
J. Fluid Mech. (2022), vol. 935, A3, doi:10.1017/jfm.2021.985

Multiple-scales analysis of wave evolution in the
presence of rigid vegetation

Clint Y.H. Wong1,†, Aggelos S. Dimakopoulos2, Philippe H. Trinh3 and
S. Jonathan Chapman1

1Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford,
Oxford OX2 6GG, UK
2HR Wallingford, Howbery Park, Wallingford OX10 8BA, UK
3Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

(Received 27 April 2021; revised 6 September 2021; accepted 22 October 2021)

The study of free-surface flows over vegetative structures presents a challenging setting
for theoretical, computational and experimental analysis. In this work, we develop a
multiple-scales asymptotic framework for the evolution of free-surface waves over rigid
vegetation and a slowly varying substrate. The analysis quantifies the balance between the
competing effects of vegetation and shoaling, and provides a prediction of the amplitude
as the wave approaches a coastline. Our analysis unifies and extends existing theories that
study these effects individually. The asymptotic predictions are shown to provide good
agreement with full numerical simulations (varying depth) and published experimental
results (constant depth).
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1. Introduction

In coastal flows, free-surface waves approaching the shore will typically grow in amplitude
until they eventually break. The mathematical theory behind this phenomenon is known as
shoaling (see e.g. the review by Meyer 1979). For a typical situation where the dynamics
are primarily governed by a two-dimensional flow (e.g. in a direction perpendicular to the
coastline), we are interested in the evolution of the waves as a function of the distance of
propagation. We provide in figure 1 a typical set-up of a numerical or experimental wave
flume used to model such coastal flows.

We consider, as the simplest example, a monochromatic problem. Then in a suitably
non-dimensionalised form, the leading-order free surface, η, might be approximated by
η ∼ A(x) cos(Φ(x)/α − t) where x is distance in the direction of propagation, t is time,
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Figure 1. Schematic diagram of a wave flume with waves propagating from left to right. Sample solutions of
the free-surface elevation, η, are plotted as functions of distance of propagation at various times – this is to
highlight the slow modulation of the wave due both the vegetative canopy and the varying substrate.

A is the wave amplitude andΦ(x)/α is the phase. If the wavelength is small by comparison
with the length scale over which the amplitude varies (quantified by the assumption that α
is small) it is possible to average the effects of drag and varying topography over a wave
period to derive a differential equation for A of the form

dA
dx

= F(x,A(x), vegetative parameters, substrate parameters). (1.1)

Our goal in this work is to derive such an equation for waves over rigid vegetation with
varying substrate.

1.1. Oscillatory flows through vegetation
There is great diversity in terms of regimes and scenarios in oscillatory flows through
vegetation, which has led to a substantial number of studies. For example, experiments
with wave flumes as well as field studies can be used to understand the effects of canopy
arrangement and foliage – we refer the reader to reviews and work by, for example,
Bradley & Houser (2009), Anderson & Smith (2014), Möller et al. (2014) and Lei & Nepf
(2019). On the other hand, numerical simulations can be done to investigate effects such as
turbulence of the in-canopy flow and related issues such as sediment transportation – we
refer to the detailed reviews of Lowe, Koseff & Monismith (2005) and Zeller et al. (2015),
and also individual works by Suzuki et al. (2012), Liu et al. (2015) and Mattis et al. (2019).

A theoretical analysis can also be practically useful by giving predictions in a
greater parameter space, based on careful assumptions or simplifications (Nepf 2012). In
particular, the ability to predict how a wave evolves along a given domain can be used
for applications such as coastal management (Morris et al. 2018). Much of the work on
analytical approaches has been devoted to the development of energy balance arguments.
For example, Dalrymple, Kirby & Hwang (1984) and Kobayashi, Raichle & Asano (1993)
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Wave evolution in the presence of rigid vegetation

applied energetic balances in order to derive equations of the form (1.1) for the case of
rigid vegetation over horizontal substrates. These predictions were extended by Mendez
& Losada (2004) to random waves and also shallow-water waves over uniformly sloping
beaches – such predictions have been widely used in the engineering community (see e.g.
Luhar, Infantes & Nepf (2017) and the references therein).

In this article, we extend previous analyses by giving a systematic asymptotic reduction
of a free-surface wave travelling over vegetation on a general slowly varying substrate,
where all the forces which act on the vegetation are considered. The systematic
multiple-scales approach we adopt has the advantage of formally quantifying the accuracy
of the approximations made, while allowing more easily the systematic inclusion of
multiple physical effects, including the combination of varying bathymetry and vegetation
resulting in both frequency and amplitude modulation.

Our analysis is motivated by the seminal work of Keller (1958), who studied
three-dimensional flows over slowly varying substrate profiles using linear wave theory
and ray theory. By considering the asymptotic limit in which the water depth and the
wavelength are both much smaller than the horizontal scale of the substrate contour, a
Wentzel–Kramers–Brillouin (WKB) (or Liouville–Green) approximation explained how
the wave amplitude and phase would slowly modulate as the wave propagates. The aim of
this work is to extend this analysis by accounting for the presence of vegetation.

The method of multiple scales has been successfully applied to the problem of vegetative
flows in a series of recent papers by Mei et al. (2011), Mei, Chan & Liu (2014) and Wang,
Guo & Mei (2015). In the first two references, shallow-water waves and intermediate-depth
waves over emergent vegetation are analysed. The more recent work by Wang et al. (2015)
considers waves over a shallow canopy. In all three approaches, the in-canopy flow is
solved in detail with finite elements. The regime studied in these works is rather different
to that of the current study.

The analysis in Wang et al. (2015) considers the shallow-canopy regime where the
canopy height is comparable to the width and separation of the plants, and is much smaller
than the wavelength (which is also comparable to the water depth). The in-canopy flow is
then formally depth-averaged and solved numerically over a unit cell, accounting for bed
shear and turbulence, providing a linear effective boundary condition on the irrotational
flow above. The small scale in their multiple-scales analysis is the plant separation, while
the large scale is the wavelength of the incoming wave.

In the present work we treat the regime in which the submerged canopy occupies a finite
fraction of the water depth. Such a scenario is much more challenging to attack using the
approach of Wang et al. (2015), so we simplify in other ways. We consider the limit in
which the plant size is much smaller than the plant separation, which allows individual
plants to be treated as line momentum sinks. These are then formally homogenised to
directly model the canopy-induced momentum loss with Morison’s formula (accounting
for drag, added mass and virtual buoyancy) (Dean & Dalrymple 1991). We then use a
generalisation of the method of multiple scales in which the small scale is the wavelength
of the wave, and the large scale is the decay length of the wave amplitude. Essentially
Wang et al. (2015) consider the regime in which the plant height ∼ plant width ∼ plant
separation � wavelength ∼ water depth, while we consider the regime in which the plant
width � plant separation � plant height ∼ wavelength ∼ water depth.

In summary, we provide a systematic asymptotic reduction of a free-surface wave
travelling over vegetation on a varying substrate. In particular, our analysis and resulting
analytical predictions account for:

(i) waves of arbitrary wavelengths;
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Figure 2. Schematic diagram of waves with fluid velocity û propagating through a rigid canopy over a varying
substrate with ẑ = −Ĥ. The free-surface elevation is parameterised with ẑ = η̂ and the submerged green
obstacles represent individual plants with height ĥ.

(ii) phase shift of the wave as it propagates;
(iii) the role of various forces which act on individual plants (drag, added mass and

virtual buoyancy);
(iv) variation of the canopy along the direction of wave propagation.

1.2. Structure of this work
We first present in § 2 the governing equations of the fluid and the continuum modelling
framework for the vegetation. By exploiting the slowly varying nature of waves along
the domain, we apply in § 3 a generalised multiple-scales analysis developed by Kuzmak
(1959) to systematically derive the equation for the wave amplitude. We demonstrate
in § 4 that our results agree with previous analyses for particular limiting cases. We
validate our asymptotic predictions in §§ 5–6 with full two-phase numerical simulations
and experimental data from previous studies. In a continuation of this article, we explore
the problem of wave evolution in the presence of flexible vegetation.

2. Theoretical formulation

In this section, we use hats (·̂) to denote variables which are dimensional – we will drop the
hats when we non-dimensionalise the problem. We consider an inviscid fluid with velocity
û = (û, v̂, ŵ) that flows over a canopy region of finite depth (see figure 2). We assume that
the canopy is fully submerged and covers the entire substrate. Within the canopy, we model
individual plants as rigid upright beams of width b and length ĥ. However, we note that
it is impractical to monitor the contributions of individual plants. Instead, following the
analysis in Wong, Trinh & Chapman (2020), we consider a simpler averaged model in
which the canopy is an effective medium that contributes a bulk volumetric drag.

