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Abstract Let m � n ∈ N, and G � Sym(m) and H � Sym(n). In this article, we find conditions enabling
embeddings between the symmetric R. Thompson groups Vm(G) and Vn(H). When n ≡ 1 mod (m − 1),
and under some other technical conditions, we find an embedding of Vn(H) into Vm(G) via topological
conjugation. With the same modular condition, we also generalize a purely algebraic construction of
Birget from 2019 to find a group H � Sym(n) and an embedding of Vm(G) into Vn(H).
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1. Introduction

This article concerns embeddability conditions for pairs of groups from the family of
symmetric R. Thompson groups {Vm(G)}. The group Vm(G) is the group Vm(G) = 〈Vm ∪
G〉, where Vm � Aut(Cm) is the Higman–Thompson group denoted Gm,1 by Higman in
[9], acting on the Cantor space Cm:={0, 1, . . . , m− 1}ω, while G is a particular faithful
representation of a finite group G̃ � Sym(m) in Aut(Cm).

The groups {Vm(G)} have developed as groups of interest for a variety of reasons.
Firstly, they were singled out as natural groups of interest in [14, 15], and they arise
naturally as a fundamental subfamily of Hughes’ FSS groups [11]. The paper [3] shows
that for n ≥ 2, Vm

∼= Vm(G) if and only if G̃ is semiregular (the non-trivial elements of
G̃ have no fixed points), and also, that for m > 3 there exists G̃, H̃ ∈ Sym(m) with
G̃ ∼= H̃ but where the induced groups Vm(G) and Vm(H) are not isomorphic (the orbit
structure of the actions of the elements of the groups G̃ and H̃ impacts the isomorphism
types of the groups Vm(G) and Vm(H)). In another direction, in [7], Farley shows that
the symmetric R. Thompson groups are CoCF groups (see [10] for the definition of CoCF
groups). Thus, if one can show that some group in the family {Vm(G)} fails to embed in
V = V2, then Lehnert’s conjecture will be shown to be false (see [4, 12, 13]).
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We investigate conditions on m � n, G � Sym(m), and H � Sym(n) that guarantee
the existence of embeddings between the groups Vm(G) and Vn(H) (we now drop the
‘tilde’ notation on the groups G and H when thinking of them as subgroups of Sym(m)
and Sym(n), respectively). Thus, this note can be thought of as a continuation of the
investigations in [3] and is partly inspired by the work of Birget (in [1], he gives a method
to embed V2 into Vm for 2 � m), and partly by considering some of the questions alluded
to in the previous paragraph. In this context, our two embedding results depend on the
direction of the embedding (Vm(G) � Vn(H) or Vn(H) � Vm(G)), and our constructed
embeddings require in both cases the Higman condition n ≡ 1 mod (m− 1).

To our knowledge, the first case of a proof that all Vn embed into each other is by
Nicolás Matte Bon [5, Coroll. 11.16], although it was almost a folklore statement that
such embeddings existed. Before that, the only such embedding theorems that we know of
in the literature were those of Higman from [9, Thm. 7.2] (Vn � Vm when m and n satisfy
the Higman condition). We leverage Birget’s construction [1] in this paper because of the
utility of his successor function, which we are able to generalize effectively for embeddings
in our enriched context (Vm(G) and Vn(H) as opposed to Vm and Vn).

The embedding Vm(G) � Vn(H) is algebraic in nature and is the one which is inspired
by the embeddings of Birget, while the embedding Vn(H) � Vm(G) uses a topological
conjugacy by rational group elements (see [8]).

We can now state and discuss the main results of this chapter. For the topological
embedding Vn(H) � Vm(G), we need to define a group RG(S̃) � Sym(n) (where G �
Sym(m) and S̃ is a prefix code of Cm of length n). The group RG(S̃) is well defined if
there is an n-element prefix code S̃ in A∗

m which is preserved by the action of the iterated
permutations of G on A∗

m. In this case, RG(S̃) is the subgroup of Sym(n) induced from
the action of G on the elements of S̃ under a bijection to {1, 2, . . . , n}.

Theorem 1.1 (Topological Embedding). Let n, m ≥ 2 be natural numbers such
that m < n, and let G � Sym(m), H � Sym(n). Suppose that:

(1) There exists a prefix code S̃ of Cm such that |S̃| = n,

(2) the group RG(S̃) is well defined, and

(3) RG(S̃) and H are cyclically isomorphic.

Then Vn(H) embeds in Vm(G).

Thus, we have the following general observation.

Observation 1.1. In practical terms, natural applications of Theorem 1.1 occur by
choosing m and a prefix code that is closed under the action of iterated permutations
from some G � Sym(m). Then, one immediately obtains a cyclically isomorphic group H
in Sym(n).

Theorem 1.2 (Algebraic Embedding). Let n, m ≥ 2 be natural numbers such
that n = k(m− 1) +m for some k ≥ 1, and let G � Sym(m). Let H = Gext � Sym(n)
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the extended symmetric group of H, whose elements act as the elements of H on the first
m elements and act as the identity on the remaining n−m.

Then Vm(G) embeds in Vn(H).

Thus, to achieve such an embedding, the main obstruction is that m and n satisfy the
Higman Condition, i.e.:

Corollary 1.2. Let m � n so that n ≡ m mod (m− 1), and let G � Sym(m). Then,
there exists H � Sym(n) so that Vm(G) � Vn(H).

As mentioned above, for given m and G semiregular, the paper [3] shows Vm(G) ∼= Vm,
while Higman’s book [9] gives an embedding of Vm into R. Thompson’s group V = V2.
The semiregularity condition above has to do with local groups of germs of the action of
Vm(G) on Cm (see [2, 3]). Our topological embedding preserves the local groups of germs,
while the algebraic embeddings (for G non-trivial) produce complicated local groups of
germs. Thus, it is impossible to chain our families of embeddings together to get an
embedding from Vm(G) into V2 when G is not semiregular.

