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The linear Schrödinger equation with piecewise constant potential in one spatial dimension is a
well-studied textbook problem. It is one of only a few solvable models in quantum mechanics and
shares many qualitative features with physically important models. In examples such as ‘particle in a
box’ and tunnelling, attention is restricted to the time-independent Schrödinger equation. This paper
combines the unified transform method and recent insights for interface problems to present fully
explicit solutions for the time-dependent problem.

Key words: Unified Transform Method, Fokas Method, Schrödinger equation

2010 Mathematics Subject Classification: 35B30, 35B40, 35C05, 35C15, 35Q40, 35Q41

1 Introduction

The N-particle time-dependent (linear) Schrödinger equation is given by

i�
∂ψ

∂t
=
(

−
N∑

n=1

p2
n

2mn
+ V (x1, . . . , xN , t)

)
ψ . (1.1)

Here, � is the reduced Planck constant, xj denotes the three-dimensional coordinate vector of
the jth particle with mass mj, pj denotes the momentum operator i�∇xj for the jth particle and
V (x1, . . . , xN , t) is the N-particle potential. One can argue that (1.1) is the most important par-
tial differential equation (PDE) in all of mathematical physics. Standard textbooks such as [12,
19, 26] rightfully emphasise the solution of (1.1) in simplified settings, so as to build up the
intuition using exact solutions and their properties. Favourite textbook scenarios consider the
one-particle case N = 1 in one (1) spatial dimension with time-independent potential V (x).
The linear Schrödinger (LS) equation reduces to

i�
∂ψ

∂t
= − �

2

2m
ψxx + V (x)ψ , (1.2)
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58 N. E. Sheils and B. Deconinck

where m is the particle mass. Since V (x) is time independent, separation of variables ψ(x, t) =
φ(x)T(t) leads to

T(t) = T0e−iEt/�, − �
2

2m
φ′′ + V (x)φ = Eφ, (1.3)

where the energy E is a (real) separation constant. The second equation above is the one-
dimensional one-particle time-independent Schrödinger equation. Even at this point, the problem
is solvable in closed form in only a few cases, such as the free particle (V = 0) and the harmonic
oscillator (V = kx2/2, k constant) [12, 19, 26].

The study of Schrödinger equations with piecewise constant potentials is important for a num-
ber of reasons. First, to some extent (see below), analytical solutions are available, allowing the
development of more physical intuition using scenarios such as the particle in a box and the
piecewise constant potential barrier [26]. Piecewise constant potentials also provide the simplest
example of a periodic potential, using the Kronig–Penney model [26]. Second, multiple-scale
perturbation theory [5, 17, 18] shows that the approximation of a complicated x-dependent poten-
tial using a few constant levels results in accurate leading-order behaviour, provided the levels
are adequately chosen. This is also evident from the Rayleigh–Ritz characterisation of the eigen-
values of (1.3) [19, 26], which depends only on weighted averages of the potential. As such, the
understanding of (1.2) with piecewise constant potential is of central importance to the study of
quantum mechanics. From a physical point of view, the qualitative features of a potential can
often be approximated well using a potential which is pieced together from a number of con-
stant parts [16, 26]. For instance, although the forces acting between a proton and a neutron are
not accurately known on theoretical grounds, it is known that they are short-range forces – i.e.
they extend a short distance, then drop to zero quickly. These forces are well modelled using a
piecewise constant potential [26].

Nonetheless, the solutions that are found in the piecewise constant setting are often restricted
to single-mode solutions of (1.3), explaining the phenomena of tunnelling and trapping [12, 19,
26]. Solutions of the initial-value problem (IVP) for (1.2) are not readily available. The presence
of both discrete and continuous spectrum exacerbates the use of straightforward linear superposi-
tion. Extensive discussions of this are found in [23, 24], but even there the required superposition
result is not immediately found. The goal of this paper is to solve the IVP for (1.2) using the uni-
fied transform method (UTM) due to Fokas and collaborators [9, 14, 15], combined with more
recent ideas generalising the UTM to allow for the explicit solution of interface problems [4, 7,
8, 30, 32, 31, 33]. In what follows we present explicit, closed-form solutions of the IVP for (1.2)
with initial data (and its spatial derivative) that is L1(R) and absolutely continuous on the real
line. The solution formulae produced are eminently suitable for asymptotic evaluation, and, if
so desired, the location of the discrete and continuous spectrum for the problem may easily be
deduced from the solutions presented. It should be noted that the knowledge of these spectra is
not required for the construction and evaluation of the solution formulae.

Recently, the UTM has been used to construct explicit closed-form solutions of classical inter-
face problems [4, 7, 8, 30, 31, 33]. These are initial boundary-value problems (BVPs) for PDEs
for which the solution of an equation in one domain prescribes boundary conditions for the
equation in adjacent domains. The standard approach using classical methods to approach such
problems is to solve the PDE in each domain, pretending that the boundary values at the domain
edges are given. Once solutions in each domain are constructed, the conditions at the interface
(e.g. continuity of the solution and/or some of its derivatives) are imposed, resulting in non-local
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Time-dependent Schrödinger equation 59

equations to be solved for the unknown boundary values at the interfaces. For generic initial
conditions, these non-local equations are often only solvable numerically. By incorporating the
conditions at the interface at an earlier stage, many interface problems can be solved in closed
forms [4, 7, 8, 30, 31, 33].

The first problem tackled was that of heat flow in composite walls or rods [7], or equivalently,
diffusion in piecewise homogeneous media [4, 25]. This was followed by the investigation of
an interface problem for the linear free Schrödinger equation [31], where we worked with wave
functions that are continuous across the interface, but their derivative may experience a jump.
We apply the same techniques to the IVP consisting of (1.2) with ψ(x, 0) =ψ0(x) ∈ L1(R) as
well as ∂xψ0(x) ∈ L1(R) and both are absolutely continuous on R. We regard this problem as an
interface problem with interfaces located at the discontinuities of the potential V (x). The wave
function ψ(x, t) and its derivative ψx(x, t) are assumed to be continuous across the interfaces.
The first condition is a requirement following from the probabilistic interpretation of the wave
function, while the second condition follows from integrating the equation across an interface and
allowing the length of the integration interval to limit to zero [26]. For simplicity, the independent
variables occurring in (1.2) are rescaled so that, in effect, we may equate m = 1, �= 1. Thus in
what follows, we consider

i
∂ψ

∂t
= −ψxx + V (x)ψ , x ∈R, (1.4)

where V (x) is a piecewise constant potential. The case where V (x) is a delta function (point
singular potential) is covered in [29]. We begin our discussions with the case of a single potential
jump in Section 2, where many of the steps of the general method are illustrated in a simple
setting. This is followed by the general case of n jumps in Section 3. Finally, we apply the results
of Section 3 to the important case of a potential well or barrier in Section 4.

