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Boundary layer receptivity to free-stream sound
on parabolic bodies
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Illinois Institute of Technology, Fluid Dynamics Research Center, Chicago, IL 60616, USA

(Received 23 September 1996 and in revised form 4 September 1997)

We use a numerical approach to study the receptivity of the boundary layer flow over
a slender body with a leading edge of finite radius of curvature to small streamwise
velocity fluctuations of a given frequency. The body of interest is a parabola in order
to exclude jumps in curvature, which are known sites of receptivity and which occur
on elliptic leading edges matched to finite-thickness flat plates. The infinitesimally
thin flat plate is the limiting solution for the parabola as the nose radius of curvature
goes to zero. The formulation of the problem allows the two-dimensional unsteady
Navier–Stokes equations in stream function and vorticity form to be converted to two
steady systems of equations describing the basic (nonlinear) flow and the perturbation
(linear) flow. The results for the basic flow are in excellent agreement with those in
the literature. As expected, the perturbation flow was found to be a combination of
an unsteady Stokes flow and Orr–Sommerfeld modes. To separate these, the unsteady
Stokes flow was solved separately and subtracted from the total perturbation flow. We
found agreement with the streamwise wavelengths and locations of Branches I and II
of the linear stability neutral growth curve for Tollmien–Schlichting waves. The results
showed an increase in the leading-edge receptivity with decreasing nose radius, with
the maximum occurring for an infinitely sharp flat plate. The receptivity coefficient
was also found to increase with angle of attack. These results were in qualitative
agreement with the asymptotic analysis of Hammerton & Kerschen (1992). Good
quantitative agreement was also found with the recent numerical results of Fuciarelli
(1997), and the experimental results of Saric, Wei & Rasmussen (1994).

1. Introduction
The term ‘receptivity’ refers to the mechanism by which disturbances in the free

stream, such as sound or vorticity, enter the boundary layer as small fluctuations of the
basic state and excite unstable modes. These modes in the case of a Blasius boundary
layer are of the Tollmien–Schlichting (T-S) type if the initial amplitudes of the
disturbances are small. Although we understand well the process of linear and weakly
nonlinear growth of T-S waves, practical applications aimed at predicting transition
locations require accurately knowing their initial amplitudes. This is especially true for
nonlinear interactions, such as with subharmonic resonance (see for example Corke
& Mangano 1989), where there is an extremely sensitive (exponential) dependence of
the amplitude of subharmonic three-dimensional modes on the initial amplitude of
the fundamental T-S mode.

† Permanent address: Jordan University of Science and Technology, Mechanical Engineering
Department, PO Box 3030, Irbid, Jordan.
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2 O. M. Haddad and T. C. Corke

Our understanding of the receptivity process has largely come from asymptotic
theories. The earliest of these were by Goldstein (1983, 1985). These have set the
theoretical framework, and especially emphasized the role of sharp changes in cur-
vature as receptivity sites. One of the earliest physical experiments on leading-edge
receptivity was for a sharp flat plate which was performed by Shapiro (1977). More
recently, an elliptic leading edge joined to a flat plate was used in the experiments
by Saric & Rasmussen (1992) and Saric, Wei & Rasmussen (1994). Lin, Reed &
Saric (1990) performed a full Navier–Stokes (N-S) calculation to model those elliptic
leading-edge experiments. Their numerical results were not complete in that it was
difficult to distinguish between receptivity produced by the leading edge and that
produced locally at the joint between the ellipse and flat plate. That geometry also
makes it difficult to separate the effects of curvature and pressure gradient on recep-
tivity. The later work by Lin, Reed & Saric (1992) addressed the aspect of the joint
by using large-aspect-ratio super-ellipses.

The parabolic geometry has the advantage of constant curvature. Also, for a zero
angle of attack, the pressure gradient is everywhere favourable. These make the
parabolic body well suited to isolate the leading-edge receptivity mechanism from
other mechanisms or sites of receptivity (although from a practical standpoint, to
be used in a wind tunnel, the parabolic body would eventually need to be faired
to a flat plate at a downstream location). Murdock (1980, 1981) used a numerical
approach to study the receptivity over an infinitely thin flat plate and parabolic
cylinders. For both cases, he modelled the receptivity through a parabolized form
of the unsteady N-S equations. More recently, Hammerton & Kerschen (1992) used
asymptotic analysis to study the effect of the nose radius of curvature on receptivity
of the boundary layer over a parabolic leading edge subject to acoustic excitation. In
that study, the nose radius entered the theory through a Strouhal number based on
the frequency of the sound and the free-stream velocity, and using the nose radius as
the characteristic length. Their results showed a strong dependence of receptivity on
the Strouhal number. Up to now, there have been no other analytical solutions or
physical experiments which have dealt with parabolic leading edges.

Our objective was to perform a numerical simulation of the flow over a parabolic
leading edge in a uniform flow with a small-amplitude acoustic disturbance. The
previous cited numerical work solved the nonlinear time-dependent N-S equations.
The experimental evidence is that the process of receptivity to these disturbances is
linear, and the resulting growth of instabilities is spatial. Therefore, we will develop
a more efficient spatial formulation in which the basic and unsteady flows will be
decoupled, and solved separately.

2. The physical problem
We consider the two-dimensional laminar incompressible flow of a constant-

property fluid over a parabolic body such as is schematically represented in figure 1.
The equation of the surface of the parabolic body is given by

x(y) =
1

2R
(y2 − R2). (1)

The radius of curvature r(x) of the parabola x(y) is given by

r(x) =
(1 + x′2)3/2

x′′
=

[
8(R + x)3

R

]1/2

. (2)
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Boundary layer receptivity to free-stream sound on parabolic bodies 3
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Figure 1. Schematic of parabolic body in a symmetric mean flow with a
superposed small free-stream oscillation.