One immediate benefit of this homogenisation is that it allows us to consider a flow
in which the geometry and initial conditions are independent of the transverse direction
ŷ, allowing solutions which are two-dimensional (i.e. functions of x̂, ẑ and t̂ only) with
v̂ = 0, which we henceforth assume. Consider, therefore, an inviscid flow in a domain of
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ẑ

x̂

ĥ

ẑ = −Ĥ (x̂)

ẑ = η̂(x̂  , t ̂ )

Figure 3. Schematic diagram of waves propagating through a canopy over a varying substrate with ẑ = −Ĥ(x̂).
The waves propagate along the x̂-direction, with the free surface being parameterised with ẑ = η̂(x̂, t̂). The
green obstacles along the substrate represent individual plants with width b and length ĥ.

finite depth bounded below by a variable bottom substrate, ẑ = −Ĥ(x̂), and above by a
free surface, ẑ = η̂(x̂, t̂). We assume a monochromatic incident wave propagating in the
positive x̂-direction. A schematic of the two-dimensional set-up is given in figure 3.

From the Euler equations, the fluid velocity satisfies

∇ · û = 0, (2.1a)

ρ

(
∂û
∂ t̂

+ û · ∇û
)

= −∇ ˆ̃p − ˆ̄F , (2.1b)

where the density ρ is taken to be constant. Here we have defined ˆ̃p = ˆ̃pstatic − ρgẑ to
be the dynamic pressure, where g is the acceleration due to gravity; use of the dynamic
pressure simplifies the implementation of both analytical and numerical methods. The
additional sink term, ˆ̄F , in the momentum equation (2.1b) incorporates the effects of the
canopy.

In considering the force balance on rigid and static objects submerged in a fluid, we must
account for drag, added mass and virtual buoyancy (Gosselin 2019). With N̄ the number
of plants planted per unit area (along the substrate) and H the Heaviside function, the bulk
volumetric sink term ˆ̄F is given by

ˆ̄F = N̄H(ĥ − Ĥ − ẑ)F̂ , (2.2a)

where ĥ(x̂) is the height of the canopy and the component forces from the individual beams
are given by

F̂ = F̂ D (drag) + F̂ A (added mass) + F̂ V (virtual buoyancy); (2.2b)

the Heaviside function ensures that momentum is only lost within the canopy. Following
previous analyses on submerged beams by Luhar & Nepf (2016) and Leclercq & de Langre
(2018), we set

F̂ D = 1
2
ρbCDû

∣∣û∣∣ êx̂, F̂ A = ρACM
∂ û
∂ t̂

êx̂, F̂ V = ρA∂û
∂ t̂
. (2.3a–c)

In the expressions above, A is the cross-sectional area of a plant perpendicular to the
z-axis, CD is the drag coefficient and CM is the added mass coefficient.
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2.1. Non-dimensionalisation
We non-dimensionalise using the following scales:

[x̂] = L, [η̂] = A0, [t̂] = ω−1
0 , [û] = A0ω0, [p̂] = ρgA0, (2.4a–e)

where ω0, A0 are the wave frequency and initial amplitude, and L is the horizontal length
scale of the domain, which will be made precise in § 3. Note that we non-dimensionalise
lengths with the L, rather than the depth or the wavelength; this is for convenience of the
forthcoming multiple-scales analysis in § 3. Note also that we have chosen to scale the
velocity with the simple expression A0ω0. In some previous works, such as by Luhar &
Nepf (2016) and Leclercq & de Langre (2018), the authors have chosen instead to use a
velocity scale of Ã0ω0, where Ã0 is the length scale of wave excursion, i.e. the horizontal
displacement of the water particle over half a time period. However, these two choices
of non-dimensionalisation are comparable for various coastal waves (Mei et al. 2014) and
experimental configurations (see e.g. Wu et al. 2012).

With hats being dropped, the dimensionless governing equations for the fluid velocity
u = u(x, z, t) = (u,w), are then

∇ · u = 0, (2.5a)

∂u
∂t

+ γu · ∇u = −α∇p − λH(h − H − z)F , (2.5b)

where

F (x, z, t) =
(

F‖
F⊥

)
=

(
u|u|/2 + (M1 + M2)ut

M2wt

)
. (2.5c)

The corresponding dimensionless boundary conditions are

Free-slip u
dH
dx

+ w = 0, at z = −H(x), (2.5d)

Kinematic w − ∂η

∂t
− γ u

∂η

∂x
= 0, at z = γ η(x, t), (2.5e)

Dynamic p = η, at z = γ η(x, t). (2.5f )

The dimensionless parameters α, γ , λ, M1 and M2 are defined in table 1. In particular, we
note that our analytical results in the upcoming analysis allows λ, M1 and M2 to slowly
vary in x – we will make this precise in § 3 (cf. below (3.6)).

For each beam, the parameters M1 and M2 characterise the strength, relative to
drag, of added mass and virtual buoyancy, respectively. When M1 � M2, which is
typical for blade-like aquatic plants, M1 can also be interpreted as the reciprocal of the
problem-specific Keulegan–Carpenter number (Keulegan & Carpenter 1958; Leclercq &
de Langre 2018). We note that some authors use M1 + M2 as a single dimensionless
parameter (see e.g. Lowe et al. 2005).

Note that for our distributed momentum sink approach to be valid we require that both
the dimensionless added mass and the volume fraction of the solid at any point in space to
be much smaller than unity, i.e. λM1,2 � 1. For denser canopies, where the solid fraction
is non-negligible, other modelling approaches should be used to address the in-canopy
flow.

When the wave amplitude is sufficiently small γ /α � 1 and the canopy is sufficiently
sparse λ� 1, (2.5) reduce to the standard equations governing linear surface-gravity
waves. We now consider a multiple-scales analysis on the evolution of the flow.
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Wave evolution in the presence of rigid vegetation

Symbol Expression

Wavelength α
g

ω2
0L

Amplitude γ
A0

L
Canopy density λ CDN̄bA0

Added mass M1
CMA

bCDA0

Virtual buoyancy M2
A

bCDA0

Table 1. A summary of the dimensionless parameters in the governing equations of flow through a
homogenised rigid canopy (2.5).

3. Multiple-scales analysis of wave modulation

When the drag due to the canopy is small, and the substrate varies slowly, the variation in
wave amplitude and speed is small over one wavelength, but the cumulative effects can be
significant when the (length scale of the) domain is much longer than a wavelength as is
usually the case. In our modelling framework this is quantified by α � 1, where

α = g

ω2
0L

(3.1)

is the dimensionless wavelength of linear waves. We suppose that this wavelength is
comparable to the depth of the fluid, and that the canopy occupies an O(1) fraction of
the depth. Thus, we consider both H and h to be O(α). We suppose that the canopy is
sparse, so that

λ = CDN̄bA0 � 1. (3.2)

Specifically we consider the distinguished limit

λ = αλ̄ and γ = α2 ¯̄γ, (3.3a,b)

(where λ̄ and ¯̄γ are O(1)), in which the effects of bathymetry and canopy drag can both
affect the wave amplitude at leading order, but the effects of advection due to ¯̄γ -dependent
terms are higher order. Note that γ /α � 1 is the classic small parameter in a Stokes
expansion for nonlinear waves.

We consider a monochromatic incident wave, which has unit frequency by our
non-dimensionalisation, and look for solutions which maintain this frequency, i.e. are
periodic in time with period 2π.

3.1. A discussion on the length scale of the domain
Before we formally introduce the multiple-scales analysis, we recall that in our
non-dimensionalisation in § 2.1, we defined L as the length scale of the domain. Formally,
there are three precise ways of specifying L: (i) the length scale of wave decay; (ii)
the length scale over which the bathymetry varies, or (iii) the length scale over which
the canopy varies. In terms of the multiple-scales analysis, we are considering the
distinguished limit in which all three length scales are of the same order, so that x, the
dimensionless macroscopic variable (for distance of propagation) is O(1).
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3.2. Introducing the fast variable
In contrast to the classic problem of shoaling, we have a nonlinear drag term in (2.5) due to
the presence of vegetation. Therefore, we cannot follow Keller (1958) and perform a classic
WKB approximation where the pressure, p, is assumed to take a simplified exponential
form. If the bed was flat we could perform a standard multiple-scales analysis introducing
the fast scale x̄ = x/α, but the variation in the substrate modulates both the amplitude and
wavelength of the wave.

To cope with both nonlinearity and wavelength modulation we use the method
introduced by Kuzmak (1959) (see also Ablowitz 2011; Chapman & Farrell 2017) – a
generalised multiple-scales analysis also known as the principle of adiabatic invariants
(Landau & Lifshitz 1976). Thus we introduce the independent fast variable

x̄ = Φ(x)
α

, (3.4)

where the unknown function Φ is determined by the condition that all the dependent flow
variables p, u, w and η are periodic in x̄ with period 2π. The function Φ is equivalent to
the unknown phase in the standard WKB approximation. We treat x̄ and x as independent,
with derivatives transforming via

∂

∂x
�→ ∂

∂x
+ Φ ′

α

∂

∂ x̄
,

∂2

∂x2 �→ ∂2

∂x2 + 2Φ ′

α

∂2

∂x∂ x̄
+ Φ ′′

α

∂

∂ x̄
+ (Φ ′)2

α2
∂2

∂ x̄2 , (3.5a,b)

where ′ ≡ d/dx. We now asymptotically expand p, u, w and η, in powers of α as

f ∼
∞∑

n=0

αnfn f ∈ {p, u,w, η}. (3.6)

Finally, we allow H and h, along with λ, M1 and M2 in table 1, to vary slowly – that is,
they may be functions of x but are independent of x̄. In particular, we let h = αh̄(x) and
H = αH̄(x), and also rescale z = αz̄.