In Section 5, we construct a map from the initial conditions to the values of the function and
its first spatial derivative evaluated at the n interfaces. The existence of this map allows one to
change the problem at hand from an interface problem to a BVP which allows for an alternative
to the approach of finding a closed-form solution to the interface problem. This was explored
previously by the authors for the heat equation in [32].

2 A step potential

We wish to solve the classical IVP

iψt = −ψxx + α(x)ψ , −∞< x<∞, (2.1a)

ψ(x, 0) =ψ0(x), −∞< x<∞, (2.1b)

where

α(x) =
{
α1, x< 0,
α2, x> 0,

(2.2)

α1, α2 ∈R, and limx→±∞ ψ(x, t) = 0 with ψ(x, t) and its first spatial derivative in L1. We treat
this as an interface problem solved by

ψ(x, t) =
{
ψ (1)(x, t), x< 0,
ψ (2)(x, t), x> 0,

(2.3)
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FIGURE 1. The potential α(x) in the case of one step.

FIGURE 2. Regions for the application of Green’s formula in the case of two semi-infinite domains.

where ψ (1)(x, t) and ψ (2)(x, t) solve

iψ (1)
t = −ψ (1)

xx + α1ψ
(1), x< 0, (2.4a)

iψ (2)
t = −ψ (2)

xx + α2ψ
(2), x> 0, (2.4b)

with initial conditions

ψ (1)(x, 0) =ψ
(1)
0 (x), x< 0, (2.5a)

ψ (2)(x, 0) =ψ
(2)
0 (x), x> 0, (2.5b)

and interface continuity conditions

ψ (1)(0, t) =ψ (2)(0, t), t> 0, (2.6a)

ψ (1)
x (0, t) =ψ (2)

x (0, t), t> 0, (2.6b)

as in Figure 1.
We follow the standard steps in the application of the UTM and begin with the local

relations [9]:

(e−ikx+ω1tψ (1))t = (e−ikx+ω1t(iψ (1)
x − kψ (1)))x, x< 0, (2.7a)

(e−ikx+ω2tψ (2))t = (e−ikx+ω2t(iψ (2)
x − kψ (2)))x, x> 0, (2.7b)

where ωj(k) = i(αj + k2) for j = 1, 2. Note that, as is common in the UTM, the ωj differ from the
standard convention for dispersion relations by a factor of i. Thus for dispersive problems, ωj

is purely imaginary. Integrating over the strips (−∞, 0) × (0, t) and (0, ∞) × (0, t), respectively
(see Figure 2), and applying Green’s theorem [1], we have the global relations
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−∞
e−ikx+ω1tψ (1)(x, t) dx =

∫ 0

−∞
e−ikxψ

(1)
0 (x) dx +

∫ t

0
eω1s(iψ (1)

x (0, s) − kψ (1)(0, s)) ds, (2.8a)

∫ ∞

0
e−ikx+ω2tψ (2)(x, t) dx =

∫ ∞

0
e−ikxψ

(2)
0 (x) dx −

∫ t

0
eω2s(iψ (2)

x (0, s) − kψ (2)(0, s)) ds. (2.8b)

Let C+ = {z ∈C : Im(z) ≥ 0}, C− = {z ∈C : Im(z) ≤ 0}. We define the following:

ψ̂
(1)

(k, t) =
∫ 0

−∞
e−ikxψ (1)(x, t) dx, x< 0, t> 0, Im(k)> 0,

ψ̂
(1)
0 (k) =

∫ 0

−∞
e−ikxψ

(1)
0 (x) dx, x< 0, Im(k)> 0,

ψ̂
(2)

(k, t) =
∫ ∞

0
e−ikxψ (2)(x, t) dx, x> 0, t> 0, Im(k)< 0,

ψ̂
(2)
0 (k) =

∫ ∞

0
e−ikxψ

(2)
0 (x) dx, x> 0, Im(k)< 0,

g0(ω, t) =
∫ t

0
eωsψ (1)(0, s) ds =

∫ t

0
eωsψ (2)(0, s) ds, t> 0, ω ∈C,

g1(ω, t) =
∫ t

0
eωsψ (1)

x (0, s) ds =
∫ t

0
eωsψ (2)

x (0, s) ds, t> 0, ω ∈C,

where in the last two definitions we have used the continuity conditions (2.6). With these
definitions, the global relations become

eω1tψ̂
(1)

(k, t) = ψ̂
(1)
0 (k) + ig1(ω1, t) − kg0(ω1, t), k ∈C

+, (2.9a)

eω2tψ̂
(2)

(k, t) = ψ̂
(2)
0 (k) − ig1(ω2, t) + kg0(ω2, t), k ∈C

−. (2.9b)

We wish to transform the global relations so that g0(·, t) and g1(·, t) depend on a common
argument, −ik2 as was first done in [4, 25]. To this end, let

ν( j)(k) = ik

√
1 + αj

k2
, ν( j)(−k) = −ν( j)(k),

which make up a two-sheeted expression with branch points at ±i
√
αj leading to branch cuts

in the complex k plane along [−i
√
α1, i

√
α1] and [−i

√
α2, i

√
α2]. These cuts are straight-line

segments between the endpoints on the real or imaginary axis, depending on the signs of α1

and α2. Note that we have chosen the principal branch, that is, a branch cut along the negative
real axis. Using the transformations k → ν( j)(±k), with j = 1 in (2.9a) and j = 2 in (2.9b), we
have the transformed global relations

e−ik2tψ̂
(1) (

ν(1)(k), t
)= ψ̂

(1)
0

(
ν(1)(k)

)+ ig1(−ik2, t) − ν(1)(k)g0(−ik2, t), (2.10a)

e−ik2tψ̂
(1) (

ν(1)(−k), t
)= ψ̂

(1)
0

(
ν(1)(−k)

)+ ig1(−ik2, t) − ν(1)(−k)g0(−ik2, t), (2.10b)

e−ik2tψ̂ (2)
(
ν(2)(k), t

)= ψ̂
(2)
0

(
ν(2)(k)

)− ig1(−ik2, t) + ν(2)(k)g0(−ik2, t), (2.10c)

e−ik2tψ̂ (2)
(
ν(2)(−k), t

)= ψ̂
(2)
0

(
ν(2)(−k)

)− ig1(−ik2, t) + ν(2)(−k)g0(−ik2, t), (2.10d)

where Re(k) ≥ 0 in (2.10a) and (2.10d and Re(k) ≤ 0 in (2.10b) and (2.10c).

https://doi.org/10.1017/S0956792518000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000475


62 N. E. Sheils and B. Deconinck

To determine the regions of validity of (2.10), we note that if Re(−iν( j)(k)) changes sign then
at some point, −iν( j)(k) must be purely imaginary. That is, for some c ∈R,

(−iν( j)(k))2 = −c2

k2
(

1 + αj

k2

)
= −c2

k2 + αj = −c2

Re(k)2 − Im(k)2 + αj + 2iRe(k)Im(k) = −c2.

