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Abstract

Let r and d be positive integers with r < d. Consider a random d-ary tree constructed
as follows. Start with a single vertex, and in each time-step choose a uniformly random
leaf and give it d newly created offspring. Let Td,t be the tree produced after t steps.
We show that there exists a fixed δ < 1 depending on d and r such that almost surely
for all large t , every r-ary subtree of Td,t has less than tδ vertices. The proof involves
analysis that also yields a related result. Consider the following iterative construction of
a random planar triangulation. Start with a triangle embedded in the plane. In each step,
choose a bounded face uniformly at random, add a vertex inside that face and join it to
the vertices of the face. In this way, one face is destroyed and three new faces are created.
After t steps, we obtain a random triangulated plane graph with t + 3 vertices, which is
called a random Apollonian network. We prove that there exists a fixed δ < 1, such that
eventually every path in this graph has length less than tδ , which verifies a conjecture of
Cooper and Frieze (2015).
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Eggenberger–Pólya urn

2010 Mathematics Subject Classification: Primary 05C80
Secondary 60C05; 05C05

1. Introduction

In this paper we study two important random graph models. The first one is a so-called
random d-ary recursive tree, defined as follows. Let d > 1 be a positive integer. Consider a
random d-ary tree evolving as follows. At time 0 it consists of exactly one vertex, �. In the
first step � gives birth to d offspring. In each subsequent step we pick, uniformly at random,
a vertex with no offspring and connect it with exactly d offspring. At time t this random tree
is denoted by Td,t . See [5] for more on random d-ary recursive trees. Let r be a fixed positive
integer smaller than d and let St denote the size of the largest (possibly nonunique) r-ary subtree
of Td,t .

We say that a sequence of events {Ak, k ∈ N} occurs eventually (for large k) if there exists
an almost surely finite random variable N such that Ak occurs for all k ≥ N . In this paper all
logarithms are natural.
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Theorem 1. There exists a fixed δ < 1 such that St < tδ eventually.

It turns out that we can take, e.g.

δ = 1 − d − r

ed2d log(11d log d)

in this theorem; see [2, Section 5] for details.
We note at this point that it is possible to analyse quite accurately the size of the subtree

obtained by deleting all but the r largest branches at each vertex. However, this does not lead
to a proof of the above theorem, since in general this will not be the largest r-ary subtree (see
Figure 1 for an example).

The second object we study is a popular random graph model for generating planar graphs
with power-law properties, which is defined as follows. Start with a triangle embedded in the
plane. At each step, choose a bounded face uniformly at random, add a vertex inside that face
and join it to the vertices on the face. In this way, one face is destroyed and three new faces
are created. We call this operation subdividing the face. After t steps, we have a (random)
triangulated plane graph RANt with t + 3 vertices, 3t + 3 edges, 2t + 1 bounded faces, and 1
unbounded face. The random graph RANt is called a random Apollonian network.

Random Apollonian networks were defined by Zhou et al. [13] (see [12] for a generalization
to higher dimensions), where it was proved that the diameter of a RANt is probabilistically
bounded above by a constant times log t . It was shown in [10] and [13] that the RANt exhibits a
power-law degree distribution for large t . The average distance between two vertices in a typical
RANt was shown to be �(log t) by Albenque and Marckert [1], and a central limit theorem was
proved by Kolossváry et al. [8]. The degree distribution, k largest degrees, k largest eigenvalues
(for fixed k), and diameter were studied by Frieze and Tsourakakis [7]. The asymptotic value of
the diameter of a typical RANt was determined in [6] (and was generalized to higher dimensions
in [4] and [8]). We continue this line of research by studying the asymptotic properties of the
longest (simple) paths in a RANt .