3.3. The leading-order problem
At leading order

Φ ′u0x̄ + w0z̄ = 0, (3.7a)

u0t = −Φ ′p0x̄, (3.7b)

w0t = −p0z̄, (3.7c)

with

Free-slip w0 = 0, at z̄ = −H̄(x), (3.7d)

Kinematic w0 = η0t, at z̄ = 0, (3.7e)

Dynamic p0 = η0, at z̄ = 0, (3.7f )

where a subscript indicates partial differentiation. SinceΦ ′ and H̄ do not depend on x̄, (3.7)
is linear with constant coefficients, and apart from the presence ofΦ ′ is the standard linear
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surface-gravity wave problem. The solution which is 2π-periodic in t is the fundamental
Fourier mode of the form

η0 = A(x) cos([k(x)/Φ ′(x)]x̄ − t +Θ(x)), (3.8a)

u0 = A(x)
cosh(k(x)[z̄ + H̄(x)])

sinh (k(x)H̄(x))
cos([k(x)/Φ ′(x)]x̄ − t +Θ(x)), (3.8b)

w0 = A(x)
sinh(k(x)[z̄ + H̄(x)])

sinh (k(x)H̄(x))
sin([k(x)/Φ ′(x)]x̄ − t +Θ(x)), (3.8c)

p0 = A(x)
cosh(k(x)[z̄ + H̄(x)])

cosh (k(x)H̄(x))
cos([k(x)/Φ ′(x)]x̄ − t +Θ(x)), (3.8d)

where k(x) satisfies the dispersion relation

k(x) tanh(k(x)H̄(x)) = 1, (3.9)

and the wave amplitude A(x) and phase shift Θ(x) are yet to be determined. Imposing
periodicity in x̄, with period 2π, gives the eikonal equation for Φ,

Φ ′(x) = k(x). (3.10)

Our aim now is to derive a system of differential equations in the slow-scale variable x for
A and Θ . To do so we need to consider the next term in the asymptotic expansion (3.6) in
powers of α.

3.4. The first-order problem
The first-order problem involves contributions from the Heaviside function and its
derivatives. To maintain clarity in the formulation, we abbreviate H(h̄ − H̄ − z̄) with H
and the Dirac delta function δ(h̄ − H̄ − z̄) with δ. At O(α) we find

ku1x̄ + u0x + w1z̄ = 0, (3.11a)

u1t + ¯̄γ (ku0u0x̄ + w0u0z̄) = −kp1x̄ − p0x − λ̄(u0|u0|/2 + (M1 + M2)u0t)H, (3.11b)

w1t + ¯̄γ (ku0w0x̄ + w0w0z̄) = −p1z̄ − λ̄M2w0tH, (3.11c)

with boundary conditions

Free-slip u0H̄′(x)+ w1 = 0, at z̄ = −H̄, (3.11d)

Kinematic w1 − η1t + ¯̄γ η0w0z̄ = ¯̄γ ku0η0x̄, at z̄ = 0, (3.11e)

Dynamic p1 + ¯̄γ p0z̄η0 = η1, at z̄ = 0. (3.11f )

Eliminating u1 and w1 from (3.11a)–(3.11c) shows that p1 satisfies

∇̄2p1 = u0xt − k ¯̄γ (ku0u0x̄ + w0u0z̄)x̄ − ¯̄γ (ku0w0x̄ + w0w0z̄)z̄ − kp0xx̄

− kλ̄(u0|u0|/2 + (M1 + M2)u0t)x̄H − λ̄M2w0tz̄H + λ̄M2w0tδ, (3.12a)

with the boundary conditions

p1z̄ = u0tH̄′(x), at z̄ = −H̄, (3.12b)

p1z̄ + p1tt = − ¯̄γ [(ku0η0x̄ + p0z̄η0t)t + (ku0w0x̄ + w0w0z̄)], at z̄ = 0, (3.12c)
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where

∇̄2 = k2 ∂
2

∂ x̄2 + ∂2

∂ z̄2 , (3.12d)

with p1 periodic in x̄ and t with period 2π. Since the homogeneous problem for p1 is
self-adjoint and satisfied by p0, there will be a solution to (3.12) if and only if certain
solvability conditions are satisfied.

3.5. Differential equations for the wave amplitude A(x) and the phase shift Θ(x)
To derive the solvability condition we multiply (3.12a) by a solution f = f (x, x̄, z̄, t) of the
homogeneous problem and integrate over the rectangle {x̄, z̄} ∈ Ω̄ = [0, 2π] × [−H̄, 0],
and over [0, 2π] in t. From the divergence theorem we have∫ 2π

0

∫
Ω̄

p1∇̄2f − f ∇̄2p1 dΩ̄ dt =
∫ 2π

0

∫
∂Ω̄

[
p1

(
k2fx̄
fz̄

)
− f

(
k2p1x̄
p1z̄

)]
· n dS dt, (3.13)

where n is the unit outward normal of the domain Ω̄ . Equation (3.13) holds for any f
and Ω̄ – choosing f to be a solution of the homogeneous problem eliminates p1 leaving
a condition on the unknown functions A(x) and Θ(x). The full details of the following
calculations are given in Appendix A. Selecting first

f = cosh(k(z̄ + H̄)) sin(x̄ − t +Θ(x)), (3.14)

(3.13) gives, after some simplification,

dA
dx

= 18π
(
H̄ − 1

) (
kH̄

)′ A − 8λ̄k2sechkH̄(3 sinh kh̄ + sinh3 kh̄)A2

9π(2kH̄ + sinh 2kH̄)
, (3.15)

where again (kH̄)′ = d(kH̄)/dx. Similarly, selecting

f = cosh(k(z̄ + H̄)) cos(x̄ − t +Θ(x)), (3.16)

(3.13) gives, after some manipulation,

4
λ̄

dΘ
dx

= cschkH̄
(
2M1kh̄ + (M1 + 2M2) sinh 2kh̄

)
sinh kH̄ + kH̄sechkH̄

. (3.17)

The system of (3.10), (3.15) and (3.17) for k, A and Θ is our primary result.
We first note that the ordinary differential equation (3.15) for A(x) is independent of M1

and M2 since the contributions of added mass and virtual buoyancy average out to zero
over a time period. Mathematically, such contributions to the momentum sink F in (2.5c)
are linear in u0, and hence time reversible. The evolution of A(x) is also independent of
the phase Θ(x).

The evolution equation (3.17) for Θ(x), on the other hand, does depend on M1 and M2,
but is independent of drag, and also independent of the wave amplitude A.

4. Analytical results: comparison with limiting cases

Before we give some illustrative examples of solutions of (3.15) and (3.10), we first discuss
three limiting cases, summarised in table 2, in which our equations reduce to existing
results by Keller (1958), Dalrymple et al. (1984) and Mendez & Losada (2004).

935 A3-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

98
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.985


Wave evolution in the presence of rigid vegetation

Water depth (regime) Substrate variation Canopy Prediction

Keller (1958) Intermediate Yes No A ∝ cosh kH̄

(k sinh2 kH̄ + kH̄)1/2

Dalrymple et al. (1984) Intermediate No Yes
dA
dx

∝ −λ̄A2, k is constant

Mendez & Losada (2004) Shallow Yes Yes
d(A2H̄1/2)

dx
= − 4λ̄

3π

h̄
H̄3/2

A3

Table 2. Summary of limiting cases from previous work for comparison in § 4.

4.1. Case 1: slowly varying bed with no vegetation (λ̄ = 0)
When the canopy is absent, (3.15) simplifies to

dA
dx

= 2
(
H̄ − 1

)
A

2kH̄ + sinh 2kH̄
d(kH̄)

dx
. (4.1)

If we define Ã = AsechkH̄, we can deduce from (4.1) and the dispersion relation (3.9) that
Ã satisfies

dÃ
dx

= − 2Ã cosh2 kH̄
(2kH̄ + sinh 2kH̄)

d(kH̄)
dx

. (4.2)

This differential equation can then be integrated directly to get Ã
2
k(sinh2 kH̄ + H̄) =

constant, which is the classic shoaling prediction by Keller (1958, equation (30)). In terms
of the original variable A, we get the explicit solution

A =
[
(k sinh2 kH̄ + kH̄)1/2

cosh kH̄

]
x=0

cosh kH̄

(k sinh2 kH̄ + kH̄)1/2
. (4.3)

By using the dispersion relation (3.9) to replace k with coth kH̄ in the expression above,
we plot in figure 4 the ratio between A and its value in the deep-water limit kH̄ → ∞,
for different values of kH̄. In particular, since H̄ varies monotonically with kH̄, this plot
indicates how the normalised amplitude evolves with depth.

We observe from figure 4 that the amplitude remains constant in deep-water. In the
transitional regime, with decreasing depth, we note that the amplitude can actually decay
before it eventually grows (i.e. shoaling) in the shallow-water regime. We will elaborate
on the shallow-water regime in § 4.3.