We therefore ask the following question:

Question 1.3. Does there exist m ∈ N and G ∈ Sym(m) so that G is not semiregular,
but where there is an embedding from Vm(G) into V2?

2. Symmetric Thompson’s groups

In this section, we introduce symmetric Thompson’s groups, giving an easy way to express
its elements as tables (this corresponds to a generalized construction of Higman used by
Scott and Röver in the creation of their extensions of V [15–18].

2.1. Tables

For natural n > 1, let Cn be the n-adic Cantor set, which is constructed inductively
as follows: C1

n corresponds to first subdividing C0
n = [0, 1] into 2n− 1 closed intervals

of equal length (so, sharing endpoints with neighbours), numbered 1, . . . , 2n− 1 from
left to right, and then taking the collection of odd-numbered sub-intervals. Next, C2

n is
obtained from C1

n by applying the same procedure to each of the intervals forming C1
n,

and so on. Then, Cn is the limit of this process, so that

Cn = ∩iC
i
n.

Now, let An = {0, . . . , n− 1} and give it the discrete topology. It is easy to build a direct
homeomorphism from the space AN

n equipped with the product topology to Cn, so every
element ζ ∈ Cn can be expressed as an infinite word ζ = w1w2 . . ., where wi ∈ An. It is
a classical result of Brouwer from [6] that all of the spaces in the set {Cn} are abstractly
homeomorphic to each other.

We denote by A∗
n the set of finite words in An. The empty word ε is also in A∗

n.

Definition 2.1 (Concatenation). Let u = u1u2 . . . uk, ui ∈ An be a finite word and
v ∈ A∗

n ∪ AN
n with v = v1v2 . . . (where for all valid indices i we have vi ∈ An). The
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concatenation of u with v is the (finite or infinite) word:

u||v = u1u2 . . . ukv1v2 . . . .

With concatenation being a fundamental operation, we will often just write the con-
catenation of two strings without the formal concatenation operator, that is, we might
write u||v as simply uv, reserving the formal use of ‘||’ for situations where we wish to
stress that a concatenation is occurring.

Definition 2.2 (Prefix order). Let u ∈ A∗
n and v ∈ A∗

n ∪ AN
n. We say that u is a prefix

of v (u �pref v) if v = u||w, for some w ∈ A∗
n ∪ AN

n.

Note that this property is transitive for finite length words: If u �pref v and v �pref w
then u �pref w. In addition, u �pref u, as ε ∈ A∗

n. That is, �pref provides a partial order
on A∗

n.

Definition 2.3 (Prefix code). Let S be a finite set of words in A∗
n. Then S is a prefix

code of Cn if for every infinite word ζ ∈ AN
n there exists one and only one word s ∈ S such

that s �pref ζ. (Specifically, a prefix code is a complete anti-chain for the partial order
�pref .)

For convenience, we will use the following notation: let σ ∈ Sym(n) be an element of
the symmetric group of n elements. Given any word ζ = z1z2z3 . . . ∈ A∗

n ∪ AN
n we define

σ(ζ) = σ(z1)σ(z2)σ(z3) . . . ∈ A∗
n ∪ AN

n. Let σi ∈ H � Sym(n). (Note that we are using left
actions here, so if σ, τ ∈ Sym(n) then the product τσ means to employ the permutation
σ first, and then employ τ).

With the above notation, an element of Vn(H) is a homeomorphism of Cn that can be
(non-uniquely) described by a table as follows:

v =

⎡
⎢⎢⎣
p1 p2 · · · pk

σ1 σ2 · · · σk

q1 q2 · · · qk
τ1 τ2 · · · τk

⎤
⎥⎥⎦ ,

where pi, qi ∈ A∗
n, σi, τi ∈ H and such that the sets P = {pi}k

i=1 and Q = {qi}k
i=1 are

prefix codes of Cn. We say that k ≥ 1 is the length of the table. The homeomorphism of
Cn induced can be defined as follows: for every infinite word ζ such that pi �pref ζ, that
is ζ = pi||u for some u ∈ AN

n, we have

v : pi||σi(u) → qi||τi(u).

There are infinitely many tables that induce the same homeomorphism of Cn. We proceed
to define the four basic moves we can perform on a table in order to obtain an equivalent
one (the four basic moves naturally split as two essential sorts of moves, together with
their inverse (or ‘near-inverse’) moves).
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The first basic move is expansion: for a given prefix code

P = {p1, . . . , pi, . . . , pk},

we can consider

P̃ = {p1, . . . , pi0, . . . , pi(n− 1), . . . , pk}

by expanding the word pi. This expansion not only occurs in P , as the image of pi must
be also expanded. So we have

Q̃ = {q1, . . . , qi0, . . . , qi(n− 1), . . . , qk}.

It is easy to see that both P̃ and Q̃ are also prefix codes. Then:
⎡
⎢⎢⎣
p1 · · · pi · · · pk

σ1 · · · σi · · · σk

q1 · · · qi · · · qk
τ1 · · · τi · · · τk

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎣
p1 · · · piσi(0) · · · piσi(n− 1) · · · pk

σ1 · · · σi · · · σi · · · σk

q1 · · · qiτi(0) · · · qiτi(n− 1) · · · qk
τ1 · · · τi · · · τi · · · τk

⎤
⎥⎥⎦ .

One can always perform an expansion, but not all tables look like the result of an
expansion. Naturally, the inverse of an expansion (when it is defined) is called a reduction.

The second move we can perform on a table is pushing down (respectively pushing up)
the action of all σi such that σi = Id for every i ∈ {1, . . . , k} (respectively τi = Id for
every i ∈ {1, . . . , k}):

⎡
⎢⎢⎣
p1 p2 · · · pk

σ1 σ2 · · · σk

q1 q2 · · · qk
τ1 τ2 · · · τk

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎣

p1 p2 · · · pk

Id Id · · · Id
q1 q2 · · · qk

τ1σ
−1
1 τ2σ

−1
2 · · · τkσ

−1
k

⎤
⎥⎥⎦

≡

⎡
⎢⎢⎣

p1 p2 · · · pk

σ1τ
−1
1 σ2τ

−1
2 · · · σkτ

−1
k

q1 q2 · · · qk
Id Id · · · Id

⎤
⎥⎥⎦ .