Equating real and imaginary parts of the equation, either Re(k) = 0 or Im(k) = 0. If Re(k) = 0,
we have

−Im(k)2 + αj = −c2.

Thus, Re(−iν( j)(k)) can change sign only when k crosses the imaginary axis. Similarly, if
Im(k) = 0, we have Re(k)2 + αj = −c2 which can only be satisfied if αj < 0 and −√−αj <

Im(k)<
√−αj. In both cases, the sign of Re(−iν( j)(k)) is constant for Re(k)< 0 and Re(k)> 0

(take away (−√|αj|,
√|αj|)). By looking at large k asymptotics, we see that

sgn(Re(−iν( j)(±k))) = ±sgn(Re(k)).

Inverting the Fourier transform in (2.9), we have the solution formulae

ψ (1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω1tψ̂

(1)
0 (k) dk + 1

2π

∫ ∞

−∞
eikx−ω1t (ig1(ω1, t) − kg0(ω1, t)) dk, (2.11a)

ψ (2)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω2tψ̂

(2)
0 (k) dk − 1

2π

∫ ∞

−∞
eikx−ω2t (ig1(ω2, t) − kg0(ω2, t)) dk, (2.11b)

for x< 0 and x> 0, respectively. Examining the second integrals in the formulae above, we see
it is possible to deform each into the complex plane as follows:

ψ (1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω1tψ̂

(1)
0 (k) dk − 1

2π

∫
∂D

(3)
R

eikx−ω1t (ig1(ω1, t) − kg0(ω1, t)) dk, (2.12a)

ψ (2)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω2tψ̂

(2)
0 (k) dk − 1

2π

∫
∂D

(1)
R

eikx−ω2t (ig1(ω2, t) − kg0(ω2, t)) dk, (2.12b)

where

D( j)
R = {k ∈ D( j) : |k|> R}, (2.13)

with D( j) the jth quadrant of the complex plane. The regions D( j)
R for j = 1, 2, 3, 4 are as shown

in Figure 3, where 	= maxl{|αl|} and R>
√

2	 is a sufficiently large constant. The reason for
integrating around D( j)

R rather than D( j) in (2.12) is to avoid singularities in what follows.
Next we let k = ν(2)(κ) when integrating around D(1)

R and k = ν(1)(−κ) when integrating around
D(3)

R so that g0(·, t) and g1(·, t) have a common argument and all integrals with unknown terms
are integrated around D(4)

R . That is, (2.12) becomes

https://doi.org/10.1017/S0956792518000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000475


Time-dependent Schrödinger equation 63

FIGURE 3. The regions D( j)
R , j = 1, 2, 3, 4.

ψ (1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω1tψ̂

(1)
0 (k) dk

− 1

2π

∫
∂D

(4)
R

eiν(1)(−κ)x+iκ2t

(
iκ

ν(1)(κ)
g1(−iκ2, t) + κg0(−iκ2, t)

)
dκ , (2.14a)

ψ (2)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω2tψ̂

(2)
0 (k) dk

+ 1

2π

∫
∂D

(4)
R

eiν(2)(κ)x+iκ2t

(
iκ

ν(2)(κ)
g1(−iκ2, t) − κg0(−iκ2, t)

)
dκ . (2.14b)

Note that this change of variables maps arcs to arcs but the circular arc of radius R is not mapped
exactly to the same circular arc. However, making another finite contour deformation and using
Cauchy’s theorem again, we may deform to exactly D(4)

R .
Using the transformed global relations (2.10a) and (2.10d) valid in D(4), one solves for

g0(−iκ2, t) and g1(−iκ2, t). Noticing that ν( j)(−κ) = −ν( j)(κ), we denote ν( j)(κ) by ν( j). In the
remainder of this section, the argument of all ν( j) is κ . Substituting the results for g0(−iκ2, t) and
g1(−iκ2, t) into (2.14), one finds

ψ (1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω1tψ̂

(1)
0 (k) dk −

∫
∂D

(4)
R

κ(ν(1) − ν(2))

2πν(1)(ν(1) + ν(2))
e−iν(1)x+iκ2tψ̂

(1)
0

(
ν(1)

)
dκ

−
∫
∂D

(4)
R

κ

π (ν(1) + ν(2))
e−iν(1)x+iκ2tψ̂

(2)
0

(−ν(2)
)

dκ

+
∫
∂D

(4)
R

κ(ν(1) − ν(2))

2πν(1)(ν(1) + ν(2))

(
ν(2) − ν(1)

)
e−iν(1)xψ̂

(1) (
ν(1), t

)
dκ

−
∫
∂D

(4)
R

κν(1)

π (ν(1) + ν(2))
e−iν(1)xψ̂

(2) (−ν(2), t
)

dκ , (2.15a)
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FIGURE 4. The contour L(4) is shown as a green solid line and the contour LC is shown as a green
dashed line.

for x< 0. Similarly,

ψ (2)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω2tψ̂

(2)
0 (k) dk −

∫
∂D

(4)
R

κ

π (ν(1) + ν(2))
ν(2)eiν(2)x+iκ2tψ̂

(1)
0

(
ν(1)

)
dκ

+
∫
∂D

(4)
R

κ(ν(1) − ν(2))

2πν(2)(ν(1) + ν(2))
eiν(2)x+iκ2tψ̂

(2)
0

(−ν(2)
)

dκ

+
∫
∂D

(4)
R

κ

π (ν(1) + ν(2))
eiν(2)xψ̂

(1) (
ν(1), t

)
dκ

−
∫
∂D

(4)
R

κ(ν(1) − ν(2))

2πν(2)(ν(1) + ν(2))
eiν(2)xψ̂

(2) (−ν(2), t
)

dκ , (2.15b)

for x> 0. The first three terms in each of (2.15a) and (2.15b) depend only on known functions.
The last two terms in (2.15a) and (2.15b) are analytic for Re(−iν(1)) = −Re(iν(2)) = Re(κ)> 0.
Note that exp(−iν(1)x)ψ̂ (1)