4.2. Case 2: flow over a horizontal substrate (dH/dx = 0)
When the mean water depth is constant, the wavenumber k is also constant by the
dispersion relation (3.9). In this case, we find

dA
dx

= − 8λ̄
9π

k2

cosh kH̄
3 sinh kh̄ + sinh3 kh̄

2kH̄ + sinh 2kH̄
A2 = −ΛA2, (4.4)

say. This is in contrast with case 1 where the differential equation for A (4.2) is linear. The
nonlinearity in (4.4) is due to contributions from the quadratic drag term in the first-order
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10−1 100 101
0.8
0.9
1.0

1.2

1.5

2.0

2.5

2

1

kH̄

A/A∞

Figure 4. Plot of amplitude versus kH̄ in the absence of vegetation (4.5), with A being normalised by A∞,
the amplitude in the deep-water limit kH̄ → ∞. In the shallow-water regime kH̄ � 1, we recover Green’s law
(Lamb 1932, § 185) via the dispersion relation (3.9). The quantity on the vertical axis is also known as the
shoaling coefficient (Dean & Dalrymple 1991).

problem (3.11). Furthermore, if λ̄ and h̄ are constant, Λ is a constant decay factor, and we
get the explicit solution

A = 1
1 +Λx

, (4.5)

which agrees with Dalrymple et al. (1984, equation (50)) (after redimensionalising). While
previous linear-wave models have also suggested that the momentum loss in the system is
solely due to drag (Dalrymple et al. 1984; Kobayashi et al. 1993; Mendez & Losada 2004),
we have also shown how M1 and M2 can affect the phase shift Θ .

Finally, we note that when Λx � 1, i.e. for sparse canopies or short distances, we
can approximate A as an exponential decay in x with A(x) = e−Λx. Although many
experimental studies have described wave attenuation with exponential decays, it has been
pointed out in both Mendez & Losada (2004) and also the review by Bradley & Houser
(2009) that this is not always applicable, due to the large variation in how much vegetation
can attenuate waves.

4.3. Case 3: shallow water approximation (kH̄ � 1)
When kH̄ � 1, the dispersion relation (3.9) reduces to k2 = 1/H̄. Applying this
approximation to (3.15), we get at leading order in kH̄,

dA
dx

= − 2λ̄
3π

h̄
H̄2

A2 − 1
2

1
H̄

dH̄
dx

A. (4.6)

Multiplying both sides by AH̄1/2 gives

d
(
A2H̄1/2)

dx
= − 4λ̄

3π

h̄
H̄3/2

A3, (4.7)

and we recover the approximation by Mendez & Losada (2004, equation (12)). In
particular, when the vegetation is absent (λ̄ = 0), we recover Green’s law for shallow-water
waves with A ∝ H̄−1/4 (Lamb 1932, § 185).

4.4. Illustrative examples of wave evolution
We now give some illustrative examples of the wave evolution in space. In figure 5, we
consider a plane-sloping substrate with gradient m, so that the water depth reduces with the

935 A3-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

98
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.985


Wave evolution in the presence of rigid vegetation

0.95

1.00

1.05

1.10

1.15

Increasing m

Shallow-water waves: k0H̄0 = 0.5

m
0
0.005
0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.90

0.95

1.00

1.05

Increasing m

x

A

A

Intermediate waves: k0H̄0 = 2(b)

(a)

Figure 5. Evolution of the wave amplitude over a vegetated plane-sloping substrate z = −H(x) = −H0 + mx
with initial depth H0 and constant gradient m. The wave has an initial wavenumber k(x = 0) = k0 satisfying
the dispersion relation (3.9). Panels (a) and (b) correspond to the amplitude of shallow-water incident waves
(k0H̄0 = 0.5) and intermediate waves (k0H̄0 = 2), respectively. Colours indicate different values of m, with
solids lines indicating the full problem and dotted lines indicating the classic shoaling problem with no
vegetation (see (4.5) and figure 4). In this figure, we consider an initial depth of H0 = 0.02, with the asymptotic
parameter α = 0.09, canopy density λ = 0.01 and submergence ratio h/H0 = 0.5.

distance of propagation. We introduce a shallow-water incident wave and an intermediate
wave, respectively, and plot A(x) for different values of m.

We first observe that in the shallow-water limit in figure 5, waves would shoal
if vegetation is absent (see case 1 in § 4.1). When we introduce vegetation back in
the problem, there is an interesting competition between shoaling and attenuation by
vegetation. An analogous plot was done in Mendez & Losada (2004, figure 1) using
the shallow-water approximation (4.7). On the other hand, for the intermediate wave,
we observe a less intuitive behaviour that the waves decay more rapidly with steeper
substrates; there are two reasons behind this. Firstly, when the canopy is absent, we can
derive from (4.1) that waves may not grow, but instead decay in this regime solely due to
the slope – this is illustrated in figure 4. Secondly, as the wave propagates up the slope,
H is decreasing but h is constant, so the proportion of the domain covered by vegetation
increases (and the vegetation becomes closer to the surface where the fluid velocity is
larger), leading to more momentum loss.

As an aside, for deep-water waves, we will observe negligible change in the amplitude
unless h ≈ H. Mathematically, since most of the wave energy in this regime is localised
near the free surface (3.8), the wave is insensitive to both the substrate and the deeply
submerged canopy.
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The purpose of the examples in figure 5 is to highlight that the presence of a slowly
varying substrate and vegetation can have opposite effects between shallow-water and
intermediate waves – both regimes exist in real-life applications and flume experiments.

5. Numerical simulations with the finite element method

Having now compared the multiple-scales predictions with various limiting cases in § 4, in
this section, we solve the full two-phase dynamical problem numerically – this allows us
to verify the combined effects of vegetation and varying depth in the appropriate regime.

We note that a full two-phase numerical simulation is a computationally costly and
difficult problem on account of the multiscale nature. In particular, we shall require
accurate computations of the wave amplitude, typically much smaller than the wavelength
and within a much larger domain. Here, we shall summarise the main details of the
implementation; a more complete summary can be found in Wong et al. (2020) and
Appendix B.

5.1. Implementation and configuration of a numerical wave flume
To reduce the computational cost, we compromise by solving the two-dimensional
incompressible Navier–Stokes equations for both air and water, modified to include a
homogenised momentum sink term as presented in (2.1b) in order to account for the
vegetation.

We solve this problem with Proteus, an open-source computational toolkit that solves
partial differential equations using finite element methods over unstructured meshes.
Proteus is developed by the US Army Engineer Research and Development Center and HR
Wallingford for solving large-scale coastal and hydraulics problems. The implementations
have been benchmarked with experimental work – a full list of publications can be found
in https://proteustoolkit.org/. In this work in particular, we solve for the evolution of the
flow with an inbuilt continuous conservative level-set method Kees et al. (2011). We now
outline the key elements of the numerical wave flume – the full details on practicalities of
the numerical implementation are provided in Appendix B.

(i) Numerical wave flume. First, our numerical waveflume is constructed according to
the dimensions and geometry illustrated in figure 6; the dimensions of the flume are
chosen to represent a realistic scenario. Analogous to the set-up in Dimakopoulos,
de Lataillade & Kees (2019) on flumes with fast random waves, the geometry is
divided into five zones, labelled as 1©– 5© in figure 6. We are mainly interested
in how the wave evolves through the canopy zone (labelled as 3© in figure 6).
The pre-canopy zone mitigates feedback from the canopy and the slope on wave
generation. Similarly, the post-canopy zone mitigates reflections from the absorption
zone.

(ii) Governing equations. In order to implement Proteus, the Navier–Stokes equations
are re-posed so that a level-set scheme is used in conjunction with a momentum
sink. We describe the governing equations and their treatment in § B.1.

(iii) Incident wave. In order to verify asymptotic predictions, it is sensible to specify
an incident wave within the generation zone that follows the sinusoidal wave of
(3.8). However, as explained in §§ B.2 and B.3, the pure sinusoidal wave is prone to
generating further parasitic waves due to the abrupt transformation in the generation
zone. Instead, we generate a more precise weakly nonlinear Fenton wave, which
includes higher-order harmonics and ensures increased stability. The use of this wave
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5 m 10 m

2 m

2 m

50 m 10 m 5 m

0.8 m

1 m

1 2 3 4 5

Zone Length Description

1 Generation zone 5 m A region in which the wave is generated

2 Pre-canopy zone 10 m An obstacle-free horizontal domain

3 Canopy zone 50 m The only region in which the depth varies and

a canopy is present. In particular, we prescribe

the substrate to be a plane slope that elevates by

0.8 m, and the canopy height is fixed at 1 m

4 Post-canopy zone 10 m An obstacle-free horizontal domain

5 Absorption zone 5 m A virtual sponge which absorbs the momentum

to minimise  reflections which propagate back into

the main flume

Figure 6. Schematic diagram of the dimensions of the numerical wave flume, with the canopy denoted in
green. The flume consists of five zones: generation zone; pre-canopy zone; canopy zone; post-canopy zone;
absorption zone. A description of each individual zone is given below the main image.

and the subsequent extraction of the fundamental mode is discussed in § B.3. A
typical incident wave is given by the Fenton wave of (B7) with N = 8 modes, a time
period of T = 1.5 s and amplitude A = 0.1 m.