It is not hard to see that a table gives a well-defined homeomorphism of the appropriate
Cantor space, and if two tables are related by a finite sequence of our four moves then
they represent the same homeomorphism. The reader can also check that if a homeomor-
phism of an appropriate Cantor space is represented by two tables, then in fact these
tables are in the same equivalence class under our four basic moves on tables. Thus, we
can just consider our group elements to be the equivalence classes of tables with the
aforementioned relations.

The composition of two different elements u, v ∈ Vn(H) is easy to compute using the
equivalences. Let u, v ∈ Vn(H), such that u takes the prefix code P to the prefix code
Q (respectively v takes P ′ to Q′). We need to find a prefix code S such that, for every
element s ∈ S, there exists one element q ∈ Q and one element p′ ∈ P ′ such that q �pref s
and p′ �pref s. This can always be done by expanding P ′ and Q until we obtain the same
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prefix code S. Thus, without loss of generality:

u =

⎡
⎢⎢⎣
p1 p2 · · · pk

σ1 σ2 · · · σk

s1 s2 · · · sk

τ1 τ2 · · · τk

⎤
⎥⎥⎦ , v =

⎡
⎢⎢⎣
s1 s2 · · · sk

σ′
1 σ′

2 · · · σ′
k

q′1 q′2 · · · q′k
τ ′1 τ ′2 · · · τ ′k

⎤
⎥⎥⎦ .

Finally, we push up the action of u and push down the action of v:

u =

⎡
⎢⎢⎣

p1 p2 · · · pk

σ1τ
−1
1 σ2τ

−1
2 · · · σkτ

−1
k

s1 s2 · · · sk

Id Id · · · Id

⎤
⎥⎥⎦ ,

v =

⎡
⎢⎢⎣

s1 s2 · · · sk

Id Id · · · Id
q′1 q′2 · · · q′k

τ ′1(σ
′
1)

−1 τ ′2(σ
′
2)

−1 · · · τ ′k(σ′
k)−1

⎤
⎥⎥⎦ ,

so

v ◦ u =

⎡
⎢⎢⎣

p1 p2 · · · pk

σ1τ
−1
1 σ2τ

−1
2 · · · σkτ

−1
k

q′1 q′2 · · · q′k
τ ′1(σ

′
1)

−1 τ ′2(σ
′
2)

−1 · · · τ ′k(σ′
k)−1

⎤
⎥⎥⎦ .

We sum up the previous discussion in the following proposition:

Proposition 2.4. Vn(H) is a group with the composition.

3. Topological embeddings

In this section, we present topological embeddings between symmetric Thompson’s
groups. The key idea is, given any group Vn(H), to translate the action of an ele-
ment σ ∈ H into a permutation σ̃ of the elements of some prefix code of Cm. Therefore,
σ̃ ∈ Vm(G) for some G.

Our method will be first to understand when actions on prefix codes over smaller alpha-
bets can represent embeddings of permutations on larger alphabets which commute with
our core operations of expansion and contraction of prefix codes. With that understand-
ing in hand, we can then build the desired embedding from a group Vn(H) to a group
Vm(G) for m � n.

We first establish some useful definitions.

3.1. The root group RG(S)

Given a linear order ≤ on An (we choose 0 < 1 < . . . < n− 1), there is an induced
standard dictionary order:

Definition 3.1 (Dictionary order). Let An = {a0, . . . , an−1} be an alphabet with linear
order ≤. We define the dictionary order on A∗

n as follows. Let u, v ∈ A∗
n, then u �dict v
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if and only if:

(1) u �pref v,

(2) u �pref v and there exist p, s, t ∈ A∗
n and α, β ∈ An such that u = pαs, v = pβt,

and α < β.

Let 2 � m < n ∈ N be fixed, and let G � Sym(m). We assume for the construction
Higman’s condition: n = k(m− 1) + 1 for some k ≥ 0 (so, n ≡ 1 mod (m− 1)). Then,
we can find S = {s0, . . . , sn−1} an ordered prefix code of Cm of length n (using the
dictionary order). Observe for now that if σ(S) = S ∀σ ∈ G, then σ : S → S will induce
the desired rearrangement σ̃ of the elements of S, that is, σ̃ ∈ SymS

∼= Sym(n).
We will be interested in the set T of triples (m, n, G) where m � n, n ≡ 1 mod (m−

1), and G ∈ Sym(m). We will say a triple (m, n, G) ∈ T is satisfiable if there is a prefix
code S ⊂ X∗

m with |S| = n and where for each σ ∈ G the action of σ on X∗
m preserves S.

In this case, we say S is a solution for the triple (m, n, G).

Definition 3.2 (Root group). Given a triple (m, n, G) ∈ T and a solution S, we define
the root group RG(S) to be the group of permutations of S induced by the action of G
on S.

It is the case that not every triple (m, n, G) ∈ T admits a solution S. However, when
it does admit a solution S, it is immediate that RG(S) is isomorphic to G.

Definition 3.3 (Cycle type). Let σ ∈ Sym(n). The cycle type c of σ is the multiset
(a set, but allowing multiple elements that are equal) of lengths of the cycles in the
cycle decomposition of σ. We say that two subgroups H, H ′ ∈ Sym(n) are cyclically
isomorphic if there exists an isomorphism ψ : H → H ′ which preserves the cycle type of
every permutation, that is, c(σ) = c(ψ(σ)) for all σ ∈ H.