By applying (2) at the leading edge (y = 0 and x = −R/2) we obtain r = R, and thus
R is recognized to be the nose radius of curvature of the parabola. Note that R in its
dimensional form is the nose radius of curvature, but when non-dimensionalized, it
is Reynolds number based on the nose radius of curvature, Re.

3. Governing equations and boundary conditions
3.1. Governing equations

We consider the full N-S equations to study the receptivity of the boundary layer
because the parallel flow assumption (which leads to the Orr–Somerfeld (O-S) equa-
tion) precludes the transfer of energy from the long-wavelength acoustic disturbance
to the short-wavelength T-S wave. In the Cartesian coordinate system (x, y), the
non-dimensional N-S equations in stream function (ψ) and vorticity (ω) variables are
given in the form

ψxx + ψyy = −ω, (3)

ωt + ψyωx − ψxωy = ωxx + ωyy, (4)

where subscripts denote partial differentiation. In non-dimensionalizing the variables,
the following dimensionless group of variables were introduced:

x =
x∗

ν/U∞
, y =

y∗

ν/U∞
, t =

t∗

ν/U2
∞
, ω =

ω∗

U2
∞/ν

, ψ =
ψ∗

ν
. (5)

The geometry of the body suggests that the problem be formulated in terms of
parabolic coordinates. The dimensionless parabolic coordinates (ξ, η) are related to
the dimensionless Cartesian coordinates (x, y) by

x =
ξ2 − η2

2
, y = ξη. (6)

Note here that the body surface is located at η = R1/2. Based on equation (6),
equations (3) and (4) can be rewritten in parabolic coordinates as

ψξξ + ψηη = −
(
ξ2 + η2

)
ω, (7)
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4 O. M. Haddad and T. C. Corke[
∂2

∂ξ2
+

∂2

∂η2
+
∂ψ

∂ξ

∂

∂η
− ∂ψ

∂η

∂

∂ξ
−
(
ξ2 + η2

) ∂
∂t

]
ω = 0. (8)

In order to remove the singularity in vorticity at the leading edge for the limiting
case of an infinitely thin flat plate, we followed Davis (1972) and introduced the new
variables f and g which are related to ψ and ω by

ψ = ξf (ξ, η, t) , ω = − ξ(
ξ2 + η2

)g (ξ, η, t) . (9)

With the new dependent variables given by (9) the governing equations (7) and (8)
become

fηη − g + fξξ +
2

ξ
fξ = 0, (10)

gηη +

(
f + ξfξ −

4η

ξ2 + η2

)
gη +

(
ξ2 − η2

ξ2 + η2
fη −

2η

ξ2 + η2

(
f + ξfξ

))
g

−ξgξ
(
fη +

4

ξ2 + η2

)
−
(
ξ2 + η2

)
gt + gξξ +

2

ξ
gξ = 0. (11)

We note that these equations are parabolic in ξ when the last two terms in both
equations are neglected. This fact had been exploited by Davis (1972) to formulate
an efficient numerical method.

3.2. Boundary conditions

At the wall, the no-slip, no-penetration conditions are satisfied by

f(ξ, R1/2) = 0 and fη(ξ, R
1/2) = 0. (12)

The vorticity at the wall is obtained by applying the stream function equation (7) at
the wall where ψξ = ψξξ = ψη = 0, giving

g(ξ, R1/2) = fηη. (13)

At the free-stream, the flow is uniform giving

fη → 1 as η →∞. (14)

The free-stream is also vortex free, so that

g → 0 as η →∞. (15)

4. Perturbation of the governing equations and boundary conditions
To investigate the receptivity to an acoustic wave, we considered the free stream to

be composed of a uniform flow in the x-direction with a superposed uniform small
oscillation of frequency σ and amplitude ε, namely

ψ∞ =
(
1 + ε eiσt

)
ξη, (16)

where ε is sufficiently small for linearization. We decomposed the unsteady flow
field into a steady basic state plus an unsteady perturbation (in normal-mode form),
according to

f (ξ, η, t) = F (ξ, η) + ε eiσtf̃ (ξ, η) , (17)
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Boundary layer receptivity to free-stream sound on parabolic bodies 5

g (ξ, η, t) = G (ξ, η) + ε eiσtg̃ (ξ, η) . (18)

Substituting these equations back into the governing equations and boundary condi-
tions, and equating terms of equal powers of ε leads to the governing equations for
the basic and perturbation flow fields.

The basic flow (zero-order terms in ε) is governed by the following set of differential
equations:

Fηη − G+ Fξξ +
2

ξ
Fξ = 0, (19)

Gηη +

[
F + ξFξ −

4η

ξ2 + η2

]
Gη +

[
ξ2 − η2

ξ2 + η2
Fη −

2η

ξ2 + η2
F − 2ξη

ξ2 + η2
Fξ

]
G

−
[
ξFη +

4ξ

ξ2 + η2

]
Gξ + Gξξ +

2

ξ
Gξ = 0 (20)

with boundary conditions

F = 0, Fη = 0 and G = Fηη at η = R1/2, (21)

Fη → 1 and G→ 0 as η →∞. (22)

These equations governing the basic flow are steady, coupled and nonlinear in the
real variables F and G.

After linearizing in ε, the perturbation flow is governed by

f̃ηη − g̃ + f̃ξξ +
2

ξ
f̃ξ = 0, (23)

g̃ηη +

[
F + ξFξ −

4η

ξ2 + η2

]
g̃η −

[
ξFη +

4ξ

ξ2 + η2

]
g̃ξ

+

[
ξ2 − η2

ξ2 + η2
Fη −

2η

ξ2 + η2
F

2ξη

ξ2 + η2
Fξ

]
g̃ +

[
ξ2 − η2

ξ2 + η2
G− ξGξ

]
f̃η

+

[
ξGη−

2ξη

ξ2 + η2
G

]
f̃ξ +

[
Gη−

2η

ξ2 + η2
G

]
f̃− iσ

(
ξ2 + η2

)
g̃+ g̃ξξ +

2

ξ
g̃ξ = 0 (24)

with boundary conditions

f̃ = 0, f̃η = 0 and g̃ = f̃ηη at η = R1/2, (25)

f̃η → 1 and g̃ → 0 as η →∞. (26)

These equations are steady, coupled and linear in the complex variables f̃ and g̃. The
disturbance frequency, σ, appears explicitly in them. It is important to point out that
these two sets of equations were first obtained by Herbert (1991).