(
ν(1), t

)→ 0 and exp(−iν(1)x)ψ̂ (2)
(−ν(2), t

)→ 0 as |κ| → ∞ from

within the closure of D(4)
R uniformly in κ . Thus, by Jordan’s lemma, the integrals of exp(−iν(1)x)

ψ̂ (1)
(
ν(1), t

)
and exp(−iν(1)x)ψ̂ (2)

(−ν(2), t
)

along a closed, bounded curve in the right-half of the

complex κ plane vanish for x< 0. In particular we consider the closed curve L(4) =L(4)
D ∪L(4)

C ,
where LD(4) = ∂D(4)

R ∩ {κ : |κ|<C} and L(4)
C = {κ ∈ D(4)

R : |κ| = C} (see Figure 4).
Since the integral along LC vanishes for large C, the fourth and fifth integrals on the right-hand

side of (2.15a) must vanish since the contour LD(4) becomes ∂D(4) as C → ∞. For the final two
integrals in equation (2.15b), we use the fact that for x> 0 the integrals of exp(iν(2)x)ψ̂ (1)

(
ν(1), t

)
and exp(iν(2)x)ψ̂ (2)

(−ν(2), t
)

along a closed, bounded curve in the right-half of the complex
κ plane vanish. Thus, we have an explicit representation for ψ (1)(x, t) in terms of only initial
conditions:
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ψ (1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω1tψ̂

(1)
0 (k) dk

−
∫
∂D

(4)
R

κ(ν(1) − ν(2))

2πν(1)(ν(1) + ν(2))
e−iν(1)x+iκ2tψ̂

(1)
0

(
ν(1)

)
dκ

−
∫
∂D

(4)
R

κ

π (ν(1) + ν(2))
e−iν(1)x+iκ2tψ̂

(2)
0

(−ν(2)
)

dκ , (2.16a)

for x< 0, and

ψ (2)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω2tψ̂

(2)
0 (k) dk

−
∫
∂D

(4)
R

κν(2)

π (ν(1) + ν(2))
eiν(2)x+iκ2tψ̂

(1)
0

(
ν(1)

)
dκ

+
∫
∂D

(4)
R

κ(ν(1) − ν(2))

2πν(2)(ν(1) + ν(2))
eiν(2)x+iκ2tψ̂

(2)
0

(−ν(2)
)

dκ , (2.16b)

for x> 0. Note that the denominators in (2.16a) and (2.16b) are zero at the branch points
κ = ±i

√
αj. However, these points are avoided by integrating over the boundary of D(4)

R .
The expressions (2.16a) and (2.16b) provide fully explicit solutions for the IVP (2.1). They

are written in a form containing more familiar exponents by letting κ = ik
√

1 + α1/k2 in the
second and third integrals of (2.16a) and κ = −ik

√
1 + α2/k2 in the second and third integrals of

(2.16b). Then

ψ (1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω1tψ̂

(1)
0 (k) dk

−
∫
∂D

(3)
R

1 −
√

1 + α1−α2
k2

2π
(

1 +
√

1 + α1−α2
k2

)eikx−ω1tψ̂
(1)
0 (−k) dk

−
∫
∂D

(3)
R

1

π
(

1 +
√

1 + α1−α2
k2

)eikx−ω1tψ̂
(2)
0

(
k

√
1 + α1 − α2

k2

)
dk, (2.17a)

for x< 0, and

ψ (2)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω2tψ̂

(2)
0 (k) dk

+
∫
∂D

(1)
R

1

π
(

1 +
√

1 − α1−α2
k2

)eikx−ω2tψ̂
(2)
0

(
k

√
1 − α1 − α2

k2

)
dk

+
∫
∂D

(1)
R

1 −
√

1 − α1−α2
k2

2π
(

1 +
√

1 − α1−α2
k2

)eikx−ω2tψ̂
(1)
0 (−k) dk, (2.17b)

for x> 0. It appears that our solution depends on an extra parameter R. However, observe that∫
∂D

(3)
R

· dk = ∫
∂D

(3)
R̃

· dk + ∮
R, where ∂D(3)

R , ∂D(3)

R̃
and R are as in Figure 5. Since the integrands
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FIGURE 5. The contours ∂D(3)
R and ∂D(3)

R̃
and the region R.

in (2.17a) are analytic in D(3)
R (and therefore R),

∮
R · dk = 0. Hence,

∫
∂DR

· dk = ∫
∂DR̃

· dk for

any R>	, and our solution is independent of the value of R chosen. The same argument is true
for (2.17b).

Before we begin the asymptotic analysis, it is useful to deform the contours in (2.17) back to

the real line. We examine the branch cut introduced in (2.17) of the form
√

1 + a
k2 . In (2.17),

a = α2 − α1 but it may be different in later sections. If a> 0, the branch points are at ±i
√

a. We
fix the branch cut to be on the finite imaginary axis running from −i

√
a to i

√
a by defining the

local polar coordinates

k − i
√

a = r1eiθ1 ,

k + i
√

a = r2eiθ2 ,

where −π/2< θ1, θ2 ≤ 3π/2 as in Figure 6(a) or −3π/2< θ3, θ4 ≤ π/2 as in Figure 6(b).
Similarly, if a< 0, ±√−a are the branch points. We fix the branch cut to be on the finite real
axis running from −√−a to

√−a by defining the local polar coordinates

k + √−a = r5eiθ5 ,

k − √−a = r6eiθ6 ,

where −π < θ5, θ6 ≤ π as in Figure 6(c).
If the branch cut is on the imaginary axis then deforming ∂D(1)

R to the real axis and using the
local parameterisation −π/2< θ1, θ2 ≤ 3π/2 as in Figure 6(a), one finds

∫
∂D

(1)
R

f (k) dk = –
∫ ∞

−∞
f (k) dk + i

∫ √
a

0
f (re3π i/2 + i

√
a) dr

− lim
ε→0

iε

∫ 3π/2

−π/2
f (εeiθ + i

√
a)eiθ dθ − i

∫ √
a

0
f (re−π i/2 + i

√
a) dr, (2.18)
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(a) (b) (c)

FIGURE 6. Branch cuts for
√

1 + a
k2 and the local parameterisations around the branch points. In

(a), a> 0 and the local parameterisation around the branch points ±i
√

a with −π/2< θ1, θ2 ≤ 3π/2. In (b),
a> 0 and the local parameterisation around the branch points ±i

√
a with −3π/2< θ3, θ4 ≤ π/2. In (c),

a< 0 and the local parameterisation around the branch points ±√−a with −π < θ5, θ6 ≤ π .