Remark 3.4. Subgroups H and H ′ are cyclically isomorphic if and only if they are
conjugate in Sym(n), but our focus is on cycle structure and that is why we are using
the language we have chosen. (N.B., there exist exotic automorphisms of Sym(6) which
do not arise by conjugation, but these automorphisms change the cycle structure of some
elements of order two.)

3.2. The induced group G
We proceed to define the group G < Vm(G) such that Vn(H) is isomorphic to G.
Let Vm(G) and Vn(H) be two symmetric Thompson’s groups such that m and n fulfil

Higman’s condition. Let Ãm = {a0, a1, . . . , an−1} be an ordered prefix code of Cm of
length n, such that RG(Ãm) is well defined. We may think of RG(Ãm) as a subgroup
of Sym(n) by using the bijection from Ãm to An induced by the lexicographic ordering
of Ãm. Thus, we can define G as the set of equivalence classes of tables of the form:

v =

⎡
⎢⎢⎣
p1 p2 · · · pk

σ1 σ2 · · · σk

q1 q2 · · · qk
τ1 τ2 · · · τk

⎤
⎥⎥⎦ ,
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where σi, τi ∈ RG(Ãm) ∀i and the prefix codes P and Q consist of words in the alphabet
Ãm, that is, every pi and qi is a non-empty concatenation of elements of Ãm.

It is straightforward to check that G is a group, since the concatenation of two words
in Ã∗

m is another word in Ã∗
m. Tables of G are well defined by expansions and pushings,

and the action of an element σ ∈ RG(Ãm) on a word in Ãm gives another word in Ãm by
the definition of root group, so the composition of any two elements in G gives another
element of G.

We recall and prove our topological embedding theorem:

Theorem 1.1 (Topological Embedding). Let n, m ≥ 2 be natural numbers such
that m < n, and let G � Sym(m), H � Sym(n). Suppose that:

(1) There exists a prefix code S̃ of Cm such that |S̃| = n,

(2) the group RG(S̃) is well defined, and

(3) RG(S̃) and H are cyclically isomorphic.

Then Vn(H) embeds in Vm(G).

Proof. Let Vm(G) and Vn(H) two symmetric Thompson’s groups. Let An =
{0, 1, . . . , n− 1} and Ãm = {a0, a1, . . . , an−1} such that RG(Ãm) is well defined. We
define the following translating map:

t̃ : An −→ Ãm

i −→ ai,

and

t : H −→ RG(Ãm)
σ −→ σ̃

,

where t is the isomorphism between H and RG(Ãm). Note that t and t̃ have the following
property:

t̃(σ(i)) = aσ(i) = σ̃(ai) = t(σ)(ai) = t(σ)(t̃(i)),∀σ ∈ H,∀i ∈ An,

as σ̃(ai) = aσ(i), ∀σ ∈ H, ∀i ∈ An, since RG(Ãm) and H are cyclically isomorphic.
Our embedding is as follows:

v =

⎡
⎢⎢⎣
p1 p2 · · · pk

σ1 σ2 · · · σk

q1 q2 · · · qk
τ1 τ2 · · · τk

⎤
⎥⎥⎦ ι−→

⎡
⎢⎢⎣
t̃(p1) t̃(p2) · · · t̃(pk)
t(σ1) t(σ2) · · · t(σk)
t̃(q1) t̃(q2) · · · t̃(qk)
t(τ1) t(τ2) · · · t(τk)

⎤
⎥⎥⎦ .
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We see that ι commutes with expansions and pushings, that is, ι(exp(v)) = exp(ι(v)) and
ι(push(v)) = push(ι(v)) ∀v ∈ Vn(H):

push(v) =

⎡
⎢⎢⎣

p1 p2 · · · pk

Id Id · · · Id
q1 q2 · · · qk

τ1σ
−1
1 τ2σ

−1
2 · · · τkσ

−1
k

⎤
⎥⎥⎦ ,

ι(push(v)) =

⎡
⎢⎢⎣

t̃(p1) t̃(p2) · · · t̃(pk)
Id Id · · · Id

t̃(q1) t̃(q2) · · · t̃(qk)
t(τ1σ−1

1 ) t(τ2σ−1
2 ) · · · t(τkσ−1

k )

⎤
⎥⎥⎦ ,

push(ι(v)) =

⎡
⎢⎢⎣

t̃(p1) t̃(p2) · · · t̃(pk)
Id Id · · · Id

t̃(q1) t̃(q2) · · · t̃(qk)
t(τ1)t(σ−1

1 ) t(τ2)t(σ−1
2 ) · · · t(τk)t(σ−1

k )

⎤
⎥⎥⎦ .

As t is an isomorphism of groups, the commutativity follows. On the other hand, suppose
that we expand the prefix code P = {p1, . . . , pk} on pi (we argue below that ι commutes
with expanding, but our argument uses the pushed version of v: it is easy to see that this
is sufficient):

exp(v) =

⎡
⎢⎢⎣

p1 · · · pi0 · · · pi(n− 1) · · · pk

Id · · · Id · · · Id · · · Id
q1 · · · qi||τiσ−1

i (0) · · · qi||τiσ−1
i (n− 1) · · · qk

τ1σ
−1
1 · · · τiσ

−1
i · · · τiσ

−1
i · · · τkσ

−1
k

⎤
⎥⎥⎦ .