Let Lt be a random variable denoting the number of vertices in a longest path in a RANt .
All the limits in this paragraph are as t → ∞. Frieze and Tsourakakis [7] conjectured that
there exists a fixed δ > 0 such that P(δt ≤ Lt < t) → 1. Ebrahimzadeh et al. [6] refuted
this conjecture and showed that there exists a fixed δ > 0 such that P(Lt < t/(log t)δ) → 1.
Cooper and Frieze [3] improved this result by showing that, for every constant c < 2

3 , we
have P(Lt ≤ t exp(− logc t)) → 1, and conjectured that there exists a fixed δ < 1 such that
P(Lt ≤ tδ) → 1. The second main result of this paper is the following, which in particular
confirms this conjecture.

Figure 1: The largest 1-ary subtree of this tree has four vertices; namely, �, 1, 2, and 3. However, if we
delete all but the largest branch at each vertex we will obtain a 1-ary subtree with three vertices, such
as �, 4, 5. Although this not a d-ary tree for any d, as the vertices do not have the same number of

offspring, similar d-ary examples exist.
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Theorem 2. There exists a fixed δ < 1 such that Lt < tδ eventually.

We can take δ = 1 − 4 × 10−8, as shown in [2, Section 5].
Regarding lower bounds, it was proved in [6] that Lt > (2t + 1)log 2/ log 3 deterministically,

and that E[Lt ] = �(t0.88).
We prove the two main theorems by studying a third object, an infinite tree with weighted

vertices, which is introduced in Section 2. Then we prove Theorems 1 and 2 in Sections 3
and 4, respectively. In particular, in the proof of Theorem 2, both infinite 3-ary and 9-ary trees
will play a major role.

2. Subtrees of an infinite d-ary tree

We first give an informal description of this section. Fix a positive integer d and consider
an infinite rooted d-ary tree, and suppose that a unit amount of sand is injected into the root.
The sand then goes down the tree, i.e. the root distributes the sand to its children, and every
other vertex does the same (vertices do not keep any sand). The distribution is done randomly:
to each vertex ν is associated a random variable Xν ∈ [0, 1], which is the portion of the parent’s
sand that ν receives. For simplicity, we assume that all vertices use independent copies of a
certain random vector for distributing the sand among their children. The ‘mass’ of a vertex is
simply the amount of sand it receives from its parent and distributes to its children. The ‘mass’
of a finite subtree is just the total mass of its leaves.

Let r < d . If each vertex distributes its sand evenly among its children, the mass of every
complete r-ary tree of depth n that contains the root would be exactly (1 − r/d)n. The aim of
this section is to derive, in the case when the distribution is not too unbalanced, a uniform upper
bound of the form 1/κn for the mass of all complete r-ary subtrees of depth n. We would like
to argue that in each r-ary subtree, by each level we go down the tree, we lose a 1/κ fraction
of mass on average. We argue this vertex by vertex: for each vertex ν we will define a random
variable ϒν , which is a lower bound on the portion of mass ‘lost’ at this vertex by omitting any
d − r of its branches. Since vertices behave similarly, all random variables ϒν have the same
distribution as some random variable ϒ . In the main result of this section, Lemma 1, we show
that our assertion holds if κ and ϒ satisfy a certain ‘moment-type’ inequality (2).

We now give the formal definitions and arguments. Fix positive integers r and d with r < d

and let Td,∞ be an infinite rooted d-ary tree. Denote the root by �. We denote by [ν, μ] the
vertices in the path connecting ν to μ, including these two vertices. For a vertex ν, denote its
distance from � by |ν|, and its offspring by νi, with i ∈ {1, 2, . . . , d}. For ν �= �, denote by ν−
the parent of ν, i.e. the neighbour μ of ν with |μ| = |ν| − 1.