FIGURE 7. The deformations of ∂D(1)
R (as a red dashed line) and ∂D(3)

R (as a green solid line) to the real line
when the branch cut is on the imaginary axis.

as in the dashed red line in Figure 7, where –
∫∞
−∞ · dk is a Cauchy principal value integral. The

third integral in (2.18) can be contracted to a zero radius using integration by parts [27, p. 128].
Deforming ∂D(3)

R to the real axis when the branch cut is on the imaginary axis requires the local
parameterisation with −3π/2< θ3, θ4 ≤ π/2 as in Figure 6(b). Then

∫
∂D

(3)
R

f (k) dk = − –
∫ ∞

−∞
f (k) dk + i

∫ 0

−√
a

f (reπ i/2 − i
√

a) dr

− lim
ε→0

iε

∫ π/2

−3π/2
f (εeiθ − i

√
a)eiθ dθ − i

∫ 0

−√
a

f (re−3π i/2 − i
√

a) dr, (2.19)

as in the solid green line in Figure 7. Again, the third integral in (2.19) can be contracted to a zero
radius using integration by parts [27, p. 128]. If the branch cut is on the real axis then deforming
∂D(1)

R and ∂D(3)
R to the real axis, one finds

∫
∂D

(1)
R

f (k) dk = –
∫ ∞

−∞
f (k) dk, (2.20)

https://doi.org/10.1017/S0956792518000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000475


68 N. E. Sheils and B. Deconinck

FIGURE 8. The deformations of ∂D(1)
R (as a red dashed line) and ∂D(3)

R (as a solid green line) to the real line
for the case when the branch cut is on the real axis.

and ∫
∂D

(3)
R

f (k) dk = − –
∫ ∞

−∞
f (k) dk, (2.21)

as in Figure 8.
In what follows we consider α2 >α1. Then, ∂D(3)

R in (2.17a) can be deformed as in (2.21) and
∂D(1)

R in (2.17b) can be deformed as in (2.18).

ψ (1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω1tψ̂

(1)
0 (k) dk + 1

2π
–
∫ ∞

−∞
a(1)(k)eikx−ω1t dk, (2.22)

for x< 0, where

a(1)(k) = 1

1 +
√

1 + α1−α2
k2

((
1 −

√
1 + α1 − α2

k2

)
ψ̂

(1)
0 (−k)+ 2ψ̂ (2)

0

(
k

√
1 + α1 − α2

k2

))
,

and

ψ (2)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω2tψ̂

(2)
0 (k) dk + 1

2π
–
∫ ∞

−∞
a(2)(k)eikx−ω2t dk

+ i

∫ √
α2−α1

0

(
a(2)(re3π i/2 + i

√
α2 − α1) − a(2)(re−π i/2 + i

√
α2 − α1)

)
× e(r−√

α2−α1)x+it(r2−α1−2r
√
α2−α1) dr, (2.23)

for x> 0, where

a(2)(k) = 1

1 +
√

1 − α1−α2
k2

((
1 −

√
1 − α1 − α2

k2

)
ψ̂

(1)
0 (−k)+ 2ψ̂ (2)

0

(
k

√
1 − α1 − α2

k2

))
.

At this point, we are ready to use asymptotic analysis. The large-time leading-order behaviour
of (2.1) with initial conditions which decay sufficiently fast at ±∞ is easily obtained using the
method of stationary phase [5]. Notice that the third integrand of (2.23) is decaying for x large
and positive. Thus, this integral does not contribute using the method of stationary phase. We
choose x/t = γ1 < 0 for x< 0 and x/t = γ2 > 0 for x> 0. We obtain
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FIGURE 9. The real (red dashed) and imaginary (blue solid) parts of the leading order behaviour as t → ∞
of ψ (1) along rays of x/t = −4 with ψ0(x) = e−x2

, α1 = 1 and α2 = 2.

ψ (1) ∼ e
i

(
γ 2

1
4 −α1

)
t− iπ

4

2
√
π t

⎛
⎜⎜⎜⎝ψ̂ (1)

0

(γ1

2

)
+

(
1−
√

1+ 4(α1−α2)
γ 2

1

)
ψ̂

(1)
0

(−γ1
2

)+2ψ̂ (2)
0

(
γ1
2

√
1+ 4(α1−α2)

γ 2
1

)

1 +
√

1+ 4(α1−α2)
γ 2

1

⎞
⎟⎟⎟⎠,

and

ψ (2) ∼e
i

(
γ 2

2
4 −α2

)
t− iπ

4

2
√
π t

⎛
⎜⎜⎜⎝ψ̂ (2)

0

(γ2

2

)
+

(
1−
√

1− 4(α1−α2)
γ 2

2

)
ψ̂

(1)
0

(−γ2
2

)+ 2ψ̂ (2)
0

(
γ2
2

√
1− 4(α1−α2)

γ 2
2

)

1 +
√

1− 4(α1−α2)
γ 2

2

⎞
⎟⎟⎟⎠.

The oscillations that are expected as a consequence of dispersion are contained in exp(it(γ 2
j /

4 − αj)). In Figures 9 and 10, the envelopes of the solutions are plotted in black as a dot-dashed
line. The real part of the solution (plotted as a solid line in blue) and the imaginary part of the
solution (plotted as a dashed line in red) are centred around the t-axis. Using the method of
stationary phase, one must look in directions of constant x/t. In Figure 9, we consider solutions
for x/t = −4 and in Figure 10, we have solutions with x/t = 2. In both figures, α1 = 1, α2 = 2
and ψ0(x) = e−x2

.
The method of stationary phase is not useful for considering the nature of solutions near the

barrier at x = 0, since requiring t to be large implies that x is large if x/t is to be constant. In
order to evaluate the solution formulae numerically near the interface, one could use techniques
presented in [22, 35, 36]. It may also be possible to use asymptotic techniques similar to those
in [6].

Notice that when α1 = α2 = 0, the problem reduces to the IVP for the LS equation on the
whole line. It is easily seen that the solutions (2.16a) and (2.16b) reduce to the solution of the
problem found using Fourier transforms split into the appropriate domains for the free particle
problem.
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FIGURE 10. The real (red dashed) and imaginary (blue solid) parts of the leading order behaviour as t → ∞
of ψ (2) along rays of x/t = 2 with ψ0(x) = e−x2

, α1 = 1 and α2 = 2.