5. Numerical formulation
5.1. Grid generation and computational domain

Among the advantages of using parabolic coordinates is that it allowed us to reduce
any spurious receptivity that might have been produced by non-uniformities (discrete
steps) in the body contour or the numerical grid. The non-dimensional length of the
body, measured from the leading edge along the chord, was ξmax = 3.5× 105. In the
wall-normal direction, the free stream is considered to be at ηmax = 35, measured from
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6 O. M. Haddad and T. C. Corke

the surface of the parabola. This was equivalent to ten times the maximum boundary
layer thickness.

The number of points in the computational grid was determined while monitoring
the solution for the mean flow. For example, the asymptotic solution was known to
be Blasius (Davis 1972), and far from the leading edge, Davis had used the Blasius
solution as his outflow boundary condition. In the end we used 500 grid points in
the streamwise direction on each side of the body (i.e. upper and lower sides). We
did not exploit symmetry of the flow since we also studied cases with non-zero angles
of attack. In the wall-normal direction, 36 grid points were used. In regions of large
gradients near the leading edge and wall, the grid points were more closely spaced.
Robert’s stretching transformation (Anderson, Tannehill & Pletcher 1984) was used
for that purpose.

Although the grid was essentially determined on the basis of the mean flow
calculations, we were careful that there were always at least ten numerical points per
T-S wavelength in the streamwise direction.

5.2. Finite difference scheme

The governing equations for both the basic and perturbation flows were solved on
the same numerical grid using a finite difference approach. Central differencing was
used whenever possible, otherwise forward or backward differencing was used as
applicable. The finite difference scheme was second-order accurate throughout the
grid.

For numerical simulations of the spatially evolving laminar–turbulent transition
process in boundary layers using the complete N-S equations, the treatment of the
outflow boundary requires special attention. The disturbances must pass through this
boundary without causing reflections that would significantly alter the flow upstream.
This was achieved most efficiently by suppressing the elliptic terms (the last two terms
in equations (19) and (20), and (23) and (24)) in each of the governing equations at
the outflow boundary using a buffer domain (Kloker, Konelmann & Fasel 1993). The
parabolizing of the governing equations in the outflow buffer zone was first introduced
by Streett & Macaraeg (1989). Since then, this approach has been extensively used
by many investigators, for example: Joslin & Streett (1992) and Kloker et al. (1993).

To implement the non-reflecting boundary condition at the outflow, a buffer zone
was specified in which the elliptic terms in the governing equations were multiplied
by a weighting factor, s. The weighting factor was a function of streamwise location
only. At the begining of the buffer zone, s = 1; at the end, which corresponds to the
outflow boundary, s = 0. In order to smoothly transition from 1 to 0, a multiplicative
weighting factor of the following form was used:

s(i) =
1 + tanh(arg)

2
, (27)

where

arg = 4

{
1− 2(i− ibuf )

(Imax − ibuf )

}
. (28)

Here, i is the numerical index in the streamwise direction, ibuf is the index i at the
begining of the buffer zone, and Imax is the maximum value of i. The length of the
buffer zone is an important parameter. In our case it was set to be equivalent to
approximately four times the expected T-S wavelength, λTS . Joslin & Streett (1992)
recommended a length equivalent to at least 3λTS so that our choice was conservative.
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Boundary layer receptivity to free-stream sound on parabolic bodies 7

5.3. Method of solution

The nonlinear basic-flow equations were formulated into a linear set using Newton’s
linearization technique. The resulting system of linear algebraic equations for the
basic flow, as well as the perturbation equations were solved using a standard banded
matrix solver. All calculations were done in double precision arithmetic. For most of
the nose Reynolds number (Re) cases considered here, the basic-flow code required
six or seven iterations to converge.

Our method of formulation lead to a decoupling of the basic flow and perturbation
equations. Thus the two systems of equations were solved separately. The basic
flow variables, F and G, which appear in the metrics of the perturbation equations,
are determined beforehand for a given Reynolds number. Conditions for different
acoustic frequencies, σ, did not require a recalculation of the basic flow. For further
details on the method of solution, the reader is referred to Haddad (1995).

6. Numerical results
An example of the sensitivity of the numerical results to the number of compu-

tational grid points is shown in figure 2. This shows the wall vorticity for different
computational grid sizes for Re = 10. The basic flow over the parabolic body is
known to approach Blasius flow far downstream. This leads the vorticity at the wall
to become invariant in the flow direction away from the leading edge. The results in
figure 2 for two cases with grid sizes of 500× 27 (dotted line) and 500× 30 (dashed
line) show a trend far downstream which is clearly wrong. The other cases shown in
the figure, with a larger number of wall-normal grid points, all collapse on a single
curve. These show the proper downstream asymptote which agrees with a Blasius flow.
The solid curve which corresponds to the grid size of 500×36 was used throughout
this study.