(iv) Evolution and monitoring. To avoid saving the full configuration at every time
step, we set up virtual gauges which log the location of the free surface at fixed
intervals (typically 0.5 m) along the canopy zone. We initially start with the fluid
at rest, generate the water wave in the generation zone, then allow the system to
evolve until transients have decayed (typically t = 100 s) and we have obtained a
periodic solution. Once the system has converged to this state, we take the arithmetic
average of the amplitude at 10 subsequent periods at each gauge station; this gives a
time-averaged profile for A(x) in the canopy zone.

(v) Typical times and values. Note that once the geometry and incident wave have
been specified as above, the only free parameter in the system is equivalent to
the non-dimensional canopy density, λ, which are computed at the five values,
{0, 0.05, 0.1, 0.2, 0.4}. The canopy density λ is implemented within Proteus via the
dimensional parameter dragBeta = CDbN̄ = λ/(2A0). Note that when specifying λ,
this is equivalent to specifying the combination of parameters, CDbN̄ (see table 1).

A typical simulation would have the domain discretised into triangular elements
with a maximum diameter of 150–200 units per wavelength. For a time period of
T = 1.5 s, the finite element mesh has over 1.7 × 106 elements. The computational
time for a simulation up to t = 100 s is typically 48–96 hours using 96 cores.
Additional details are in Appendix B. The computational cost that is associated
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with such problems highlights the need for simple but accurate asymptotic
approximations.

5.2. Insight from the numerical simulations
In figure 7, we present a series of plots on the evolution of the amplitude due to the sloped
substrate and increasing canopy density in the canopy zone. We have chosen an incident
wave that has wavelength comparable to the water depth – this is so that when the canopy
is absent (λ = 0), the amplitude gradually decays as kH reduces from 3.6 to 1.8 along the
domain (see figure 4). This regime is mainly chosen to provide some different insights to
what has already been established with shallow-water approximations from previous work
(Mendez & Losada 2004).

We observe that increasing canopy density increases the amplitude decay. In the five
cases that we have shown, our analytical predictions are within the 5 % error band, apart
from the highest-density case λ = 0.4 when the distance of propagation x � 25 m. In this
case, the error is still within 8 % – we attempt to explain such discrepancies in § 5.2.1. We
have also compared each plot against the corresponding predictions for constant depth to
highlight that the effects of substrate and canopy do not simply sum. More importantly,
the depth reduction in this case substantially increases amplitude decay. The main physical
reason for this is that the fluid velocity is faster near the free surface (see (3.8)). With depth
reduction, more momentum is lost when the vertical domain is increasingly covered by
vegetation. We have also illustrated this effect via an example in figure 5.

5.2.1. Large vegetation density
For canopies with λ = 0.2 and 0.4, the predictions become less accurate as waves
propagate along the canopy. Mathematically, we derived the rate of change of the
amplitude in space (3.15) based on asymptotic expansions in α � 1. In particular, in
the plots above, α = 0.01 and we have assumed that λ = O(α) in our analysis. Hence,
deviations are expected when the canopy is sufficiently dense that the leading-order
wave approximation (3.8) is no longer asymptotically accurate. Meanwhile, we also note
we overestimate the momentum loss, despite that the continuum model (2.1a)–(2.1b) is
inviscid and hence does not account for viscous dissipation. We anticipate that the reduced
momentum loss is due to two effects.

(i) The nonlinear nature of the full problem – the higher harmonics interact with the
fundamental mode (which allows energy conversion between modes) and corrects
the overall drag after every time period. Such effects accumulate and eventually
become apparent once the waves reach the end of the canopy zone.

(ii) The wave is developing a tendency to shoal over the canopy, rather than passing
through. This effect is not accounted for in the analytical solution.

However, the high-density predictions can still be insightful due to their proximity to the
numerical profiles.

6. Predicting wave attenuation in laboratories

Now that we have verified the asymptotic predictions of the continuum model, we would
like to compare how well it predicts decay in a physical wave flume with individual
vegetation. We compare our predictions against the experimental data from multiple
studies on flow over a mimic canopy of rigid cylinders over a horizontal substrate
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Figure 7. Series of plots of the period-averaged amplitude along the canopy zone in figure 6 for canopies with
increasing densities, λ. The green points denote the numerical amplitude at each virtual gauge. The filtered
signal, i.e. the fundamental modes extracted using the procedure in Appendix B, are connected by blue lines.
The corresponding analytical predictions (3.15) are plotted in black solid lines, together with 5 % error bands
being shaded in as visual guides. The black dashed lines represent the constant-depth predictions with H ≡ 2 m.
All of the analytical curves are scaled so that the amplitudes match the amplitude of the fundamental mode at
the start of the canopy zone (see figure 6). A discussion on the fluctuations are given in Appendix B.
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(Augustin, Irish & Lynett 2009; Wu et al. 2012; Ozeren, Wren & Wu 2014). Although
similar comparisons have been made (see for example comparisons in Appendix C), the
value of our work here is to provide a validation of (4.5) as a universal theory.

6.1. Discussion on variations of the drag coefficient
Thus far, we have assumed that the drag coefficient, CD is constant and focused on
introducing the multiple-scales analysis. In a complete model, it has been established from
direct force measurements that for oscillatory flows, CD for a single obstacle is a function
of the dimensionless Keulegan–Carpenter number KC = UT/b (Keulegan & Carpenter
1958) where U is the maximum fluid velocity, T is the time period of the wave and b is
the streamwise diameter of the obstacle. This parameter KC quantifies the ratio between
the travelling distance of a fluid particle in relation to the obstacle width. We can typically
consider CD to be a constant in the limit KC → ∞, where the flow is unidirectional for the
majority of the period (on the scale of the obstacle).

The relation between CD and KC, above, concerns a single obstacle – it does not account
for effects due to shielding from neighbouring plants. To account for more refined affects
as such, and the effect of canopy arrangement in general, the conventional approach
according to the review by Chen et al. (2018) is to fit a decay relation (e.g. (4.5)) against
the experimental data by fitting the value for CD. Researchers have also considered hybrid
approaches, such as the work by Mei et al. (2011, 2014) and Wang et al. (2015), where
the in-canopy flow is solved numerically, and such results are then applied to solve
for the domain-scale dynamics. In both approaches, there are parameters that have to
be estimated or calibrated, which can be specific to particular scenarios or models, for
example, parameters in a turbulence model – the generalisation is non-trivial.

In this work, since we are interested in predicting wave attenuation a priori, we want
to understand the predictive accuracy of (4.5). In particular, based on our homogenised
canopy model, we want to impose the drag coefficient as the one which corresponds to
individual plants. Hence, instead of fitting CD (and other parameters such as CM), we use
the experimental relation given by Keulegan & Carpenter (1958) between CD and KC for
cylinders to give fast predictions. For example, we can estimate U from linear wave theory
(3.8b). Together with T and b, we can calculate KC, and CD can subsequently be read off
from the experimental relation. Furthermore, CD (and CM) of individual elements have
been studied extensively to cover a large parameter space.

We also note that in a complete model the velocity scale U in KC would vary in both the
water depth and the distance of propagation as the wave evolves. For simplicity, we use
the common modelling assumption of treating CD as a constant within the domain fixed
by the initial value of KC (see e.g. Luhar & Nepf (2016), Leclercq & de Langre (2018) and
references therein).

6.2. Validating asymptotic predictions with experimental results
The studies by Augustin et al. (2009), Wu et al. (2012) and Ozeren et al. (2014) consist
of regular waves propagating through a uniform finite canopy in a horizontal flume. The
amplitudes are measured by individual wave gauges along the canopy. The raw data and
the individual plots of wave decay are given in Appendix C.

For the theoretical predictions, we recall from § 4.2 that on a horizontal substrate, the
amplitude along the canopy satisfies

A = 1
1 +Λx

, (6.1)
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Figure 8. Experimentally determined dimensionless decay for waves propagating through a rigid canopy. The
black solid line indicates the theoretical prediction A = (1 +Λx)−1 (4.5) and dots indicate the measurements
for individual experiments. We compared 28 of the 29 sets of experiments available – further details are given
in Appendix C. The inset plots the experimentally determined relation between the drag coefficient CD and the
Keulegan–Carpenter number KC for a single cylinder under uniform oscillatory flows (Keulegan & Carpenter
1958). Since wave velocities are depth dependent, following the definition by Chen et al. (2018), the velocity
scale in KC is chosen to be the maximum velocity at the half-water depth.

where the constant decay factor Λ ∝ CD for individual experiments is given by (4.4). We
present the comparison in figure 8.

The experimental data reasonably collapses onto the theory curve, which is shown as a
single black solid line in figure 8. The theory curve gives an R2-value of 0.78. Although not
shown here, the equivalent prediction using a standard choice of CD = 1.2 (for cylinders
in uniform flow) only gives R2-value of 0.62 (see Appendix C). We can compare the
difference between the choice of CD in the inset.

We note that there is a cluster of points atΛx ≈ 0.1 that suggests that A is over-predicted
by the theory (4.5). We anticipate that this is due to local wave transformations at the start
of the canopy, which we do not account for in our infinite-canopy model. The scatter also
increases for larger values of Λx. This can be explained by the weak-decay approximation
we had in our multiple-scales analysis. Again, we assumed that the canopy is sufficiently
sparse (see (3.3a,b)).