3 n potential jumps

We wish to solve the classical problem

iψt = −ψxx + α(x)ψ , −∞< x<∞, (3.1a)

ψ(x, 0) =ψ0(x), −∞< x<∞, (3.1b)

with

α(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α1, x< x1,
α2, x1 < x< x2
...
αn, xn−1 < x< xn,
αn+1, x> xn,

and lim|x|→∞ ψ(x, t) = 0. Further, recall, ψ(x, t) and its first spatial derivative are both in L1. We
repeat the same steps as in the previous section, but now for an arbitrary number n of constant
levels of the potential α(x). As a consequence, the formulae obtained are significantly more
involved, but no less explicit. The experience gained from the previous section provides the
insight necessary to proceed with the general case presented here.

We treat the problem (3.1) as an interface problem solved by

ψ(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ (1)(x, t), x< x1,
ψ (2)(x, t), x1 < x< x2,
...
ψ (n)(x, t), xn−1 < x< xn,
ψ (n+1)(x, t), x> xn,

(3.2)

which solve the n + 1 IVPs

iψ ( j)
t = −ψ ( j)

xx + αjψ
( j), (3.3a)

ψ ( j)(x, 0) =ψ
( j)
0 (x), (3.3b)
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FIGURE 11. A cartoon of the potential α(x) in the case of n interfaces.

for xj−1 < x< xj, with x0 = −∞ and xn+1 = ∞, j = 1, . . . , n + 1. The solutions of the IVPs (3.3)
are coupled by the interface conditions

ψ ( j)(xj, t) =ψ (j+1)(xj, t), t> 0,

ψ ( j)
x (xj, t) =ψ (j+1)

x (xj, t), t> 0,

for 1 ≤ j ≤ n as in Figure 11.
We begin with the n + 1 local relations

(e−ikx+ωj tψ ( j))t = (e−ikx+ωj t(iψ ( j)
x − kψ ( j)))x, xj−1 < x< xj, (3.4)

where ωj(k) = i(αj + k2) for 1 ≤ j ≤ n + 1 and x0 = −∞ and xn+1 = ∞. Applying Green’s theo-
rem and integrating over the (possibly unbounded) strips (xj−1, xj) × (0, t) for 1 ≤ j ≤ n + 1, we
have the n + 1 global relations

∫ xj

xj−1

e−ikx+ωj tψ ( j)(x, t) dx =
∫ xj

xj−1

e−ikxψ
( j)
0 (x) dx +

∫ t

0
e−ikxj+ωjs(iψ ( j)

x (xj, s) − kψ ( j)(xj, s)) ds

−
∫ t

0
e−ikxj−1+ωjs(iψ ( j)

x (xj−1, s) − kψ ( j)(xj−1, s)) ds.

As before, we define the following for j = 1, . . . , n + 1:

ψ̂ ( j)(k, t) =
∫ xj

xj−1

e−ikxψ ( j)(x, t) dx, xj−1 < x< xj, t> 0,

ψ̂
( j)
0 (k) =

∫ xj

xj−1

e−ikxψ
( j)
0 (x) dx, xj−1 < x< xj,

g( j)
0 (ω, t) =

∫ t

0
eωsψ ( j)(xj, s) ds =

∫ t

0
eωsψ (j+1)(xj, s) ds, t> 0

g( j)
1 (ω, t) =

∫ t

0
eωsψ ( j)

x (xj, s) ds =
∫ t

0
eωsψ (j+1)

x (xj, s) ds, t> 0.

For convenience, we assume the interfaces are shifted such that x1 = 0 and xj > 0 for all j ≥ 2.
All but four of these integrals are proper integrals, and they are defined for k ∈C. The only ones
that are not valid in all of C are ψ̂ (1)(k, t), ψ̂ (1)

0 (k) (valid for Im(k) ≥ 0) and ψ̂ (n+1)(k, t), ψ̂ (n+1)
0 (k)

(valid for Im(k) ≤ 0).
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With these definitions, the global relations become

eω1tψ̂ (1)(k, t) = ψ̂
(1)
0 (k) + ig(1)

1 (ω1, t) − kg(1)
0 (ω1, t), Im(k) ≥ 0, (3.5a)

eωj tψ̂ ( j)(k, t) = ψ̂
( j)
0 (k) + e−ikxj (ig( j)

1 (ωj, t) − kg( j)
0 (ωj, t))

− e−ikxj−1 (ig(j−1)
1 (ωj, t) − kg(j−1)

0 (ωj, t)), k ∈C, (3.5b)

eωn+1tψ̂ (n+1)(k, t) =ψ̂ (n+1)
0 (k) − e−ikxn (ig(n)

1 (ωn+1, t) − kg(n)
0 (ωn+1, t)), Im(k) ≤ 0, (3.5c)

where 2 ≤ j ≤ n. As in the previous section, we transform the global relations so that g( j)
0 (·, t) and

g( j)
1 (·, t) depend on a common argument. Let

ν( j)(k) = ik

√
1 + αj

k2
, j = 1, . . . , n + 1.

Using the transformations k = ±ν( j)(κ), we have the transformed global relations

e−iκ2tψ̂ (1)(ν(1), t) = ψ̂
(1)
0 (ν(1)) + ig(1)

1 − ν(1)g(1)
0 , (3.6a)

e−iκ2tψ̂ (1)(−ν(1), t) = ψ̂
(1)
0 (−ν(1)) + ig(1)

1 + ν(1)g(1)
0 , (3.6b)

e−iκ2tψ̂ ( j)(ν( j), t) = ψ̂
( j)
0 (ν( j)) + e−iν( j)xj (ig( j)

1 − ν( j)g( j)
0 )

− e−iν( j)xj−1 (ig(j−1)
1 − ν( j)g(j−1)

0 ), (3.6c)

e−iκ2tψ̂ ( j)(−ν( j), t) = ψ̂
( j)
0 (−ν( j)) + eiν( j)xj (ig( j)

1 + ν( j)g( j)
0 )

− eiν( j)xj−1 (ig(j−1)
1 + ν( j)g(j−1)

0 ), (3.6d)

e−iκ2tψ̂ (n+1)(ν(n+1), t) = ψ̂
(n+1)
0 (ν(n+1)) − e−iν(n+1)xn(ig(n)

1 − ν(n+1)g(n)
0 ), (3.6e)

e−iκ2tψ̂ (n+1)(−ν(n+1), t) = ψ̂
(n+1)
0 (−ν(n+1)) − eiν(n+1)xn (ig(n)

1 + ν(n+1)g(n)
0 ), (3.6 f )

where 2 ≤ j ≤ n and g( j)
0 = g( j)

0 (−iκ2, t), g( j)
1 = g( j)

1 (−iκ2, t), ν( j) = ν( j)(κ), for 1 ≤ j ≤ n. In order
for (3.6) to be well defined, Re(κ) ≥ 0 for (3.6a) and (3.6f ). Similarly, Re(κ) ≤ 0 in (3.6b) and
(3.6e). Equations (3.6c) and (3.6d) are valid for all κ ∈C.