The table for ι(exp(v)) is:

⎡
⎢⎢⎣

t̃(p1) · · · t̃(pi0) · · · t̃(pi(n− 1)) · · · t̃(pk)
Id · · · Id · · · Id · · · Id

t̃(q1) · · · t̃(qi||τiσ−1
i (0)) · · · t̃(qi||τiσ−1

i (n− 1)) · · · t̃(qk)
t(τ1σ−1

1 ) · · · t(τiσ−1
i ) · · · t(τiσ−1

i ) · · · t(τkσ−1
k )

⎤
⎥⎥⎦ ,

Finally, the table for exp(ι(v)) is:

⎡
⎢⎢⎣

t̃(p1) · · · t̃(pi)a0 · · · t̃(pi)an−1 · · · t̃(pk)
Id · · · Id · · · Id · · · Id

t̃(q1) · · · t̃(qi)||t(τiσ−1
i )(a0) · · · t̃(qi)||t(τiσ−1

i )(an−1) · · · t̃(qk)
t(τ1σ−1

1 ) · · · t(τiσ−1
i ) · · · t(τiσ−1

i ) · · · t(τkσ−1
k )

⎤
⎥⎥⎦ ,

Both tables exp(ι(v)) = ι(exp(v)) are equal as:

t̃(pi||j) = t̃(pi)||t̃(j) = t̃(pi)||t̃(aj),

t̃(qi||τiσ−1
i (j)) = t̃(qi)||t̃(τiσ−1

i (j)) = t̃(qi)||t(τiσ−1
i )(t̃(j)) = t̃(qi)||t(τiσ−1

i )(aj).
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10 J. Aroca and C. Bleak

(We have used the concat symbol ‘||’ in these tables and the immediate discussion after,
wherever we think it makes terms easier to read. In our later explanations we will generally
refrain from using it.)

To finish the proof, we need to show that ι(v) ◦ ι(u) = ι(v ◦ u). This follows easily
from the fact that ι commutes with expansions and pushings. Without loss of generality,
consider:

u =

⎡
⎢⎢⎣
p1 p2 · · · pk

Id Id · · · Id
s1 s2 · · · sk

τ1 τ2 · · · τk

⎤
⎥⎥⎦ , ι(u) =

⎡
⎢⎢⎣
t̃(p1) t̃(p2) · · · t̃(pk)
Id Id · · · Id

t̃(s1) t̃(s2) · · · t̃(sk)
t(τ1) t(τ2) · · · t(τk)

⎤
⎥⎥⎦ ,

v =

⎡
⎢⎢⎣
s1 s2 · · · sk

τ1 τ2 · · · τk
q′1 q′2 · · · q′k
τ ′1 τ ′2 · · · τ ′k

⎤
⎥⎥⎦ , ι(v) =

⎡
⎢⎢⎣
t̃(s1) t̃(s2) · · · t̃(sk)
t(τ1) t(τ2) · · · t(τk)
t̃(q′1) t̃(q′2) · · · t̃(q′k)
t(τ ′1) t(τ ′2) · · · t(τ ′k)

⎤
⎥⎥⎦ .

Thus:

ι(v) ◦ ι(u) = ι(v ◦ u) =

⎡
⎢⎢⎣
t̃(p1) t̃(p2) · · · t̃(pk)
Id Id · · · Id

t̃(q′1) t̃(q′2) · · · t̃(q′k)
t(τ ′1) t(τ ′2) · · · t(τ ′k)

⎤
⎥⎥⎦ . �

4. Algebraic embeddings

In this section, we present some algebraic embeddings Vm(G) � Vn(H) between symmet-
ric Thompson’s groups (recall here n−m = k(m− 1) for some positive k, G � Sym(m)
and with H a particular extended version of G in Sym(n)).

We call these embeddings ‘algebraic’ as they do not arise via topological conjugacy. In
particular, these embeddings do not preserve the orbit lengths of the points of Cn (when
n > m, which is our primary case of interest).

4.1. Successors

Here, we give the key idea for our algebraic embeddings, which relies on extending an
idea of Birget into our context.

The successor of an element, expressed as a table, was defined in [1] in order to embed
V2(Id) in Vn(Id), for all n ≥ 2. We generalize Birget’s definition.

Definition 4.1 (Set of prefixes). [1] Let P ⊂ A∗
n be a prefix code of Cn. We define the

set of prefixes of P , spref(P ) as follows:

spref(P ) = {w ∈ A∗
n : ∃p ∈ P, w <pref p}.

In other words, spref(P ) is the set of strict prefixes of the elements of P .
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Some embeddings between symmetric R. Thompson groups 11

We are embedding a symmetric Thompson’s group on alphabet Am into a sym-
metric Thompson’s group on alphabet An, where m � n. For this, we will assume
Am ⊆ An. And, in particular, we set Am = {a0, a1, . . . , am−1} and An = Am ∪
{am, am+1, . . . , an−1} with symbols with distinct indices being distinct (so that
|An| = n).

In what follows, we take a prefix code P ⊂ am−1||A∗
m (so each element of P begins

with the letter am−1) and transform it to a new prefix code Succ(P ) ⊂ A∗
n by appending

letters from the set {am, am+1, . . . , an}.

Definition 4.2 (Successor). Let P ⊂ am−1||{a0, . . . , am−1}∗ be a prefix code (complete,
were we to remove the initial prefix letter am−1, so that |P | ≡ 1 mod (m− 1)) with
|P | = l ≥ 1, and let {p1, . . . , pl} be the ordered list of all the elements of P , using the
reverse dictionary order.

We build a new prefix code Succ(P ) inductively using our ordered list (p1, p2, . . . , pl).
Let k be the smallest non-negative integer so that n−m = k(m− 1) (this k will exist

when m and n satisfy Higman’s condition, which we require to build our embeddings).
We define (inductively) nested sets Ps,i, where s will grow from 1 to l, and for each

value of s, we will have i grow from 1 to k.
Set Am,n := {am, am+1, . . . , an−1}. For every ps ∈ P , and i ∈ {1, 2, . . . , k} the i-th

successor (ps)′i of ps is the element of spref(P )||Am,n defined as follows, assuming that

Ps,i−1 =

⎧⎪⎨
⎪⎩

(p1)′1, (p1)′2, . . . , (p1)′k,
(p2)′1, (p2)′2, . . . , (p2)′k,

... (ps)′1, (ps)′2, . . . , (ps)′i−1

⎫⎪⎬
⎪⎭

has already been defined, we set:

(ps)′i = min{xaj ∈ spref(P )||Am,n : ps <dict xaj and xaj ∈ Ps,i−1},

where min uses the dictionary order in {a0, . . . , an−1}.