To each vertex ν assign a random variable Xν ∈ (0, 1], satisfying the following properties.
We have X� = 1. The random variables Xν , for ν ∈ V (Td,∞) \ {�}, are identically distributed.
Moreover, we assume that the vectors (Xν1, Xν2, . . . , Xνd) are identically distributed and
independent, and that

∑d
i=1Xνi = 1. For any vertex ν, define the random variable

ϒν = min{Xνi1 + Xνi2 + · · · + Xνid−r
: 1 ≤ i1 < i2 < · · · < id−r ≤ d}, (1)

and let ϒ = ϒν for an arbitrary ν.
For each vertex ν ∈ V (Td,∞), define

mass(ν) =
∏

σ∈[�,ν]
Xσ ,

and for any set of vertices A ⊂ V (Td,∞), let mass(A) = ∑
ν∈Amass(ν).
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Given a nonnegative integer n, consider level n of Td,∞, i.e. the set of vertices at distance n

from �. Denote by Gn,r the collection of subsets of at most rn vertices at level n, with the
additional property that they belong to the same r-ary subtree.

The main result of this section is the following.

Lemma 1. Let λ and κ be positive constants satisfying

dκλ
E[(1 − ϒ)λ] < 1. (2)

Then eventually, for large n,
max

C∈Gn,r

mass(C) ≤ κ−n.

Remark 1. This lemma is used twice in this paper with different distributions for ϒ and
(Xν1, Xν2, . . . , Xνd).

To prove this lemma, we first formalize the connection between r-ary subtrees and the
random variables ϒν via an intermediate quantity which is called the adjusted mass. Then we
use a standard technique and the independence of the ϒν to prove that these variables’ average
behaviour combine to give the upper bound asserted by the lemma. For each vertex ν, we define
its adjusted mass, denoted by AM(ν), as

AM(ν) = mass(ν)
∏

σ∈[�,ν−]

1

1 − ϒσ

.

Returning to the sand example, this is the amount of mass that is not lost on the path from
the root to ν, and it is defined this way precisely because of the following lemma. For any
A ⊂ V (Td,∞), let AM(A) = ∑

ν∈AAM(ν).

Lemma 2. For every positive integer n and every C ∈ Gn,r , we have AM(C) ≤ 1.

Proof. Let C ∈ Gn,r . Define treer (C) to be the r-ary subtree of Td,∞ whose leaves are
precisely the vertices of C. For each vertex ν of treer (C), denote its set of offspring in treer (C)

by νoff . Then by the definition of ϒ in (1),

mass(νoff) ≤ (1 − ϒν)mass(ν).

Thus, by the definition of AM(·), we have AM(νoff) ≤ AM(ν). Hence, for any 1 ≤ k ≤ n,

∑
μ∈treer (C)

|μ|=k

AM(μ) ≤
∑

ν∈treer (C)
|ν|=k−1

AM(ν).

Iterating this, we obtain

AM(C) =
∑
ν∈C

AM(ν) ≤ AM(�) = 1. �

Proof of Lemma 1. For any positive integer n, define the event

Cn =
⋂

{ν : |ν|=n}

{ ∏
σ∈[�,ν−]

(1 − ϒσ )−1 ≥ κn

}
=

⋂
{ν : |ν|=n}

{
AM(ν) ≥ mass(ν)κn

}
.
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We claim that Cn holds eventually. If this is the case, then for large enough n and any C ∈ Gn,r ,
we have

mass(C) ≤ κ−nAM(C) ≤ κ−n,

where the last inequality is a consequence of Lemma 2.
To complete the proof, we will show that Cn holds eventually. By the first Borel–Cantelli

lemma, it is enough to show that

∞∑
n=1

dn
P

( ∏
σ∈[�,ν−]

(1 − ϒσ )−1 < κn

)
< ∞, (3)

where ν = ν(n) denotes an arbitrary vertex with |ν| = n. Since the ϒσ are independent and
λ > 0, the above probability is, by Markov’s inequality,

P

( ∏
σ∈[�,ν−]

(1 − ϒσ )λ > κ−λn

)
≤ E

[ ∏
σ∈[�,ν−]

(1 − ϒσ )λ
]
κλn = (E[(1 − ϒ)λ]κλ)n.