6.1. Basic flow

In order to validate our results for the basic flow, the surface pressure and skin friction
distributions were determined for different nose Reynolds numbers and compared
with corresponding ones obtained by Davis (1972). From the x-momentum equation,
the surface pressure is given by

∂p

∂x
= −∂ω

∂y
. (29)

Equation (29) can be rewritten in parabolic coordinates as

∂p

∂ξ
=

ξ

ξ2 + η2

[
∂g

∂η
− 2η

ξ2 + η2
g

]
. (30)

To remove the singularity in the pressure at the leading edge for the case of an
infinitely thin body, we follow Davis (1972) and introduce

P = p− η

ξ2 + η2
g(0, R1/2). (31)

The streamwise pressure gradient along the surface of the parabola is then given by

∂P

∂ξ
=

ξ

ξ2 + η2

[
∂g

∂η
− 2η

ξ2 + η2
(g − go)

]
, (32)

where go = g(0, R1/2). Using the pressure at downstream infinity on the lower surface
as a reference pressure, the surface pressure was found by integrating (trapezoidal)
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Figure 2. Effect of computational grid size on the vorticity along the surface of a
parabolic cylinder; Re = 10.

from downstream infinity back along the surface. The pressure distributions for
different nose Reynolds numbers from 0 (infinitely sharp flat plate) to 1000 are
shown in figure 3(a). The symbols correspond to the results from Davis (1972). The
agreement is very good. Our results are expected to be more accurate than Davis’s
since his formulation was only first-order accurate.

In terms of the pressure distribution, we observe that for these cases with zero angle
of attack, the pressure gradient is everywhere favourable. The downstream distance
where the pressure distribution asymptotes into the Blasius distribution is further as
the nose radius Reynolds number increases. We chose to use the parabolic coordinate
in the flow direction, ξ, on a log scale in order to magnify the region close to the
leading edge. In reality, the distance to the Blasius asymptote is relatively close to the
leading edge. For example for Re = 10 the asymptote is at ξ ' 60 where Rex ' 2000

(Re
1/2
x ' 45).

Another fundamental result for the basic flow is the skin friction distribution. The
skin friction coefficient is defined as

Cf =
τ∗w
ρU2
∞
, (33)

where τ∗w = µ(∂u∗/∂y∗)|w . In parabolic coordinates, the skin friction coefficient is given
by

Cf =
ξ

ξ2 + η2
g(ξ, R1/2). (34)

Scaled skin friction distributions for different nose Reynolds numbers are shown in
figure 3(b). Again we have excellent agreement with the results of Davis (1972), which
are shown as symbols in the figure. These distributions look qualitatively like the
pressure distributions, with a maximum at the leading edge which grows larger as the
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Figure 3. (a) Surface pressure and (b) skin friction distributions on parabolic bodies
with different nose Reynolds numbers.

nose Reynolds number increases. Further downstream all the distributions asymptote
to the Blasius value.

Mean velocity profiles at different downstream locations for an intermediate
Reynolds number of 10 are shown in figure 4(a). Shown above each profile are
the corresponding Rex values. Close to the leading edge, we observe a slight over-
shoot in the mean velocity near the wall. This is attributed to the localized accelerating
stagnation point flow (Hiemenz flow) that ocurs near the leading edge. In the analysis
of Hammerton & Kerschen (1992), a Hiemenz profile was used as an initial condi-
tion at the leading edge. The profiles in figure 4(a) gradually approach the Blasius
profile as we move downstream away from the leading edge. This is documented in
figure 4(b), where we compare one of the mean profiles with the Blasius profile.

6.2. Perturbation field

The remaining figures deal with the solution of the perturbation flow which is
governed by equations (23) and (24) with boundary conditions given in equations (25)
and (26). For most of these results, a dimensionless free-stream oscillation frequency
of σ = 2πfν/U2

∞ = 230 × 10−6 was used. This frequency crosses the upper tip
of the neutral curve for the linear growth of disturbances in a Blasius layer. This
higher frequency was chosen so that we could easily reach the location of the second
neutral branch (II) within our computational domain. This was important in order
to supply an additional check on the T-S instability that emerges in our calculations.
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10 O. M. Haddad and T. C. Corke

è

(b)

40

30

20

10

0 1

Rex = –5.0 30.6 142.4 338.6 627.6 1018.7

40

30

20

10

0 1

è

u

(a)

1521.4 2146.2 2903.8 3805.7 4864.1 6091.6

è

40

30

20

10

0

:  Present study

:  Blasius profile

u
0.4 0.8 1.2

Figure 4. (a) Basic flow streamwise velocity profiles at consecutive downstream locations near the
leading edge, and (b) comparison of profile at Rex = 82, 286 to Blasius; Re = 10.

A further motivation was that this frequency was primarily used in the numerical
simulations of Lin et al. (1990, 1992). The lower frequency at F = 56× 10−6 was also
investigated in order to compare to Murdock (1981). This is contained in Haddad’s
(1995) thesis.

The first cases we present are for an infinitely thin flat plate (Re = 0). This allowed
us to compare some of our results to previous analytic results by Ackerberg & Phillips
(1972). Figure 5 shows the magnitude of the perturbation wall vorticity versus the
dimensionless distance along the chord, Rex, for Re = 0. Figure 5(a) has been scaled
to show the large peak in the vortivity at the leading edge. Figure 5(b) is a magnified
view which shows the spatial oscillations in the vorticity that occur downstream of the
leading edge. We associate these oscillations with instability waves which are excited
by the free-stream oscillations. For reference on this figure, we have indicated a scale
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Figure 5. (a) Perturbation wall vorticity along the surface of a parabola with scale to encompass the
peak at the leading edge, and (b) with a magnified scale to show fluctuations further downstream;
Re = 0.

which corresponds to two T-S wavelengths. The wavelength of oscillations in the wall
vorticity appears to match this quite well. Further evidence of T-S growth will come
from subsequent figures.

The wall-normal distributions of the streamwise perturbation velocity amplitude
at different x-locations along the surface of the flat plate are shown in figure 6. The
corresponding Rex values are shown above each profile. These distributions show a
peak away from the wall which grows in amplitude up to a certain distance from the
leading edge, and then decays further downstream.