Inverting the Fourier transform in (3.5), we have the solution formulae

ψ (1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω1tψ̂

(1)
0 (k) dk

+ 1

2π

∫ ∞

−∞
eikx−ω1t

(
ig(1)

1 (ω1, t) − kg(1)
0 (ω1, t)

)
dk, (3.7a)

ψ ( j)(x, t) = 1

2π

∫ ∞

−∞
eikx−ωj tψ̂

( j)
0 (k) dk + 1

2π

∫ ∞

−∞
eik(x−xj)−ωj t

(
ig( j)

1 (ωj, t) − kg( j)
0 (ωj, t)

)
dk

− 1

2π

∫ ∞

−∞
eik(x−xj−1)−ωj t

(
ig(j−1)

1 (ωj, t) − kg(j−1)
0 (ωj, t)

)
dk, (3.7b)

ψ (n+1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ωn+1tψ̂

(n+1)
0 (k) dk

− 1

2π

∫ ∞

−∞
eik(x−xn)−ωn+1t

(
ig(n)

1 (ωn+1, t) − kg(n)
0 (ωn+1, t)

)
dk, (3.7c)
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for 2 ≤ j ≤ n, and xj−1 < x< xj. We deform these integrals into the complex plane. Using
Cauchy’s theorem and Jordan’s lemma, we have

ψ (1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω1tψ̂

(1)
0 (k) dk

− 1

2π

∫
∂D

(3)
R

eikx−ω1t
(

ig(1)
1 (ω1, t) − kg(1)

0 (ω1, t)
)

dk, (3.8a)

ψ ( j)(x, t) = 1

2π

∫ ∞

−∞
eikx−ωj tψ̂

( j)
0 (k) dk − 1

2π

∫
∂D

(3)
R

eik(x−xj)−ωj t
(

ig( j)
1 (ωj, t) − kg( j)

0 (ωj, t)
)

dk

− 1

2π

∫
∂D

(1)
R

eik(x−xj−1)−ωj t
(

ig(j−1)
1 (ωj, t) − kg(j−1)

0 (ωj, t)
)

dk, (3.8b)

ψ (n+1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ωn+1tψ̂

(n+1)
0 (k) dk

− 1

2π

∫
∂D

(1)
R

eik(x−xn)−ωn+1t
(

ig(n)
1 (ωn+1, t) − kg(n)

0 (ωn+1, t)
)

dk, (3.8c)

where D( j)
R is as in (2.13) and Figure 3. Again, we wish to transform the integrals involving

g( j)
0 (·, t) and g( j)

1 (·, t) in each of the solution formulae above so these terms depend on −iκ2. As
before, we deform to D(4)

R (with 	= maxj |αj|, R>
√

2	). Choosing k = ν( j)(κ) on ∂D(1)
R and

k = −ν( j)(κ) on ∂D(3)
R , we have

ψ (1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω1tψ̂

(1)
0 (k) dk

− 1

2π

∫
∂D

(4)
R

e−iν(1)(κ)x+iκ2t

(
iκ

ν(1)(κ)
g(1)

1 + κg(1)
0

)
dκ , (3.9a)

ψ ( j)(x, t) = 1

2π

∫ ∞

−∞
eikx−ωj tψ̂

( j)
0 (k) dk

− 1

2π

∫
∂D

(4)
R

e−iν( j)(κ)(x−xj)+iκ2t

(
iκ

ν( j)(κ)
g( j)

1 + κg( j)
0

)
dκ

+ 1

2π

∫
∂D

(4)
R

eiν( j)(κ)(x−xj−1)+iκ2t

(
iκ

ν( j)(κ)
g(j−1)

1 − κg(j−1)
0

)
dκ , (3.9b)

ψ (n+1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ωn+1tψ̂

(n+1)
0 (k) dk

+ 1

2π

∫
∂D

(4)
R

eiν(n+1)(κ)(x−xn)+iκ2t

(
iκ

ν(n+1)(κ)
g(n)

1 − κg(n)
0

)
dκ , (3.9c)

where g( j)
0 ≡ g( j)

0 (−iκ2, t) and g( j)
1 ≡ g( j)

1 (−iκ2, t).
Using the 2n transformed global relations valid in D(4)

R (3.6a), (3.6c), (3.6d) and (3.6f ), one
solves for g( j)

0 and g( j)
1 . This amounts to solving the 2n × 2n matrix problem

A(κ)X (−iκ2, t) = Y (κ) + e−iκ2tY(κ , t), (3.10)
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where

X (−iκ2, t) =
(

g(1)
0 , g(2)

0 , . . . , g(n)
0 , ig(1)

1 , ig(2)
1 , . . . , ig(n)

1

)�
, (3.11a)

Y (κ) = −
(
ψ̂

(1)
0 (ν(1)), . . . , ψ̂ (n)

0 (ν(n)), ψ̂ (2)
0 (−ν(2)), . . . , ψ̂ (n+1)

0 (−ν(n+1))
)�

, (3.11b)

Y(κ , t) =
(
ψ̂ (1)(ν(1), t), . . . , ψ̂ (n)(ν(n), t), ψ̂ (2)(−ν(2), t), . . . , ψ̂ (n+1)(−ν(n+1), t)

)�
, (3.11c)

and

A(κ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ν(1)e−iν(1)x1 e−iν(1)x1

ν(2)e−iν(2)x1 −ν(2)e−iν(2)x2 −e−iν(2)x1 e−iν(2)x2

. . .
. . .

. . .
. . .

ν(n)e−iν(n)xn−1 −ν(n)e−iν(n)xn −e−iν(n)xn−1 e−iν(n)xn

−ν(2)eiν(2)x1 ν(2)eiν(2)x2 −eiν(2)x1 eiν(2)x2

. . .
. . .

. . .
. . .