Equation (3) now follows from (2). �

3. Largest r-ary subtrees of random d-ary trees

As the beta and Dirichlet distributions play an important role in this paper, we recall their
definitions.

Definition 1. (Beta and Dirichlet distributions.) Let �(t) = ∫ ∞
0 xt−1e−x dx. For positive

numbers α and β, a random variable is said to be distributed as beta(α, β) if it has density

�(α + β)

�(α)�(β)
xα−1(1 − x)β−1 for x ∈ (0, 1).

The multivariate generalization of the beta distribution is called the Dirichlet distribution. Let
α1, α2, . . . , αn be positive numbers. The Dirichlet(α1, α2, . . . , αn) distribution has support on
the set {

(x1, x2, . . . , xn) : xi ≥ 0 for 1 ≤ i ≤ n, and
n∑

i=1

xi = 1

}
,

and its density at point (x1, x2, . . . , xn) is equal to

�(
∑n

i=1 αi)∏n
i=1 �(αi)

n∏
j=1

x
αj −1
j .

Note that if the vector (X1, X2, . . . , Xn) is distributed as Dirichlet(α1, α2, . . . , αn), then the
marginal distribution of Xi is beta(αi,

∑
j �=iαj ).

Let r and d be fixed positive integers with r < d. Let (B1, B2, . . . , Bd) be a random vector
distributed as Dirichlet(1/(d −1), 1/(d −1), . . . , 1/(d −1)), and define the random variable ϒ

as
ϒ = min{Bi1 + Bi2 · · · + Bid−r

: 1 ≤ i1 < i2 < · · · < id−r ≤ d}.
The main theorem of this section is the following.
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Theorem 3. Let r and d be fixed positive integers with r < d, and let St denote the size of the
largest r-ary subtree of a random d-ary recursive tree at time t . Let τ , κ , and λ be positive
constants satisfying (2) and

ed log τ < (d − 1)τ 1/(d−1), (4)

and let n = 
log t/ log τ�. There exists a constant K such that eventually (for large t)

St ≤ K(rn + tκ−n). (5)

Before proving this theorem, we show that it implies Theorem 1.

Proof of Theorem 1. We show that there exist positive constants τ , κ , and λ satisfying (4),
(2), and κ > 1; then we would have τ > ed−1 > r , and the theorem follows from Theorem 3 by
choosing any δ ∈ (max{1− log κ/ log τ, log r/ log τ }, 1). As (4) holds for all large enough τ , it
suffices to show that there existκ > 1 andλ > 0 satisfying (2). Since limε→0 P(ϒ < ε) = 0, we
have E[(1−ϒ)λ] → 0 as λ → ∞. In particular, there exists λ > 0 such that E[(1−ϒ)λ] < 1/d.
Then, we can let

κ = (dE[(1 − ϒ)λ])−1/(2λ),

which is strictly larger than 1. �

We first provide a high-level idea of the proof of Theorem 3. Observe that a random d-ary
recursive tree has 1+ td vertices at time t . Think of the generation of a random d-ary recursive
tree as a process of storing 1 + td balls in the nodes of an infinite d-ary tree in the following
manner. Suppose that 1 + td balls are injected into the root of our infinite tree. Whenever
a vertex receives some balls, one ball is stored in the vertex and will not move any further;
the rest, if any, are distributed among its children according to an appropriate variation of a
Dirichlet distribution. Once all balls are fixed, the vertices with balls induce a (1 + td)-vertex
d-ary subtree which, as we show in Lemma 3, corresponds to a random d-ary recursive tree at
time t .

We analyse the size of the largest r-ary subtree of this random d-ary recursive tree by
approximating this process with the sand distribution process described in the previous section.
Note that the number of balls at level n or less is clearly O(rn). Also, the number of balls at
levels greater than n can be bounded by the ‘mass’ of the corresponding r-ary subtree in the
infinite tree, which gives the term O(tκ−n) in (5). The main issue in building this connection
is that the amount of sand can be a real number but the number of balls is always an integer;
nevertheless, we can show that these quantities are close enough for our purposes.