7. Summary and discussion

This work began with the aim of predicting the evolution of waves over varying substrates
in the presence of vegetation, motivated by applications in coastal management. In
particular, our goal was to extend previous research on this topic to demonstrate, in a
systematic unified fashion, the interplay of multiple physical effects including vegetation
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and substrate variation. Our treatment in this first manuscript considers the reduced
problem where the vegetation is rigid.

We first posed the problem in a general three-dimensional framework and modelled
the vegetation as rigid beams, rooted along a known varying substrate. The momentum
loss in the fluid due to vegetation is accounted for via a continuum sink in the fluid
momentum equations, which consists of drag, added mass and virtual buoyancy effects.
This formulation was then reduced to a two-dimensional framework; the dimensionless
governing equations and key parameters are summarised in table 1.

By exploiting the typical scenario in which waves are only slowly evolving in space,
we separated the large domain scale from the small wave scale and formulated a
multiple-scales problem in § 3; here, the small parameter is the ratio between the two
scales. By considering flows with small-amplitude waves propagating over slowly varying
substrates with sparse canopies, we formally decoupled the local flow from both the
substrate and vegetation. This allowed us to describe the flow using weakly nonlinear wave
theory, and to derive a system of ordinary differential equations for the evolution of the
amplitude and phase, summarised in § 3.5.

By solving for the amplitude explicitly in various simplified cases, we demonstrated
how we have generalised the results from previous work by Keller (1958), Dalrymple
et al. (1984) and Mendez & Losada (2004). We then validated the asymptotic predictions
with numerical simulations of a more realistic two-phase problem using Proteus, which
accounted for nonlinear effects and viscosity. We demonstrated that there is good
agreement between the two in figure 7 and the capabilities of our predictions on analysing
dense-canopy flows. Finally, we also validated our prediction with experimental data from
Augustin et al. (2009), Wu et al. (2012) and Ozeren et al. (2014) in figure 8, by allowing
the drag coefficient to vary with the Keulegan–Carpenter number KC.

Our multiple-scales framework makes it possible to incorporate additional physics in a
systematic way. A particular extension of interest is that of flexible vegetation, which will
deform as the wave propagates with a corresponding effect on the drag.

At the start of this paper, we highlighted the differences between this analysis and the
hybrid multiple-scales approach by Wang et al. (2015) (and references therein). We note
that there is also research in many other variations to the problem considered in this paper,
such as the work by Chang et al. (2017) on heterogeneous forest patches, and Luhar et al.
(2017) on flexible vegetation. Another possibility for further investigation would be to
compare existing predictions (by e.g. Wang et al. 2015) which resolve the in-canopy flow
numerically for shallow canopies and our predictions in § 3 when the canopy height is
small.
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Appendix A. Deriving the solvability conditions for the flow variables

In this appendix, we provide further details on the derivation of the solvability conditions
(3.15) and (3.17) presented in § 3.

A.1. Deriving the solvability condition for the wave amplitude
Using (3.12a) in the left-hand side of (3.13) gives∫ 2π

0

∫
Ω̄

p1∇̄2f − f ∇̄2p1 dΩ̄ dt

= −
∫ 2π

0

∫
Ω̄

f
(

u0xt − k ¯̄γ (ku0u0x̄ + w0u0z̄)x̄ − ¯̄γ (ku0w0x̄ + w0w0z̄)z̄ − kp0xx̄

−kλ̄(u0|u0|/2 + (M1 + M2)u0t)x̄H − λ̄M2w0tz̄H + λ̄M2w0tδ
)

dΩ̄ dt, (A1)

which can be evaluated explicitly using the leading-order solution. With

f = cosh(k(z̄ + H̄)) sin(x̄ − t +Θ(x)), (A2)

the terms multiplying ¯̄γ are triple products of sinusoidal functions in x̄ − t +Θ , which
integrate to zero. Similarly fu0tx̄, fw0tz̄ and fw0t are proportional to sin(x̄ − t +Θ) cos(x̄ −
t +Θ) so they also integrate to zero. The remaining terms give

− 2π2

sinh kH̄

(
(H̄ + sinh2 kH̄)A′ − AkH̄(kH̄)′

)
+ 4πλ̄(5 + cosh(2kh̄)) sinh kh̄

9 sinh2 kH̄
A2. (A3)

To evaluate the right-hand side of (3.13) we label the four edges of ∂Ω̄ 1©– 4© as in figure 9
so that

right-hand side =
∫

①+②+③+④

[
p1

(
k2fx̄
fz̄

)
− f

(
k2p1x̄
p1z̄

)]
· n dS. (A4)

The contributions from 1© and 3© cancel by periodicity in x̄. Since fz̄ = 0 on z̄ = −H̄ the
contribution from 2© is∫ 2π

0

∫ 2π

0
fp1z̄ dx̄ dt =

∫ 2π

0

∫ 2π

0
fu0t

dH̄
dx

dx̄ dt. (A5)

Noting that the dispersion relation (3.9) implies fz̄ = f at z̄ = 0, the contribution from 4©
is

−
∫ 2π

0

∫ 2π

0
f ( p1 − p1z̄) dx̄ dt

= −
∫ 2π

0

∫ 2π

0
f ( p1 + p1tt + ¯̄γ k(u0η0x̄)t + ¯̄γ (ku0w0x̄ + w0w0z̄)+ ¯̄γ ( p0z̄η0t)t) dx̄ dt

= −
∫ 2π

0

∫ 2π

0
fttp1 + f ( p1 + ¯̄γ k(u0η0x̄)t + ¯̄γ (ku0w0x̄ + w0w0z̄)+ ¯̄γ ( p0z̄η0t)t) dx̄ dt

= −
∫ 2π

0

∫ 2π

0
f ( ¯̄γ k(u0η0x̄)t + ¯̄γ (ku0w0x̄ + w0w0z̄)+ ¯̄γ ( p0z̄η0t)t) dx̄ dt (A6)

on integrating by parts in time, since ftt + f = 0. These terms are all again triple products
of sinusoidal functions in x̄ − t +Θ , which integrate to zero. Thus the only non-zero
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z̄ = 0

(0, 1)

(1, 0)(−1, 0)
1 3

2

4

(0, −1), at leading order

z̄ = −H̄

x̄ = X̄ x̄ = X̄ + 2π

Figure 9. Schematic diagram for the periodic cell Ω̄ = [X̄, X̄ + 2π] × [−H̄, 0] in the multiple-scales
analysis in § 3.

contribution to the right-hand side is (A5), which evaluates to

2π2A
sinh kH̄

dH̄
dx
. (A7)

Combining (A3) and (A7) and simplifying using (3.9) gives the solvability condition (3.15)
for the wave amplitude A(x).

A.2. Deriving the solvability condition for the phase shift
As in the derivation above for the differential equation which A(x) satisfies, using

f = cosh(k(z̄ + H̄)) cos(x̄ − t +Θ(x)) (A8)

in (A1) the terms multiplying ¯̄γ are again triple products of sinusoidal functions in x̄ − t +
Θ , which integrate to zero. Since (u0|u0|)x̄ is odd in x̄ − t +Θ , and f is even in x̄ − t +Θ

this term also integrates to zero. The remaining terms give

π2A
2
λ̄csch kH̄

(
2M1kh̄ + (M1 + 2M2) sinh 2kh̄

) − 2π2A
(
sinh kH̄ + kH̄sech kH̄

)
Θ ′.

(A9)
Since fu0t is now proportional to sin(x̄ − t +Θ) cos(x̄ − t +Θ) there is no contribution
from (A5) and (A4) evaluates to zero. Setting (A9) equal to zero and simplifying leads to
the solvability condition (3.17) for the phase shift Θ(x).

Finally, note that f = 1 is also a solution of the homogeneous problem. However, in that
case (A1) integrates to

4π2 ¯̄γA2k2, (A10)

after using (3.9). In (A4) the contribution from 2© is zero but the contribution from 4© is

2π2 ¯̄γA2kcsch2kH̄ sinh 2kH̄, (A11)

which is equal to (A10) by (3.9), so that the solvability condition is automatically satisfied.

Appendix B. Implementing numerical simulations in Proteus

To supplement the discussion in § 5 on implementing numerical wave flumes in Proteus,
in this appendix we provide both the theoretical and the practical details involved.
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Phase Density (kg m−3) Kinematic viscosity (m2 s−1)

Air 1.205 1.5 × 10−5

Water 9.982 × 102 1.004 × 10−6

Table 3. Parameters used for Proteus simulations.

B.1. Governing equations and the level-set method
We briefly outline the level-set method that is used in Proteus and the adaptations we have
made for solving our problem – further details are given in Kees et al. (2011). Suppose we
use the subscripts a and w to denote quantities for air and water, respectively, we define a
level-set function φ, such that it satisfies the evolution equation

∂φ

∂t
+ u · ∇φ = 0 (B1)

from its initial configuration, with Va = {x|φ(x, t) > 0} being the air domain, Vw =
{x|φ(x, t) < 0} being the water domain, and the free surface being defined by the zero
level set of φ. The velocity above satisfies the Navier–Stokes equations,

∇ · u = 0, (B2)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u − F̄ , (B3)

with the density ρ and dynamic viscosity μ being interpolated so that

ρ = ρaS(φ)+ ρw[1 − S(φ)], (B4)

μ = μaS(φ)+ μw[1 − S(φ)]. (B5)

The values for ρa,w and μa,w are given in table 3. In the expressions above, S is a Heaviside
step function using the half-maximum convention

S(φ) =

⎧⎪⎨
⎪⎩

1, if φ > 0,
0.5, if φ = 0,
0, if φ < 0.

