥ 0. �

Despite the fact that Condition (3.1) can be considered as a negative dependence property, as
far as we know this condition has never been seen from this point of view. Recently, however,
Navarro and Sordo (2018) characterized this property in terms of the copula. In particular, they
have proved that, given a bivariate random vector (X, Y) with copula C, Condition (3.1) is
satisfied if, and only if,

∂1C(u, v2)

∂1C(u, v1)
is decreasing in u for all 0 < v1 ≤ v2 < 1.

We also want to observe that, for independent components, Condition (3.1) is always
satisfied and Condition (3.2) is equivalent to the DRHR property of the random variable X.
Therefore, we can state the following corollary.

Corollary 3.1. Let X and Y be two independent non-negative random variables such that X is
DRHR with reversed hazard rate function denoted by r. Then

rX+Y (t) ≥ rX(t) for all t ≥ 0.

Next, we apply Theorem 3.1 to a parametric family such that the conditional distributions
are exponentially distributed (see Arnold and Strauss (1988) and Arnold et al. (1999), p. 80).

Example 3.1. Let (X, Y) be a bivariate random vector with joint density function given by

f (x, y) = k(θ )

σ1σ2
exp

{
− x

σ1
− y

σ2
− θxy

σ1σ2

}
for x, y > 0,

where σ1, σ2 > 0, θ ≥ 0, and

k(θ ) = 1∫ +∞
0 e−u(1 + θu)−1 du

.

Observe that σ1 and σ2 are scale parameters and θ is a dependence parameter. It is known that
(X | Y = y) follows an exponential distribution with parameter (1 + θy/σ2)/σ1; therefore, the
reversed hazard rate of (X | Y = y) is given by

rX(t | Y = y) =
1
σ1

(
1 + θy

σ2

)
exp

(
t

σ1

(
1 + θy

σ2

))
− 1
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and, analogously, the reversed hazard rate of (Y | X = x) is given by

rY (t | X = x) =
1
σ2

(
1 + θx

σ1

)
exp

(
t

σ2

(
1 + θx

σ1

))
− 1

,

for all t > 0.
It is not difficult to see that rX(t | Y = y) and rY (t | X = x) are decreasing in y and x,

respectively, for all t ≥ 0, and rX(t | Y = y) and rY (t | X = x) are increasing in t ≥ 0, for all
x, y > 0. Therefore, the sufficient conditions in Theorem (3.1) are satisfied and, consequently,
it is ensured that

rX+Y (t) ≥ min

⎧⎨
⎩

1
σ1

(
1 + θ t

σ2

)
exp

(
t

σ1

(
1 + θ t

σ2

))
− 1

,

1
σ2

(
1 + θ t

σ1

)
exp

(
t

σ2

(
1 + θ t

σ1

))
− 1

⎫⎬
⎭ for all t ≥ 0.

4. Discussion and remarks

In this paper, an upper bound for the hazard rate of a convolution of not necessarily
independent random lifetimes is provided. This result is an extension of a recent result by
Block and Savits (2015) where the hazard rate of a convolution is upper-bounded by the hazard
rate of an IFR component in the case of independent components. As long as the result of
Block and Savits (2015) provides an upper bound in terms of the hazard rate function of one
of the marginals, this is not possible in the case of dependent random lifetimes. In particular,
negative dependence among the components has to be assumed, as well as monotonicity of
the hazard rate function of the conditional distribution (X | Y = y) [or (Y | X = x)]. Moreover,
a similar result for the reversed hazard rate function is also provided, where a lower bound
for the reversed hazard rate function of the convolution X + Y is given. Applications of these
results to several parametric and semiparametric families of bivariate distribution functions are
also given.

Let us make some remarks on the results:

(i) We have considered here the case of non-negative random variables. The main reason
is the applicability of these results in contexts like reliability, survival, and insurance,
where the random quantities of interest are, obviously, non-negative. However, with the
appropriate modifications the results can be extended to random variables with support
not restricted to non-negative values.

(ii) We have only considered the convolution of two random variables. The result can be
extended, using the previous techniques, to the case of more than two random variables.
The idea is as follows:
Let us consider the case of n non-negative random variables, not necessarily indepen-
dent, X1, X2, . . . , Xn, and let us denote by i ∈ {1, 2, . . . , n} the index such that

rXi(t | Z = y) is increasing in y for all t ≥ 0

and
rXi(t | Z = y) is increasing in t for all y ≥ 0,
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where Z = ∑
j �=i Xj; then, by Theorem 2.1, we get that r∑n

j=1 Xj
(t) ≤ rX(t | Z = t) for all

t ≥ 0.
However, we need to know the distribution of (Xi | Z = x), which is a non-trivial task.
Therefore, we leave as an open question whether there are some easy-to-check sufficient
conditions in the general case.

(iii) This work can be considered as a starting point for the study of some other properties
of the hazard and reversed hazard rate functions of the convolution of not necessarily
independent random lifetimes, such as the monotonicity or the limiting behaviour.
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