We now provide the formal argument. In the rest of this section, Td,∞ denotes an infinite
d-tree rooted at �. We view the random recursive d-ary tree Td,t as a subtree of Td,∞. At each
time step, we assign a weight to each vertex. For each t and each vertex ν ∈ V (Td,∞), if
ν /∈ V (Td,t ) then let weight(ν, t) = 0, otherwise, let weight(ν, t) denote the number of nonleaf
vertices in the subtree of Td,t rooted at ν.

Lemma 3. There exist random variables {Bν}ν∈V (Td,∞), with B� = 1, such that for any positive
integer t and any ν ∈ V (Td,∞), weight(ν, t) is stochastically dominated by a binomial(t,∏

σ∈[�,ν]Bσ ) random variable. Moreover, the vectors (Bν1, Bν2, . . . , Bνd) are independent for
ν ∈ V (Td,∞), and are distributed as Dirichlet(1/(d − 1), 1/(d − 1), . . . , 1/(d − 1)).

Proof. Consider a vertex ν �= � and a positive integer t such that ν ∈ V (Td,t ). Note that at
time t , the number of leaves in the branch at v is (d − 1)weight(ν, t) + 1. Hence, given that at
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time t + 1 the weight of ν− increases, the probability, conditional on the past, that the weight
of ν increases at the same time, is equal to

(d − 1)weight(ν, t) + 1

(d − 1)weight(ν−, t) + 1
.

Each time a weight increases, its increment is exactly 1. By identifying ν with one colour and
its siblings with another colour, the evolution of the numerator of the above expression over
time can be modelled using an Eggenberger–Pólya urn, with initial conditions (1, d − 1) and
reinforcement equal to d−1. Moreover, the urns corresponding to distinct vertices are mutually
independent.

The limiting distribution describing the Eggenberger–Pólya urn is well known, but we require
bounds applying for all t . To this end, we can express the number of times a given colour
is chosen by time t in an Eggenberger–Pólya urn as a mixture of binomials with respect to a
beta distribution. See, for example, [11, Lemma 1]. In this case, given the initial conditions
(1, d−1) and reinforcement d−1, the mixture is with respect to beta(1/(d−1), 1). This means
that to each vertex ν, we can assign a random variable Bν distributed as beta(1/(d −1), 1), such
that weight(ν, t) conditional on Bν is binomially distributed with parameters weight(ν−, t)−1
and Bν . Set B� = 1 and note that weight(�, t) = t . By induction, weight(ν, t), conditional on
{Bσ }σ∈[�,ν], is stochastically smaller than a binomial(t,

∏
σ∈[�,ν]Bσ ).

By the Eggenberger–Pólya urn representation, we also infer that the joint distribution of
(Bν1, Bν2, . . . , Bνd) is Dirichlet(1/(d − 1), 1/(d − 1), . . . , 1/(d − 1)) for all ν. See, for
example, [11, Lemma 1]. �
Lemma 4. Let B1, . . . , Bn be independent beta(1/(d − 1), 1) random variables. For all
positive β, we have

P

( n∏
i=1

Bi ≤ βn

)
≤

(
e log(1/β)β1/(d−1)

d − 1

)n

.

Proof. If β ≥ e1−d then the right-hand side is at least 1, so we may assume that 0 < β <

e1−d . We use Chernoff’s technique. Let λ = −1/(d − 1) − 1/ log β. We have

E[Bλ
1 ] = �(d/(d − 1))

�(1/(d − 1))�(1)

∫ 1

0
xλx−1+1/(d−1) dx = 1

(d − 1)λ + 1
.