Ackerberg & Phillips (1972) presented asymptotic as well as numerical solutions
of the unsteady boundary-layer equations for the incompressible flow over a flat
plate subject to small fluctuations in the free-stream velocity. Owing to the use of
non-similar variables, both our profiles and theirs are dependent on the streamwise
coordinate. In order to compare our results, we chose profiles at representative
streamwise locations. From Ackerberg & Phillips, we picked the profile at x = 4.0.
We compared this to our profile at Rex = 17 795. The comparison is shown in figure 7
in terms of the real and imaginary parts of the streamwise perturbation velocity, u′.
Here we observe excellent agreement between our results.

In the remaining figures we primarily focus on an intermediate-thickness parabola
with a nose Reynolds number of 10. Figure 8 shows the magnitude of the perturbation
wall vorticity along the parabolic surface for this case. This is equivalent to figure 5
which was for Re = 0. As before, part (a) of the figure is scaled to show the peak in
the vorticity that occurs at the leading edge; part (b) of the figure shows a magnified
view which is intended to show the spatial oscillations in the vorticity at the wall that
occur further downstream.

As with the Re = 0 case, the magnified view of the perturbation wall vortic-
ity shows spatial oscillations with a wavelength that closely matches the expected
T-S wavelength. These oscillations appear to start right at the leading edge. The
vorticity fluctuations produced at the leading edge are convected in the flow direction
and eventually are expected to include T-S waves. At our excitation frequency, the
amplified region for T-S waves falls in the range 70 000 6 Rex 6 145 000. Outside
this region, T-S waves are expected to decay.

The wall-normal distributions of the streamwise perturbation velocity amplitude at
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Figure 6. Wall-normal profiles of streamwise perturbation velocity amplitude at consecutive
downstream locations before subtracting the Stokes wave; Re = 0.
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Figure 7. Comparison of real and imaginary parts of the streamwise perturbation velocity to that
of Ackerberg & Phillips (1972); Re = 0.
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Figure 8. (a) Perturbation wall vorticity along the surface of parabola with scale to encompass the
peak at the leading edge and (b) with a magnified scale to show fluctuations further downstream;
Re = 10.

different streamwise stations along the surface of the body are shown in figure 9. The
corresponding Rex values are shown above each profile. These profiles are directly
comparable to those in figure 6 which were for Re = 0.

In both Reynolds number cases, the perturbations are expected to be a combination
of a Stokes wave and a T-S wave. The goal of this work was to determine the amplitude
of the T-S waves that were excited by the free-stream oscillations. Therefore we needed
to subtract the component of the perturbation velocity field which was due to the
Stokes wave. To achieve this, the unsteady Stokes flow was computed separately on
the same computational grid and subtracted from the total perturbation flow. The
result would then leave only the component due to T-S waves. The determination of
the Stokes-wave amplitude distribution is presented in the next subsection.

6.3. Stokes wave

The Stokes-wave solution due to an oscillating flat plate or free stream is an exact
solution of the N-S equations which can be found in any standard textbook on
viscous flows (e.g. Panton 1984). Our interest is in parabolic bodies and therefore we
developed a numerical solution for a Stokes wave over parabolic bodies produced by
a periodic free-stream oscillation. The limiting case of Re = 0 provided a convenient
check of our approach and of the accuracy of the solution.

To obtain the governing equations for the Stokes flow, we started with equations (3)
and (4), less the convective-inertia terms:

ψxx + ψyy = −ω, (35)

ωt = ωxx + ωyy. (36)

These are subject to the same boundary conditions which were described earlier in
§§ 3 and 5. Following the same procedures described in §§ 4 and 5, the governing
equations were converted to parabolic coordinates and then transformed to remove
the singularity at the leading edge in vorticity for the infinitely thin flat plate (Re = 0).
We then introduced the normal-mode form which was given in equations (17) and
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Figure 9. Wall-normal profiles of streamwise perturbation velocity amplitude at consecutive
downstream locations before subtracting the Stokes wave; Re = 10.

(18) to obtain the perturbation equations:

f̃ηη − g̃ + f̃ξξ +
2

ξ
f̃ξ = 0, (37)

g̃ηη −
4η

ξ2 + η2
g̃η −

4ξ

ξ2 + η2
g̃ξ − iσ

(
ξ2 + η2

)
g̃ + g̃ξξ +

2

ξ
g̃ξ = 0. (38)

We note that eliminating the convective-inertia terms removed any influence of the
basic flow variables on the perturbation field.

The equations for the Stokes flow were discretized on the same numerical grid used
for the other calculations. We used the same approach and finite difference schemes
described previously in § 5.

In order to check the solution, we first examined the case with Re = 0 (flat plate) for
which an analytic solution exists. A sample of the results is given in figure 10, which
shows wall-normal distributions of the streamwise velocity fluctuation amplitude at
consecutive downstream locations. The analytic solution is valid for an infinitely long
flat plate, without a leading edge. To validate our results, two arbitrary profiles at
two different downstream locations, away from the leading edge (Rex = 27 141 and
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Figure 10. Stokes-wave wall-normal profiles of streamwise perturbation velocity amplitude at
consecutive downstream locations; Re = 0.

187 427), were selected. Here we were interested in verifying the streamwise similarity
of our solution, as well as comparing it to the analytic result. The comparison of
these two profiles to the analytic solution is shown in figure 11. Here the numerical
solution is shown by the symbols. These collapse onto a single profile which is the
analytic solution (solid curve). This result substantiates our solution and provided
confidence for considering cases of different nose Reynolds numbers.

We reiterate that the purpose of obtaining the Stokes-wave profiles was to separate
out the component in the perturbation velocity field due to the Stokes wave in order to
leave only the component due to the T-S waves. The method for removing the Stokes
wave was to simply perform a point-by-point subtraction of the Stokes solution from
the total (Stokes plus T-S) perturbation solution. Since both the total perturbation
and Stokes flows are complex, the real amplitude was first computed for both before
a point-by-point subtraction was performed. This was done for each nose Reynolds
number case. The results of this process are presented in the following subsection.