Example 4.3. Suppose m = 3 and n = 5, so that k = 1. In the definition above, am−1 =
2. So, consider the set P = {20, 210, 211, 212, 22}. Now, k = 1 and spref(P ) = {ε, 2, 21}.
We obtain

p1 = 22 (p1)′1 = 23
p2 = 212 (p2)′1 = 213
p3 = 211 (p3)′1 = 214
p4 = 210 (p4)′1 = 24
p5 = 20 (p5)′1 = 3.

Remark 4.4. The three constants, n, m, k are not arbitrary, as the system of successors
needs to be well defined. If every element has k successors, then:

n−m = k(m− 1), k ≥ 0,

which is Higman’s condition.
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Proof. If we expand an element pi ∈ P , we need to assign successors to each element
piaj for every 0 � j � m− 1. In particular, the number of successors k of every leaf does
not vary, and each element piar for every m � r � n− 1 needs to be the successor of
some element in P̃ = (P\{pi}) ∪ {pia0, . . . , piam−1}. Then P̃ has m− 1 more elements
than P and there are n−m new elements piar for m � r � n− 1. Thus, we need m− 1
to evenly divide n−m, and k is the factor of this division. �

We proceed to prove the following lemma, essential for the proof of Theorem 1.2:

Lemma 4.5. Suppose m � n are naturals so that there is k natural with n−
m = k(m− 1). Suppose l is a positive integer congruent to m modulo m− 1. Let
S = {am, . . . , an−1} and let P ⊂ am−1||{a0, . . . , am−1}∗ be an l-element prefix code,
ordered as pl <dict pl−1 <dict . . . <dict p1. Let i with 1 � i � l. Then, the successors (pi)′1,
(pi)′2, . . . , (pi)′k are well defined, and furthermore, the expansion in which we replace

P by P̃ = (P\{pi}) ∪ pi{a0, . . . , am−1} has successors (piaj)′i uniquely determined
as follows:

(piam−1)′1 = piam

...
(piam−1)′k = piam+k−1

(piam−2)′1 = piam+k

...
(piam−2)′k = piam+2k−1

...
(pia1)′1 = piam+(m−2)k

...
(pia1)′k = piam+(m−1)k−1 = pian

(pia0)′1 = (pi)′1
...

(pia0)′k = piam+(m−1)k = (pi)′k.

Proof. We prove the two statements by induction on l.
Base Case ( l = 1):

If l = 1 then P = {am−1}. We have spref P = {ε}. It then follows that the k successors
are, the set {am, am+1, . . . , am+k−1}, noting that these are given in order and are the
results of the inductive definition of the k successors of am−1. Thus, we have in the
base case that the successors are well defined. We need to verify the existence of well-
defined successors for an expansion of P = {am−1}. In this case, P admits only one
expansion, which is precisely the set P̃ = {am−1am−1, am−1am−2, . . . , am−1a0}.We have
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spref(P̃ ) = {ε, am−1} and we have

(am−1am−1)′1 = am−1am

...
(am−1am−1)′k = am−1am+k−1

(am−1am−2)′1 = am−1am+k

...
(am−1am−2)′k = am−1am+2k−1

...
(am−1a1)′1 = am−1am+(m−2)k

...
(am−1a1)′k = am−1am+(m−1)k−1 = am−1an

(am−1a0)′1 = (am−1)′1
...

(am−1a0)′k = am−1am+(m−1)k = (am−1)′k.

We can directly observe these successors are well defined and distinct. Thus, the statement
is true for l = 1.

Inductive Case ( l > 1):
Now let us assume that P̃ is a result of v expansions from the one-element prefix code
{am−1}, for some v ≥ 1, where for any prefix code resulting from u expansions from
{am−1} for 0 � u < v the statement of the lemma holds. We will show that the successors
of our expansion P̃ are well defined. In particular, if P is the prefix code (of size l) arising
from doing only the first t− 1 expansions from {am−1} towards the prefix code P̃ , and
pi is the element of P which is being replaced by and m-fold expansion to create P̃ , then
by induction, the successors (pi)′1, (pi)′2, . . ., (pi)′k of pi ∈ P are well defined.

Note that Pi−1,k = P̃i−1,k, as the involved subsets of both P and P̃ are equal. Thus,
the first successor to assign is (piam−1)′1. Suppose that (piam−1)′1 <dict piam, then
(piam−1)′1 = pat for some p ∈ spref(P ) : p <dict pi and at ∈ {am, . . . , an−1}. Thus, before
expanding P , pat is one of the successors of some pr ∈ P .

If pr <dict pi, then the set of successors of pi is defined before the set of successors
of pr. Because pi is expanded, the set of k successors of piam−1 is equal to the set
of successors of pi, and this set does not contain pat, which is a contradiction. On the
other hand, if pr >dict pi, then pat ∈ Pi−1,k = P̃i−1,k, which is also a contradiction. Thus,
(piam−1)′1 = piam. We can use a similar argument for all (piam−1)′1 . . . (pia1)′k.

For pia0, all successors of the form pias, as ∈ {am, . . . , an−1} have already been
assigned. Thus, the remaining k successors are precisely the k successors of pi, taken
in order. �

Remark 4.6. Birget in [1] gives a formula for the i-th successor of an element, for the
case of m = 2. The statement of Lemma 4.5 above shows the natural generalization of
that formula holds when we have the Higman Condition (as we must for successors to be
well defined). The resulting formula is given as follows:
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Let P ⊂ am−1||{a0, . . . , am−1}∗ be a prefix code with |P | ≥ 2, such that the elements
of P are ordered in reverse dictionary order. Then every element of w ∈ P can be written
uniquely in the form uaia

t
0, where u ∈ {a0, . . . , am−1}∗ and t ≥ 0. The i-th successor of

w is:
(w)′i = (uaja

t
0)

′
i = uam−1+(m−1−j)k+i.