(B6)

Finally, to incorporate the momentum sink F̄ in the Proteus framework, we consider the
simplified case where M1,2 = 0 in (2.1b). The main reason for this is that the linear theory
has predicted that added mass and virtual buoyancy would have zero contributions over a
time period (see § 3). Note that there exists a Proteus module named RANS2P that allows
users to reproduce the above framework with minimal modification.

B.2. Theory on wave generation
We set up the canopy as a porous zone of unit porosity. This allows us to include a
Darcy–Forchheimer-type momentum sink in the Navier–Stokes equations. We then recode
this sink as F̄ (2.2a) with M1,2 = 0 in the source code. Once the source code has been
modified, the canopy density can be specified from the user interface via the parameter,
dragBeta, which we recall from the main text that dragBeta = CDbN̄ = λ/(2A0).
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A detailed description on the numerical implementations in solving for u, including
weak formulations, automated time stepping and numerical stabilisations can be found
in Bentley et al. (2017).

A typical simulation would have the domain discretised into triangular elements with
a maximum diameter of 150–200 units per wavelength, with the latter being calculated
from the dispersion relation (3.9) a priori. For a time period of T = 2π/ω0 = 1.5 s, the
finite element mesh has over 1.7 × 106 elements. The computational time for a simulation
up to t = 100 s is typically 48–96 h using 96 cores. The central processing units are
second generation Intel Xeon Scalable Processors (Cascade Lake) with a sustained all-core
Turbo central processing unit frequency of 3.6 GHz. We note that a long simulation
time (t = 100 s) is required to allow the incident waves to propagate to the end of the
flume and the system to fully develop into a time-harmonic state. The same applies to
physical experiments with wave flumes. The computational cost that is associated with
such problems highlights the power and also the need for simple but accurate asymptotic
approximations.

We generate the incident wave with a prescribed amplitude and time period using the
WaveTools module in the generation zone. The module has the option to either impose
a linear wave (the dimensional version of (3.8)) or a Fenton wave (Fenton 1988) as an
incident wave. By ignoring the contributions from air and assuming that the water flow is
both inviscid and irrotational, a Fenton wave has its stream function ψ in the form

ψ =
N∑

n=1

Bn
sinh [nk(z + H)]

cosh kH
cos [n(kx − ωt)] (B7)

for some N and coefficients Bn (in addition to wavenumber k and angular frequency ω).
This truncated Fourier series ansatz is constructed such that each mode satisfies both the
governing equation ∇2ψ = 0 and the no penetration condition along the substrate. The
coefficients are then solved numerically to satisfy the full free-surface conditions while
also giving the resulting wave the prescribed amplitude.

The advantage of this spectral approach compared with higher-order Stokes’ theory
is that the coefficients Bn in (B7) would converge exponentially. Meanwhile, a Stokes’
expansion is based on the wavenumber. Hence, such series may suffer from slow
convergence when the water is sufficiently shallow or deep.

In our implementation, we found it more numerically stable to impose a Fenton wave
as an incident wave rather than a sinusoidal wave (3.8). Although we are comparing with
analytical predictions from § 3 which is based on linear wave theory, as the computational
framework (B3) includes nonlinear effects, forcing a linear wave at the boundary may
cause parasitic waves due to the abrupt transformation of the wave profile in the generation
zone (Orszaghova et al. 2014). Hence, we impose a Fenton wave that has the same
fundamental time period and extract its (linear) fundamental mode for comparison.

B.3. Proximity between a Fenton wave and a sinusoidal wave
By imposing a Fenton wave that has a sufficiently small amplitude compared with the
depth, the higher-order harmonics in the truncated series for ψ (B7) have negligible
contributions and the Fenton wave is still well-approximated by the fundamental mode. To
illustrate this, we provide an example of the Fourier transforms of both a typical incident
wave and its corresponding final wave (after passing through the canopy) in figure 10. The
waves are measured at the end of the generation zone and the start of the absorption zone,
respectively, in figure 6. When we analyse the spectra of both waves (and waves at various
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Figure 10. Fourier transforms of the incident wave and the final wave. Shown is the case where A0 = 0.1 m,
T = 2π/ω0 = 1.5 s and dimensionless canopy density λ = 0.1. The frequency spectra shown have been
normalised by their respective Fourier coefficient at the fundamental frequency. The vertical dotted lines
indicate the harmonics. The black solid line indicates the same function that is extracted from both waves (up
to normalisation) to approximate the fundamental mode. The inset illustrates the physical difference between
the incident wave, which generated the frequency spectrum in the main figure, and its corresponding sinusoidal
fit.

points along the canopy zone), the Fourier coefficients of other frequencies are always
10 times smaller than the coefficient of the fundamental frequency. The inset in figure 10
further illustrates the proximity between the Fenton wave and its sinusoidal fit when they
share the same wave height and time period.

Finally, to compare the amplitude between our numerical simulations and analytical
predictions in § 3, we extract the fundamental mode from the wave signal at each gauge.
We do so by approximating the δ-function in the (discrete) frequency domain as the
original signal with all the frequencies but the fundamental frequency set to zero (see
the black line in figure 10). We then transform the signal back into the temporal domain
and evaluate its amplitude. In figure 7 in the main text, we plot the amplitude of the
fundamental modes in blue.

B.4. Discussion on using an infinite-canopy approximation
We recall from our multiple-scales analysis in § 3 that we have considered an infinite
canopy along the domain so that the domain is asymptotically periodic on the local wave
scale. This is distinct from the typical finite-canopy set-up in both the numerical wave
flume considered in this work (see figure 6) and other real experiments. We emphasise
that our prediction (3.15) is asymptotically correct since we are considering the limit in
which the canopy density scales with α – the ratio between the wavelength and the domain
scale. Hence, any finite-canopy correction will only correspond to asymptotically small
horizontal adjustments in the prediction curves of the order of a wavelength.
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Figure 11. Set of 29 plots for time-averaged amplitude, A, versus distance of propagation, x. In each plot, x is
normalised by the length of the finite canopy and A is normalised by the amplitude at the start of the canopy
(x = 0). Each subplot represents a different experiment, with experimental data shown in coloured dots and
the corresponding prediction curve A = (1 +Λx)−1 from (C1) shown in black. The title of each plot gives the
name of the dataset or the source, with: • (filled orange) Augustin et al. (2009); • (filled blue) Wu et al. (2012);
• (filled yellow) Ozeren et al. (2014). In particular, for the data from Wu et al. (2012), we plotted the mean
amplitude of multiple measurements that are made at every given x.
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1.50 0.5 1.0 2.0
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1.5

2.0

2.5
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Λx

A−1

Augustin et al. (2009)
Wu et al. (2012)
Ozeren et al. (2014)

Figure 12. Experimentally determined dimensionless decay for waves propagating through a rigid canopy. The
black solid line indicates the theoretical prediction A = (1 +Λx)−1 (C1) using the drag coefficient CD ≡ 1.2
and dots indicate the measurements for individual experiments.

B.5. A discussion on wave height and its fluctuations
As an aside, we also compared our analytics against the full numerical profiles in figure 7
for completeness. However, unlike sinusoidal waves, there is an ambiguity in the definition
of the amplitude for such asymmetric waves. For this, we defined A as half of the difference
between the maximum and minimum elevation at every time period to remove any steady
profiles that have developed.

Finally, we attempt to explain the fluctuations of the numerical amplitude at each gauge
in figure 7. In addition to wave reflections from the absorption zone, the fluctuations are
due to numerical errors from the discretisation of the density profile between air and water
(see (B4) and (B6)). We expect this fluctuation to reduce with higher resolution. However,
the computational cost would significantly increase in order to maintain numerical
stability.

Appendix C. Experimental data in figure 8

In this appendix, we provide in figure 11 the experimental data that is used to generate
figure 8 on small-amplitude waves propagating through rigid vegetation. For each dataset,
we plot the dimensionless time-averaged amplitude, A, as a function of the distance
of propagation, x, as individual subplots. We also plot the corresponding theoretical
prediction curve

A(x) = 1
1 +Λx

, (C1)

with Λ in (4.4) specified using the reported experimental set-ups. We emphasise that
there are no fitting parameters involved. Out of the 23 datasets from Wu et al. (2012),
we discarded the dataset ‘200662401’ when we generated figure 8 – this dataset is also
plotted for completeness. We also plot in figure 12 the corresponding predictions using a
fixed drag coefficient CD ≡ 1.2 in (C1) (see figure 8) – the R2-value for this plot is 0.62.

935 A3-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

98
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.985


C.Y.H. Wong, A.S. Dimakopoulos, P.H. Trinh and S.J. Chapman

REFERENCES

ABLOWITZ, M.J. 2011 Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons. Cambridge University
Press.