6.4. Receptivity results

In this subsection we now focus on determining the amplitude of T-S waves which
result from the small-amplitude free-stream oscillation. Here, the contribution of the
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Figure 11. Comparison of computed amplitude profiles for Stokes wave to theoretical profile;
Re = 0.

Stokes flow to the perturbation flow will be subtracted. As before, we use the Re = 0
and 10 cases to highlight the results. These will then be combined with the results
from other Reynolds numbers in order to see the overall effect of nose radius on
leading-edge receptivity.

The results for the Re = 0 (flat plate) case are first presented. Figure 12 shows the
wall-normal distributions of the amplitude of the streamwise perturbation velocity
which were obtained after subtracting the Stokes-wave component. Again the Rex
value for each profile appears at the top.

In the vicinity of the leading edge, we observe that the amplitude profiles develop a
shape which we associate with a T-S eigenfunction. These locations are however far
upstream of the location of Branch I, so that any T-S modes will decay exponentially
with downstream distance until they reach the amplified region.

Starting at the leading edge, we can expect that the velocity fluctuations in the
boundary layer are made up of a combination of forced (non-Orr–Sommerfeld)
modes, and T-S modes of both discrete and continuous spectrum types. These will
grow or decay at different rates so that one may be more dominant than the other at a
given streamwise location. For example, in his computational results, Murdock (1981)
observed the emergence of oscillations with a wavelength approximately three times
the expected T-S wavelength. These occurred further downstream of the leading edge
and away from the wall. He associated this with the dominance of T-S-continuous-
spectrum modes since their wavelength translated into a phase velocity which was
close to the free-stream velocity. With this in mind, we present in figure 13 the
amplitude distributions in the streamwise direction at two heights above the surface.
These are for Re = 0. The two heights are just above the wall at η = 0.033 (bottom
plots), and at the height of the amplitude maximum, η = 1.703 (top). Figure 13(a)
uses an amplitude scale which encompassas the large peak that occurs at the leading
edge. Figure 13(b) is a magnified view which is intended to show the oscillations that
occur further downstream.

Focusing on the amplitude distributions just above the wall (bottom plots in
figure 13a, b), we observe oscillations in the streamwise velocity amplitude which
begin right from the leading edge. These quickly decay with downstream distance,
however in the magnified view (bottom, figure 13b) we do observe a region of growth.
Indicated on Figure 13b are the locations of Branches I and II of the T-S neutral
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Figure 12. Wall-normal profiles of streamwise perturbation velocity amplitude at consecutive
downstream locations after subtracting the Stokes wave; Re = 10.

growth curve for our free-stream oscillation frequency. The region of growth of the
oscillations closely coincides with locations of the neutral branches, which suggests
that they are due to T-S waves. The wavelength of the oscillations is fairly constant
and compares well with the expected T-S wavelength, where 2λTS is indicated on the
plot.

The picture looks considerably different when we look at the amplitude fluctuations
away from the wall, such as in the upper plots of figure 13. In this case, the magnified
views show spatial amplitude oscillations which appear to be modulated, with at least
two wavelengths present. Note that this occurs in the downstream region beyond
Rex = 6000, where the wall-normal distribution has only a single peak (furthest
downstream profiles in figure 12). Murdock (1980) had reasoned that this modulation
resulted from the growth of oscillations which were part of the continuous spectrum
of the O-S modes. Similar modulations appeared in the numerical solutions by Buter
& Reed (1993), by Gatski & Grosch (1987) and in a later computation by Murdock
(1981). The amplitude of the modes relevant to the continuous spectrum are larger
away from the wall and therefore do not appear in the oscillations just above the
wall.
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Figure 13. (a) Amplitude distributions in the streamwise direction at two heights above the surface
after subtracting the Stokes wave, with a scale to encompass the peak at leading edge, and (b) with
a magnified scale to show fluctuations further downstream; Re = 0.

The wall-normal distributions of the amplitude of streamwise velocity perturbations
for Re = 10 are shown in figure 14. These are similar to the Re = 0 case in that
the profiles have a T-S-eigenfunction shape near the leading-edge. As before, these
eventually evolve into a single peak farther downstream. We do observe that the
maximum amplitude reached in the profiles is less in this case than with the infinitely
sharp leading edge. This is the first evidence of a decrease in the leading edge
receptivity with increasing nose radius of curvature.

Amplitude distributions in the streamwise direction for the Re = 10 case are shown
in figure 15. As with the Re = 0 case, these are shown at two heights: just above the
wall (η = 3.195) and where the perturbation amplitude is a maximum (η = 4.865).
Also these are shown with two amplitude scales, one to capture the large peak
near the leading edge (figure 15a), and the other to view the fluctuations that occur
downstream in the T-S amplified region (figure 15b). These also show a picture which
is comparable to the previous flat-plate case. Namely, near the wall we observe an
apparent single-frequency oscillation which initially decays from the leading edge but
later amplifies in a range of Rex which is in the T-S amplification region for our
excitation frequency. Again downstream of the leading edge and away from the wall,
the amplitude is modulated with two or more wavelengths appearing.