We stress that this formula is only valid if P is ordered in reverse dictionary order.

4.2. The algebraic embedding

We proceed to define the algebraic embedding of Vm(G) in Vn(H) = Vn(Gext). Let
g ∈ Vm(G), given by the following table:

g =

⎡
⎢⎢⎣
p1 p2 · · · pl

σ1 σ2 · · · σl

q1 q2 · · · ql
τ1 τ2 · · · τl

⎤
⎥⎥⎦

We define the embedding ι(g) below. The resulting tables are large, and our notation
requires some explanation. The idea of the embedding is to use the identity map initially,
and at am+k and later letters, but under the address am−1, we place the prefix code p1

to pl, and we also require action under the successors. The first row then has entries
following the ordered list given here (wrapped at natural locations due to page length
constraints):

a0, a1, . . . , am−2,
am−1p1, am−1p2, . . . , am−1pl,

(am−1p1)′1, (am−1p2)′1, . . . , (am−1pl)′1,
(am−1p1)′2, (am−1p2)′2, . . . , (am−1pl)′2,

· · ·
(am−1p1)′k, (am−1p2)′k, . . . , (am−1pl)′k,

am+k, am+k+1, . . . , an−1.

We use vertical bars ‘|’ in our table at the same locations that we placed line-wraps in the
row detailed above, for clarity of grouping. The element ι(g) is now given by the following
table:

⎡
⎢⎣

a0 · · · am−2 | am−1p1 · · · am−1pl | (am−1p1)′1 · · · (am−1pl)
′
1 | · · ·

Id · · · Id | σ′
1 · · · σ′

l | σ′
1 · · · σ′

l | · · ·
a0 · · · am−2 | am−1q1 · · · am−1ql | (am−1q1)′1 · · · (am−1ql)

′
1 | · · ·

Id · · · Id | τ ′
1 · · · τ ′

l | τ ′
1 · · · τ ′

l | · · ·
· · · | (am−1p1)′k · · · (am−1pl)

′
k | am+k · · · an−1

· · · | σ′
1 · · · σ′

l | Id · · · Id
· · · | (am−1q1)′k · · · (am−1ql)

′
k | am+k · · · an−1

· · · | τ ′
1 · · · τ ′

l | Id · · · Id

⎤
⎥⎦

Note that the set of successors of P = {p1, . . . , pl} are assigned supposing that pl <dict

. . . <dict p1. Therefore, the set of successors of Q = {q1, . . . , ql} is assigned following the
order ql → . . .→ q1, which does not need to follow the dictionary order on Q.

Indeed, the first and third rows of ι(g) are both prefix codes of Cn. On the one hand,
suppose that the number of columns of g is l = m+ d(m− 1) for some d ≥ 0. It follows
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that the number of columns of ι(g) whose elements of the first row start with am−1

is n+ d(n− 1) (observe that the last k terms from the successor substitution will not
begin with am−1). On the other hand, as the number of columns of g is (m+ d(m− 1)),
and we assign k successors to every column, we have (m+ d(m− 1))(k + 1) columns on
ι(g). As we have Higman’s Condition, the reader can verify that (m+ d(m− 1))(k +
1) = n+ d(n− 1) + k. From this, we see firstly that (n− 1)|k, but more importantly,
this embedding/successor operation does not place any constraints on the number of
expansions d that were used to create the original prefix code for the domain of g.

We now recall and prove our algebraic embedding theorem:

Theorem 1.2 (Algebraic Embedding). Let n, m ≥ 2 be natural numbers such
that n = k(m− 1) +m for some k ≥ 1, and let G � Sym(m). Let H = Gext � Sym(n)
the extended symmetric group of H, whose elements act as the elements of H on the first
m elements and act as the identity on the remaining n−m.

Then Vm(G) embeds in Vn(H).

Proof. If we push down the action of every σi, we have:

push(g) =

⎡
⎢⎢⎣

p1 p2 · · · pl

Id Id · · · Id
q1 q2 · · · ql

τ1σ
−1
1 τ2σ

−1
2 · · · τlσ

−1
l

⎤
⎥⎥⎦

Thus, the table for ι(push(g)) is:

⎡
⎢⎢⎣

a0 · · · am−2 | am−1p1 · · · am−1pl | (am−1p1)′1 · · · (am−1pl)
′
1 | · · ·

Id · · · Id | Id · · · Id | Id · · · Id | · · ·
a0 · · · am−2 | am−1q1 · · · am−1ql | (am−1q1)′1 · · · (am−1ql)

′
1 | · · ·

Id · · · Id | (τ1σ−1
1 )′ · · · (τlσ

−1
l )′ | (τ1σ−1

1 )′ · · · (τlσ
−1
l )′ | · · ·

· · · | (am−1p1)′k · · · (am−1pl)
′
k | am+k · · · an−1

· · · | Id · · · Id | Id · · · Id
· · · | (am−1q1)′k · · · (am−1ql)

′
k | am+k · · · an−1

· · · | (τ1σ−1
1 )′ · · · (τlσ

−1
l )′ | Id · · · Id

⎤
⎥⎥⎦

On the other hand, the table for push(ι(g)) is:

⎡
⎢⎣

a0 · · · am−2 | am−1p1 · · · am−1pl | (am−1p1)′1 · · · (am−1pl)
′
1 | · · ·

Id · · · Id | Id · · · Id | Id · · · Id | · · ·
a0 · · · am−2 | am−1q1 · · · am−1ql | (am−1q1)′1 · · · (am−1ql)

′
1 | · · ·

Id · · · Id | τ ′
1(σ′

1)−1 · · · τ ′
l (σ

′
l)

−1 | τ ′
1(σ′

1)−1 · · · τ ′
l (σ

′
l)

−1 | · · ·
· · · | (am−1p1)′k · · · (am−1pl)

′
k | am+k · · · an−1

· · · | Id · · · Id | Id · · · Id
· · · | (am−1q1)′k · · · (am−1ql)