Hence, by Markov’s inequality and since the Bi are independent,

P

( n∏
i=1

Bi ≤ βn

)
≤

n∏
i=1

E[Bλ
1 ]

βλ
=

(
1

βλ((d − 1)λ + 1)

)n

=
(

e log(1/β)β1/(d−1)

d − 1

)n

. �

Proof of Theorem 3. Let {Bν}ν∈V (Td,∞) be as given by Lemma 3. Denote by Gn,r the
collection of subsets of the vertices of Td,∞ at level n, with the property that they belong
to the same r-ary subtree. We apply Lemma 1 with mass defined using Xσ = Bσ . Since (2)
holds, we conclude that eventually, for large n,

max
C∈Gn,r

mass(C) ≤ κ−n. (6)

By Lemma 3, weight(ν, t) is stochastically dominated by a binomial(t, mass(ν)). Chernoff’s
bound for binomials implies that (see, e.g. [9, Theorem 2.3(b)])

P(weight(ν, t) ≥ 3tmass(ν) | mass(ν) ≥ q) ≤ e−tq
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for every positive q. Since τ satisfies (4), there exists τ1 < τ satisfying

ed log τ1 < (d − 1)τ
1/(d−1)
1 . (7)

Let β = 1/τ1. By Lemma 4, for any vertex ν at level n,

P(mass(ν) < βn) ≤
(

e log(1/β)β1/(d−1)

d − 1

)n

.

Note that (7) implies that the term in brackets is a constant smaller than 1/d. We have

P

( ⋃
{μ : |μ|=n}

{weight(μ, t) ≥ 3tmass(μ)}
)

≤ dn
P(weight(ν, t) ≥ 3tmass(ν))

≤ dn
P(mass(ν) < βn) + dne−tβn

.

The last expression is summable in n, as t1/nβ ≥ τβ (recall that n = 
log t/ log τ�), and τβ

is a constant larger than 1. By the first Borel–Cantelli lemma eventually, for large n, we have
weight(μ, t) < 3tmass(μ) for all μ at level n. Combining this and (6) eventually, for large n,
we have

max

{∑
ν∈C

weight(ν, t) : C ∈ Gn,r

}
< 3tκ−n.

Since an r-ary subtree contains at most rn+1 vertices at levels n or less, the size of an r-ary
subtree is bounded by rn+1 + d

∑
ν∈Cweight(ν, t), where C ∈ Gn,r are the vertices of the

subtree at level n. Thus, eventually, for large t , we have St < rn+1 +3dtκ−n, as required. �

4. Longest paths in random Apollonian networks

We define a tree T3,t , called the �-tree of a RANt , as follows. There is a one-to-one
correspondence between the triangles in a RANt and the vertices of T3,t . For every triangle �
in a RANt , we denote its corresponding vertex in T3,t by v�. To construct T3,t , start with a
single root vertex �, which corresponds to the initial triangle of a RANt . Wherever a triangle �
is subdivided into triangles �1, �2, and �3, generate three offspring v�1 , v�2 , and v�3 , for v�,
and extend the correspondence in the natural manner (see Figure 2 for an illustration). Note
that T3,t is a random 3-ary recursive tree as defined in the introduction and has 3t + 1 vertices
and 2t + 1 leaves. The leaves of T3,t correspond to the bounded faces of a RANt . Let T3,∞
denote an infinite 3-ary tree rooted at �. We view T3,t as a subtree of T3,∞. For each vertex
ν ∈ V (T3,∞), the grand-offspring of ν are its descendants at level |ν| + 2. For a triangle � in
a RANt , I (�) denotes the set of vertices of a RANt that are strictly inside �.

The following lemma introduces the connection with the setup in Section 3. The proof is a
simple exercise and can be found in [6, Lemma 3.1].

Lemma 5. Let T3,t be the �-tree of a RANt . Let v� be a vertex of T3,t with nine grand-
offspring v�1 , v�2 , . . . , v�9 in V (T3,t ). Then the vertex set of a path in a RANt intersects at
most eight of the I (�i )s.