ANDERSON, M.E. & SMITH, J.M. 2014 Wave attenuation by flexible, idealized salt marsh vegetation. Coast.
Engng 83, 82–92.

AUGUSTIN, L.N., IRISH, J.L. & LYNETT, P. 2009 Laboratory and numerical studies of wave damping by
emergent and near-emergent wetland vegetation. Coast. Engng 56 (3), 332–340.

BENTLEY, A., BOOTLAND, N., WATHEN, A.J. & KEES, C.E. 2017 Implementation details of the level
set two-phase Navier–Stokes equations in Proteus. Tech. Rep. TR2017-10. Department of Mathematical
Sciences, Clemson University, Clemson, South Carolina, USA.

BRADLEY, K. & HOUSER, C. 2009 Relative velocity of seagrass blades: implications for wave attenuation in
low-energy environments. J. Geophys. Res.: Earth 114 (1), 1–13.

CHANG, C.W., LIU, P.L.F., MEI, C.C. & MAZA, M. 2017 Periodic water waves through a heterogeneous
coastal forest of arbitrary shape. Coast. Engng 122 (July 2016), 141–157.

CHAPMAN, S.J. & FARRELL, P.E. 2017 Analysis of Carrier’s problem. SIAM J. Appl. Maths 77 (3), 924–950.
CHEN, H., NI, Y., LI, Y., LIU, F., OU, S., SU, M., PENG, Y., HU, Z., UIJTTEWAAL, W.S. & SUZUKI,

T. 2018 Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct
measurement methods. Adv. Water Resour. 122 (135), 217–227.

DALRYMPLE, R.A., KIRBY, J.T. & HWANG, P.A. 1984 Wave diffraction due to areas of energy dissipation.
ASCE J. Waterway Port Coastal Ocean Engng 110 (1), 67–79.

DEAN, R.G. & DALRYMPLE, R.A. 1991 Water Wave Mechanics for Engineers and Scientists, Advanced
Series on Ocean Engineering, vol. 2. World Scientific.

DIMAKOPOULOS, A.S., DE LATAILLADE, T. & KEES, C.E. 2019 Fast random wave generation in numerical
tanks. Proc. Inst. Civ. Engrs 172 (1), 1–11.

FENTON, J.D. 1988 The numerical solution of steady water wave problems. Comput. Geosci. 14 (3), 357–368.
GOSSELIN, F.P. 2019 Mechanics of a plant in fluid flow. J. Expl Bot. 70 (14), 3533–3548.
KEES, C.E., AKKERMAN, I., FARTHING, M.W. & BAZILEVS, Y. 2011 A conservative level set method

suitable for variable-order approximations and unstructured meshes. J. Comput. Phys. 230 (12),
4536–4558.

KELLER, J.B. 1958 Surface waves on water of non-uniform depth. J. Fluid Mech. 4 (6), 607–614.
KEULEGAN, G.H. & CARPENTER, L.H. 1958 Forces on cylinders and spheres in a sinusoidally oscillating

fluid. J. Res. Natl Bur. Stand. 60 (5), 423–440.
KOBAYASHI, N., RAICHLE, A.W. & ASANO, T. 1993 Wave attenuation by vegetation. ASCE J. Waterway

Port Coastal Ocean Engng 119 (1), 30–48.
KUZMAK, G.E. 1959 Asymptotic solutions of nonlinear second order differential equations with variable

coefficients. Z. Angew. Math. Mech. 23 (3), 730–744.
LAMB, H. 1932 Hydrodynamics. Dover Publications.
LANDAU, L.D. & LIFSHITZ, E.M. 1976 Course of Theoretical Physics – Volume 1. Mechanics, 3rd edn.

Pergamon.
LECLERCQ, T. & DE LANGRE, E. 2018 Reconfiguration of elastic blades in oscillatory flow. J. Fluid Mech.

838, 606–630.
LEI, J. & NEPF, H.M. 2019 Wave damping by flexible vegetation: connecting individual blade dynamics to

the meadow scale. Coast. Engng 147, 138–148.
LIU, P.L., CHANG, C.W., MEI, C.C., LOMONACO, P., MARTIN, F.L. & MAZA, M. 2015 Periodic water

waves through an aquatic forest. Coast. Engng 96, 100–117.
LOWE, R.J., KOSEFF, J.R. & MONISMITH, S.G. 2005 Oscillatory flow through submerged canopies: 1.

Velocity structure. J. Geophys. Res.: Oceans 110 (10), 1–17.
LUHAR, M., INFANTES, E. & NEPF, H.M. 2017 Seagrass blade motion under waves and its impact on wave

decay. J. Geophys. Res.: Oceans 122 (5), 3736–3752.
LUHAR, M. & NEPF, H.M. 2016 Wave-induced dynamics of flexible blades. J. Fluids Struct. 61, 20–41.
MATTIS, S.A., KEES, C.E., WEI, M.V., DIMAKOPOULOS, A.S. & DAWSON, C.N. 2019 Computational

model for wave attenuation by flexible vegetation. ASCE J. Waterway Port Coastal Ocean Engng 145 (1),
04018033.

MEI, C.C., CHAN, I.C. & LIU, P.L.F. 2014 Waves of intermediate length through an array of vertical
cylinders. Environ. Fluid Mech. 14 (1), 235–261.

MEI, C.C., CHAN, I.C., LIU, P.L.F., HUANG, Z. & ZHANG, W. 2011 Long waves through emergent coastal
vegetation. J. Fluid Mech. 687, 461–491.

MENDEZ, F.J. & LOSADA, I.J. 2004 An empirical model to estimate the propagation of random breaking and
nonbreaking waves over vegetation fields. Coast. Engng 51 (2), 103–118.

935 A3-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

98
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.985


Wave evolution in the presence of rigid vegetation

MEYER, R. 1979 Theory of water-wave refraction. In Advances in Applied Mechanics (ed. Y. Chia-Shun),
pp. 53–141. Academic.

MÖLLER, I., et al. 2014 Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci.
7 (10), 727–731.

MORRIS, R.L., KONLECHNER, T.M., GHISALBERTI, M. & SWEARER, S.E. 2018 From grey to green:
efficacy of eco-engineering solutions for nature-based coastal defence. Glob. Change Biol. 24 (5),
1827–1842.

NEPF, H.M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44 (1),
123–142.

ORSZAGHOVA, J., TAYLOR, P.H., BORTHWICK, A.G. & RABY, A.C. 2014 Importance of second-order wave
generation for focused wave group run-up and overtopping. Coast. Engng 94, 63–79.

OZEREN, Y., WREN, D.G. & WU, W. 2014 Experimental investigation of wave attenuation through model
and live vegetation. ASCE J. Waterway Port Coastal Ocean Engng 140 (5), 1–12.

SUZUKI, T., ZIJLEMA, M., BURGER, B., MEIJER, M.C. & NARAYAN, S. 2012 Wave dissipation by
vegetation with layer schematization in SWAN. Coast. Engng 59 (1), 64–71.

WANG, B., GUO, X. & MEI, C.C. 2015 Surface water waves over a shallow canopy. J. Fluid Mech.
768, 572–599.

WONG, C.Y.H., TRINH, P.H. & CHAPMAN, S.J. 2020 Shear-induced instabilities of flows through submerged
vegetation. J. Fluid Mech. 891, A17.

WU, W., et al. 2012 Investigation of surge and wave reduction by vegetation (phase II) – interaction of
hydrodynamics, vegetation, and soil. Tech. Rep. 80037. University of Mississippi.

ZELLER, R.B., ZARAMA, F.J., WEITZMAN, J.S. & KOSEFF, J.R. 2015 A simple and practical model for
combined wave-current canopy flows. J. Fluid Mech. 767, 842–880.

935 A3-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

98
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.985

	1 Introduction
	1.1 Oscillatory flows through vegetation
	1.2 Structure of this work

	2 Theoretical formulation
	2.1 Non-dimensionalisation

	3 Multiple-scales analysis of wave modulation
	3.1 A discussion on the length scale of the domain
	3.2 Introducing the fast variable
	3.3 The leading-order problem
	3.4 The first-order problem
	3.5 Differential equations for the wave amplitude 

	4 Analytical results: comparison with limiting cases
	4.1 Case 1: slowly varying bed with no vegetation 
	4.2 Case 2: flow over a horizontal substrate 
	4.3 Case 3: shallow water approximation 
	4.4 Illustrative examples of wave evolution

	5 Numerical simulations with the finite element method
	5.1 Implementation and configuration of a numerical wave flume
	5.2 Insight from the numerical simulations
	5.2.1 Large vegetation density


	6 Predicting wave attenuation in laboratories
	6.1 Discussion on variations of the drag coefficient
	6.2 Validating asymptotic predictions with experimental results

	7 Summary and discussion
	Appendix A.
	A.1 Deriving the solvability condition for the wave amplitude
	A.2 Deriving the solvability condition for the phase shift

	Appendix B.
	B.1 Governing equations and the level-set method
	B.2 Theory on wave generation
	B.3 Proximity between a Fenton wave and a sinusoidal wave
	B.4 Discussion on using an infinite-canopy approximation
	B.5 A discussion on wave height and its fluctuations

	Appendix C. Experimental data in figure 8
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