′
k | am+k · · · an−1

· · · | τ ′
1(σ′

1)−1 · · · τ ′
l (σ

′
l)

−1 | Id · · · Id

⎤
⎥⎦

Recall from the statement of Theorem 1.2 that for an element τ ∈ Sym(m), the
extended version τ ′ of τ in Sym(n) is that element of Sym(n) which agrees with τ on
the set Am and acts as the identity on the points of Am,n in An. Thus, both tables are
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equal, as (τiσ−1
i )′ = (τ ′i)(σ

′
i)

−1, ∀i ∈ {i, . . . , l}. If we expand g on pi:

exp(g) =

⎡
⎢⎢⎣
p1 p2 · · · pia0 · · · piam−1 · · · pl

Id Id · · · Id · · · Id · · · Id
q1 q2 · · · qiτi(a0) · · · qiτi(am−1) · · · ql
τ1 τ2 · · · τi · · · τi · · · τl

⎤
⎥⎥⎦

Then the table for ι(exp(g)) is:
⎡
⎢⎣

a0 · · · am−2 | am−1p1 · · · am−1pia0 · · · am−1piam−1 · · · am−1pl | · · ·
Id · · · Id | Id · · · Id · · · Id · · · Id | · · ·
a0 · · · am−2 | am−1q1 · · · am−1qiτi(a0) · · · am−1qiτi(am−1) · · · am−1ql | · · ·
Id · · · Id | τ ′

1 · · · τ ′
i · · · τ ′

i · · · τ ′
l | · · ·

· · · | · · · (am−1pia0)′j · · · (am−1piam−1)′j · · · | am+k · · · an−1

· · · | · · · Id · · · Id · · · | Id · · · Id
· · · | · · · (am−1qiτi(a0))′j · · · (am−1qiτi(am−1))′j · · · | am+k · · · an−1

· · · | · · · τ ′
i · · · τ ′

i · · · | Id · · · Id

⎤
⎥⎥⎦

On the other hand, the table for exp(ι(g)) is:
⎡
⎢⎣

a0 · · · am−2 | am−1p1 · · · am−1pia0 · · · am−1pian−1 · · · am−1pl | · · ·
Id · · · Id | Id · · · Id · · · Id · · · Id | · · ·
a0 · · · am−2 | am−1q1 · · · am−1qiτ

′
i(a0) · · · am−1qiτ

′
i(an−1) · · · am−1ql | · · ·

Id · · · Id | τ ′
1 · · · τ ′

i · · · τ ′
i · · · τ ′

l | · · ·
· · · | · · · (am−1p1)′j · · · (am−1pi)

′
j · · · (am−1pl)

′
j · · · | am+k · · · an−1

· · · | · · · Id · · · Id · · · Id · · · | Id · · · Id
· · · | · · · (am−1q1)′j · · · (am−1qi)

′
j · · · (am−1ql)

′
j · · · | am+k · · · an−1

· · · | · · · τ ′
1 · · · τ ′

i · · · τ ′
l · · · | Id · · · Id

⎤
⎥⎥⎦

It is straightforward to check that for both tables, the columns starting at am−1pias for
0 � s � m− 1 are equal, as τ ′i(s) = τi(s), ∀s ∈ {0, . . . , m− 1}.

For m � s � n− 1 by Lemma 4.5, we know there is a correspondence between the first
two rows of ι(exp(g)) and the first two rows of exp(ι(g)). On the other hand, from the
description of the algebraic embedding, the order in which successors for every qj are
selected depends only on the order of {p1, . . . , pl}, so we have the following calculations:

(am−1qiτi(am−1))′1 = am−1qiam = am−1qiτ
′
i(am)

...
...

(am−1qiτi(am−1))′k = am−1qiam+k−1 = am−1qiτ
′
i(am+k−1)

(am−1qiτi(am−2))′1 = am−1qiam+k = am−1qiτ
′
i(am+k)

...
...

(am−1qiτi(am−2))′k = am−1qiam+2k−1 = am−1qiτ
′
i(am+2k−1)

...
...

(am−1qiτi(a1))′1 = am−1qiam+(m−2)k = am−1qiτ
′
i(am+(m−2)k)

...
...

(am−1qiτi(a1))′k = am−1qian = am−1qiτ
′
i(am+(m−1)k−1)

(am−1qiτi(a0))′1 = (am−1qi)′1
...

(am−1qiτi(a0))′k = (am−1qi)′k.
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That is, e.g., (am−1qiτi(am−1))′1 comes first in the choice of a successor as (am−1piam−1)′1
appears first under the order of the pi, independent of τi. Thus, the latter two rows of
these tables are also equivalent.

Finally, it is easy to see that ι(h ◦ g) = ι(h) ◦ ι(g), as ι commutes with expansions
and pushings. We only need to obtain row equality on the first part of the table as the
remaining part depends entirely on P (respectively, on Q for the element h):

ι(g) =

⎡
⎢⎢⎣
· · · am−1pi · · · (am−1pi)′j · · ·
· · · Id · · · Id · · ·
· · · am−1qi · · · (am−1qi)′j · · ·
· · · τ ′i · · · τ ′i · · ·

⎤
⎥⎥⎦ ,

ι(h) =

⎡
⎢⎢⎣
· · · am−1qi · · · (am−1qi)′j · · ·
· · · τ ′i · · · τ ′i · · ·
· · · am−1ri · · · (am−1ri)′j · · ·
· · · τ ′′i · · · τ ′′i · · ·

⎤
⎥⎥⎦ ,

ι(h) ◦ ι(g) =

⎡
⎢⎢⎣
· · · am−1pi · · · (am−1pi)′j · · ·
· · · Id · · · Id · · ·
· · · am−1ri · · · (am−1ri)′j · · ·
· · · τ ′′i · · · τ ′′i · · ·

⎤
⎥⎥⎦ = ι(h ◦ g).

Thus, the result follows. �
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