We were interested in showing that a discrete T-S mode was part of the modulated
fluctuations that occurred away from the wall. The assumption we made was that the
other wavelength mode(s) were part of the continuous spectrum of O-S modes. Since
these are expected to have a phase speed approaching the free-stream speed, these
would have a wavelength two to three times larger than the discrete T-S wavelength.
To remove these, we designed a one-dimensional spatial filter which would reject
fluctuations with wavelengths larger than the expected discrete T-S mode. In terms
of frequency, this amounts to a one-dimensional, digital, finite impulse response high-
pass filter. The impulse response function was designed using a program by McClellan,
Parks & Rabiner (1979). The filter cut-off was set to suppress wavelengths which were
greater than or equal to twice the expected discrete T-S wavelength. The resulting
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Figure 14. Wall-normal profiles of streamwise perturbation velocity amplitude at consecutive
downstream locations after subtracting the Stokes wave; Re = 10.

response function was convolved with the Stokes-removed u-perturbations in the ξ-
direction, for each η in the computational domain. A sample result following filtering
is shown in figure 16(a). This shows the amplitude distribution in the streamwise
direction at the height of the amplitude maximum. This can be compared to the same
amplitude disribution before filtering in the bottom part of figure 15(b).

After filtering we observe a single-frequency oscillation, without amplitude mod-
ulation. We also observe two neutral growth locations which coincide well with the
theoretical locations of Branches I and II of the T-S neutral curve.

For this same case, we filtered the streamwise amplitude distributions at all the
computed heights above the surface of the parabolic body. We measured the maximum
amplitude at the x-location of Branch II. These are plotted in the wall-normal (η)
direction, and shown as symbols in figure 16(b). For reference we have also plotted as
a solid curve the T-S eigenfunction for a linear stability calculation for our excitation
frequency and Rex. The comparison is good and gives evidence that the mode that
remains after filtering out the longer wavelength fluctuations is a discrete T-S mode.
The slight departure of the computed profile from the linear theory eigenfunction in
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Figure 15. (a) Amplitude distributions in the streamwise direction at two heights above the surface
after subtracting the Stokes wave, with a scale to encompass the peak at leading edge, and (b) with
a magnified scale to show fluctuations further downstream; Re = 10.
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Figure 16. (a) Amplitude distributions in the streamwise direction at the height of the amplitude
maximum, and (b) wall-normal profile at the location of Branch II, after filtering long-wavelength
fluctuations; Re = 10.
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the region above the critical layer was also observed in the experiment by Saric et al.
(1994).

Our final objective is to use the numerical results to determine the value of the
leading-edge receptivity and the effect of nose radius of curvature. In determining
receptivity, it is necessary to first set a mathematical definition. Surprisingly, in the
literature there is no unique definition for receptivity. It can be defined as the ratio of
the amplitude of the T-S wave in the boundary layer to the amplitude of the local or
free-stream disturbance field. Leehey, Gedney & Her (1984) considered a free-stream
disturbance and defined receptivity as the ratio of the maximum amplitude of the
T-S-wave response in the boundary layer to that of the free-stream disturbance.
Murdock (1980) used the amplitude of the T-S wave at Branch I in his definition of
receptivity.

For this study, we define receptivity as the ratio of the maximum T-S amplitude
at the leading edge to the amplitude of the free-stream disturbance, i.e. KLE =
|(u′TS )LE |/|(u′)∞|. One of the advantages of this definition is that an explicit amplitude
for the free-stream disturbance is not required. Rather, we only require that the free-
stream amplitude be small enough for linearization. By our formulation, the amplitude
obtained from the numerical results is u′/u′∞. Therefore, if the only component of
fluctuations is due to T-S waves, the amplitude we measure is u′TS/u

′
∞. Finally, if these

are extrapolated back to the leading edge, we have (u′TS )LE/u
′
∞ which is identical to

KLE . Therefore the receptivity coefficient can be read directly from the amplitude
profiles from which the Stokes wave has been subtracted.

In determining the leading-edge receptivity, we considered two different methods.
The first followed the method used by Murdock (1980). It involved fitting an ex-
ponential function to the envelope of the absolute value of amplitude fluctuations
between the leading edge and the first neutral growth region. This is done in the
x-distributions at the height where the amplitude is a maximum, such as in the
top part of figure 15(a). This method makes no assumption about the origin of the
fluctuations, namely if they are forced or O-S modes. The second method attempts
to address this. It is based on an exponential extrapolation to the leading edge of
the maximum amplitude at streamwise locations where amplitude distributions had
a T-S-like eigenfunction shape, for example in the range 140 6 Rex 6 2000 shown
in figure 12. By this approach, the maximum (lower peak in the T-S eigenfunction)
is plotted versus the x-location and used to extrapolate back to the leading edge. A
sample of the amplitude distribution based on the second method for Re = 10 is
shown in figure 17. Shown as the were line is the fit to the points which were used to
extrapolate to the leading-edge amplitude.

The two methods were used to determine KLE for different nose Reynolds numbers
from 0 to 1250. These are plotted in figure 18. Following Hammerton & Kerschen
(1992), we have represented the radius in terms of a Strouhal number, St = 2πfrn/U∞,
where f is the physical frequency of the free-stream oscillation. The results show that
the leading-edge receptivity coefficient is maximum for the infinitely sharp flat plate,
and decreases with increasing nose radius. The difference in the two methods only
results in a shift between their respective distributions.

The dependence of the leading-edge receptivity coefficient on nose radius is in good
qualitative agreement with the analysis of Hammerton & Kerschen (1992), which
shows a decrease in KLE with increasing Strouhal number. We can make a quantitative
comparison to the experiment of Saric et al. (1994). Their value of the leading-edge
receptivity coefficient is shown as the filled square in the left plot of figure 18. This
was for a 20 : 1-aspect-ratio super-ellipse matched to a flat plate which was subjected
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Figure 17. Sample streamwise maximum-amplitude envelope used to extrapolate to leading-edge
amplitude; Re = 10.
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Figure 18. Variation of leading-edge receptivity with nose radius.

to a pure-tone free-stream sound source. Although the geometry is different from the
parabolic body, this is not a factor in making a comparison to the leading-edge value.
As with the computation, the amplitude levels in the experiment are very small which
makes the experiments very difficult. As a consequence, the reasonably close values
between the experiment and computations is a good confirmation.