We say that a finite subtree J of T3,∞ is buono if each vertex of J has at most eight grand-
offspring in J. The motivation for this definition becomes clear in the derivation of Theorem 2
from Theorem 4 below.
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Figure 2: A realization of a RAN5 (left) and its corresponding �-tree (right).

Assume that the four vectors

(A1, A2, A3), (B1,1, B1,2, B1,3), (B2,1, B2,2, B2,3), and (B3,1, B3,2, B3,3)

are independent and identically distributed random vectors distributed as Dirichlet( 1
2 , 1

2 , 1
2 ).

Define
ϒ = min{AiBi,j : 1 ≤ i, j ≤ 3}.

The main theorem of this section is the following.

Theorem 4. Let τ, κ, λ be positive constants satisfying

3e log τ < 2
√

τ , (8)

9κλ
E[(1 − ϒ)λ] < 1, (9)

and let n be the largest even integer smaller than log t/ log τ . Then, there exists a constant K ,
such that eventually, for large t , the largest buono subtree of T3,t has at most K(8n/2 + tκ−n/2)

vertices.

Remark 2. Note that (8) is precisely (4) of Theorem 3 with d = 3, and (9) is precisely (2) of
Lemma 1 with d = 9. We work mainly with ternary trees in this section. Equation (9) is only
used inside the proof of Lemma 6.

We show how this theorem implies Theorem 2.

Proof of Theorem 2. Following the proof of Theorem 1, we can find positive constants τ , κ ,
and λ satisfying the conditions of Theorem 4, with κ > 1 and τ > 8. Choose any δ ∈
(max{1 − log(κ)/(2 log τ), log(8)/2 log τ }, 1).

Let P be a path in a RANt and let R(P ) denote the set of vertices v� of T3,t such that I (�)

contains some vertex of P . By Lemma 5, R(P ) induces a buono subtree of T3,t . Hence, using
Theorem 4 for the second inequality eventually, for large t , we have

|V (P )| ≤ 3 + |R(P )| ≤ 3 + K(8n/2 + tκ−n/2) < tδ. �

The rest of this section is devoted to the proof of Theorem 4. Note that the setup is exactly
that in the previous section with d = 3, except we would like to bound the size of a largest buono
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subtree and not that of a largest r-ary subtree. However, recall that in the proof of Theorem 3
the only fact we used about r-ary subtrees was (6); namely, that maxC∈Gn,r mass(C) ≤ κ−n.
So if we could prove a similar inequality for buono subtrees, exactly the same proof works for
Theorem 4. Denote by Bn the collection of subsets of V (T3,∞) at level n, with the property
that they belong to the same buono subtree. Note that each element of B2n has at most 8n

vertices. The following lemma provides a parallel for (6).

Lemma 6. Let λ and κ be positive constants satisfying (9). Eventually, for large n,

max
C∈Bn

mass(C) ≤ κ−n/2.

Proof. Note that buono subtrees look very much like 8-ary subtrees of a 9-ary tree if we
look at every second level. More precisely, let T9,∞ be an infinite rooted 9-ary tree obtained
from T3,∞ as follows. The vertices of T9,∞ are the vertices of T3,∞ at even levels. A vertex μ

is an offspring of ν in T9,∞ if μ is a grand-offspring of ν in T3,∞. To each vertex μ assign the
random variable Xμ = BμBμ− . Buono subtrees of T3,∞ are translated into 8-ary subtrees of
T9,∞. Note that (9) is precisely (2) of Lemma 1 for d = 9. Applying Lemma 1 to T9,∞ (with
r = 8 and d = 9) concludes the proof. �

Proof of Theorem 4. The proof is almost identical to that of Theorem 3 for d = 3, with just
two differences, as we want to bound the size of the largest buono subtree instead of that of
the largest r-ary subtree. First, we bound the number of vertices at levels n or less by 8n/2

instead of rn+1. For the remaining vertices, we bound maxC∈Bn mass(C) via Lemma 6 instead
of bounding maxC∈Gn,r mass(C) via Lemma 1. �
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