We have also included a comparison to the recent numerical results by Fuciarelli
(1997). These are for a modified super-ellipse matched to a flat plate for the exper-
imental conditions of Saric et al. (1994). Our values are seen to fall between that
simulation and the experiment.

6.5. Effect of angle of attack

Here we investigated the effect of pressure loading, produced by a mean angle of
attack of the parabolic body, on the leading-edge receptivity coefficient. Placing the
body at an angle of attack to the free stream results in the movement of the stagnation
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point from the body leading edge, and introduces an adverse pressure gradient region
on the suction side. As demonstrated in the previous results in § 6.1, at zero angle
of attack, the pressure gradient on the parabolic body is everywhere favourable.
The effect of a local adverse pressure gradient on the leading-edge receptivity to
free-stream sound is our point of interest.

The angle of attack, α, is introduced by a rotational transformation of the coordinate
system (x, y) to (x1, y1), where

x1 = x cos α+ y sin α, (39)

y1 = y cos α− x sin α. (40)

The two-dimensional, non-dimensional N-S equations in stream function and vorticity
variables, equations (3) and (4), are invariant under this transformation. Changing to
parabolic coordinates and introducing the new variables, f and g as before, leads to
equations which are identical to (10) and (11), which we later decomposed into the
basic and perturbation flows. The only difference that occurs by the transformation
involves the free-stream boundary condition on the stream function.

In the free stream, following equation (16), the streamwise velocity component is

u∞ = U∞ + ũ∞ε eiσt. (41)

Since u = ∂ψ/∂y, with equation (16)

U∞ + ũ∞ε eiσt = 1 + ε eiσt (42)

from which the free-stream condition is

U∞ = ũ∞ = 1. (43)

When we incorporate the coordinate rotation, the free-stream condition involving
angle of attack in parabolic coordinates is[

ξ2 sin α

ξ2 + η2
+
ξη cos α

ξ2 + η2

]
fξ+

[
ξ2 cos α

ξ2 + η2
− ξη sin α

ξ2 + η2

]
fη+

[
ξ sin α

ξ2 + η2
+
η cos α

ξ2 + η2

]
f = 1. (44)

This provides the free-stream boundary condition on f.
The free-stream boundary condition for g is unchanged with angle of attack and

therefore identical to equation (15).
We show results for the basic flow for different angles of attack in terms of the

wall pressure distribution. These are shown for Re = 10 in figure 19. At zero angle of
attack, we observe a symmetric distribution about the leading edge. With increasing
angle of attack, an asymmetric distribution develops, with a region of adverse pressure
gradient occurring on the suction side of the body (ξ < 0). As the angle of attack
increases, the adverse pressure gradient region moves towards the physical leading
edge of the body.

The effect of angle of attack on the leading-edge receptivity is shown in figure 20
for different leading-edge nose radii. The angle of attack is shown on the abscissa and
normalized by the square-root of the nose radius (Reynolds number in dimensionless
form). This normalization follows Hammerton & Kerschen (1992) except that we used
a unit length in place of a wing chord length. In our case to make this dimensionless,
we use the nose Reynolds number, Re, and the angle of attack in radians. The
ordinate is the leading-edge receptivity coefficient which was determined according
to the second method in figure 18. The nose Reynolds numbers and corresponding
Strouhal numbers are indicated by the different symbols. In each curve, the frequency
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Figure 19. Effect of angle of attack on the surface pressure distribution; Re = 10.

was kept the same. The different curves correspond to a different nose radius which is
indicated by the Reynolds number and Strouhal number. The Strouhal numbers can
be used to refer back to figure 18 at zero angle of attack. For each nose radius, we
observe an increase in KLE with increasing angle of attack. Here we only considered
angles of attack of up to 7◦. Over this range, the three sharper leading edges show an
approximately 65% increase in the leading-edge receptivity. The physical explanation
for this increase, which was suggested by Hammerton & Kerschen (1992), is the
movement of the adverse pressure gradient region towards the point of receptivity
(leading edge). This can be seen in the pressure distributions (−ξ side) for the Re = 10
leading edge in figure 19.

The trend of increasing KLE with angle of attack is consistant with the asymptotic
results of Hammerton & Kerschen (1992), although for small aerodynamic loading
they observed a slight decrease in the leading-edge receptivity. At larger aerodynamic
loading, they observed an increase in the receptivity coefficient. It was with this aspect
in mind that we purposely concentrated on smaller angles of attack, and on the same
range of Strouhal numbers used by Hammerton & Kerschen. In one case, St = 0.1,
we observe an initial decrease in KLE; however none of the other Strouhal numbers
show this behaviour.
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Figure 20. Effect of angle of attack on the leading-edge receptivity coefficient
for different nose radii.

7. Conclusions
The spatial formulation used in this problem was successful in predicting the

evolution of instability waves induced by acoustic free-stream disturbances. We found
that the leading-edge receptivity coefficient depended on the nose radius of curvature,
with the largest receptivity occurring for the infinitely sharp leading edge. This agreed
with the numerical results of Murdock (1980, 1981) and the asymptotic analysis of
Hammerton & Kerschen (1992). We also found very good quantitative agreement with
the experiment of Saric et al. (1994) and the recent numerical results of Fuciarelli
(1997). For a given nose radius, the leading-edge receptivity was also found to increase
with increased pressure loading produced by a mean angle of attack of the body. This
trend agreed with Hammerton & Kerschen (1992) for their larger angles of attack,
but did not consistantly show the slight decrease in receptivity that they observed for
initial small angles of attack.

The second author is indebted to Professor Thorwald Herbert for introducing this
problem to him, and for the support received while on sabbatical leave at Ohio State
University and Dynaflow, Inc. The authors have also benefited from discussions on
this work with Professors William Saric and Edward Kerschen. Their interest has
been greatly appreciated.
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