−ν(n)eiν(n)xn−1 ν(n)eiν(n)xn −eiν(n)xn−1 eiν(n)xn

−ν(n+1)eiν(n+1)xn −eiν(n+1)xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.11d)

where all ν( j) are evaluated at κ . The matrix A(κ) is made up of four n × n blocks as indicated by
the dashed lines. The two blocks in the upper half of A(κ) are zero except for entries on the main
and −1 diagonals. The lower two blocks of A(κ) are zero except on the main and +1 diagonals.

Every term in the linear equation A(κ)X (−iκ2, t) = Y (κ) is known. By substituting the solu-
tions of this equation into (3.9), we have solved the LS equation with a piecewise constant
potential in terms of only known functions. It remains to show that the contribution to the solution
from the linear equation A(κ)X (−iκ2, t) = e−iκ2tY(κ , t) is 0 when substituted into (3.9).

To this end, consider A(κ)X (−iκ2, t) = e−iκ2tY(κ , t). We solve this system using Cramer’s
rule. We factor A(κ) =AL(κ)AM (κ), where

AL(κ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−iν(1)x1

. . .

e−iν(n)xn

eiν(1)x1

. . .

eiν(n)xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.12)

Let Aj(κ , t) be the matrix A(κ) with the jth column replaced by e−iκ2tY(κ , t). Similar to

A(κ), this matrix can be factored as Aj(κ , t) = e−iκ2tAL(κ)AM
j (κ , t). Hence, det(Aj(κ , t)) =

e−iκ2t det(AM
j (κ , t)).
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The terms we are trying to eliminate contribute to the solution (3.9) in the form

∫
∂D

(4)
R

e−iν( j)(x−xj)+iκ2t

(
iκ

ν( j)
g( j)

1 + κg( j)
0

)
dκ (3.13a)

and ∫
∂D

(4)
R

eiν( j)(x−xj−1)+iκ2t

(
iκ

ν( j)
g(j−1)

1 − κg(j−1)
0

)
dκ , (3.11b)

for 1 ≤ j ≤ n, 2 ≤ j ≤ n + 1, respectively, with xj−1 < x< xj. Using Cramer’s rule, these become

∫
∂D

(4)
R

e−iν( j)(x−xj)

(
κ

ν( j)

det(AM
j+n(κ , t))

det(AM (κ))
+ κ

det(AM
j (κ))

det(AM (κ))

)
dκ (3.14a)

and

∫
∂D

(4)
R

eiν( j)(x−xj−1)

(
κ

ν( j)

det(AM
j−1+n(κ , t))

det(AM (κ))
− κ

det(AM
j−1(κ , t))

det(AM (κ))

)
dκ , (3.14b)

respectively. Here we have used the factorisations of det(A(κ)) and det(Aj(κ , t)). As is usual in
the UTM, we use the large κ asymptotics to show the terms (3.14) are 0.

Observe the elements of AM (κ) are either 0, O(κ) or decaying exponentially fast for κ ∈ D(4)
R

and all but n columns are O(1). Hence,

det(AM (κ)) = det(A(κ)) =�(κ) =O(κn),

for large κ in D(4)
R . Expanding the determinant of AM

j (κ , t) along the jth column, we see that

e−iν( j)(x−xj)κ
det(AM

j (κ , t))

det(AM (κ))
= e−iν( j)(x−xj)κ

det(AM
j (κ , t))

�(κ)

= e−iν( j)(x−xj)
n∑
�=1

c�(κ)eix�ν
(�)
ψ̂

(�) (
ν(�), t

)
+ c�+n(κ)e−ix�ν

(�)
ψ̂

(�+1) (−ν(�+1), t
)
,

where c�(κ) =O(κ0) and xj−1 < x< xj. In the large |κ| limit, ν( j)(κ) ∼ −iκ , so AM (κ) reduces

to the value of AM (κ) with α = 0. Note eix�ν
(�)
ψ̂ (�)

(
ν(�), t

)
and e−ix�ν

(�)
ψ̂ (�+1)

(−ν(�+1), t
)

decay

uniformly for κ in the closure of D(4)
R . The integrands in (3.14) are analytic for κ ∈ D(4)

R . The zeros
of det(AM (κ)) are confined to strips of asymptotically constant width that are parallel to either
the real or imaginary axis (depending on the sign of αj) [20, 21]. In the examples we consider,
by choosing a sufficiently large R one is able to choose a region D(4)

R where the integrands in
(3.14) are analytic. The analysis of the zeros of �(κ) in its full generality is difficult and is not
attempted here. Similar to the argument on page 14, since the integral along L(4)

C vanishes for
large C, the integrals (3.14) must vanish since the contour LD(4) becomes ∂D(4) as C → ∞. The
uniform decay of the ratios of the determinants for large κ is exactly the condition required for the
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integral to vanish using Jordan’s lemma. Hence, the solution to (3.1) is (3.9), where g( j)
0 (−iκ2, t)

and g( j)
1 (−iκ2, t) for 1 ≤ j ≤ n + 1 are found by solving

A(κ)X (−iκ2, t) = Y (κ), (3.15)

where A(κ), X (−iκ2, t) and Y (κ) are given in equations (3.11d), (3.11a) and (3.11b), respec-
tively. As in the previous section, deforming to the real line is possible using (2.18)–(2.21).
However, one must be careful to avoid any poles present in (3.9).

4 Potential well and barrier

As an example of the general method given in Section 3, in this section we solve the classical
problem of the finite potential well or barrier:

iψt = −ψxx + α(x)ψ , (4.1)

for −∞< x<∞ and

α(x) =
⎧⎨
⎩

0, x< x1,
α, x1 < x< x2,
0, x> x2,

with the initial condition ψ(x, 0) =ψ0(x) and lim|x|→∞ ψ(x, t) = 0 with ψ(x, t) and its spatial
derivative in L1.

The problem of a finite potential well or barrier is a standard textbook problem in quantum
mechanics [12, 19, 26]. In such texts, this problem is usually solved using separation of variables,
i.e. assuming ψ(x, t) = X (x)T(t). The x problem, X ′′ + (ξ 2 − α(x))X = 0, is solved in the three
different regions. Separation of variables is only useful if the initial wave function ψ(x, 0) can be
expanded in terms of solutions of the time-independent Schrödinger equation [26]. Solving the
time-independent Schrödinger equation is equivalent to studying the forward scattering problem
with the specified potential. The ‘scattering matrix’ (see [2, equation (1.3.3)] or [11, p. 104]) is(

a(ξ ) b(ξ )

b(ξ ) −a(ξ )

)
.

The zeros of a(ξ ) are the discrete eigenvalues for the problem. With some straightforward work,
we find

a(ξ ) = eiξx2

(
cosh

(
x2

√
α − ξ 2

)
− i(2ξ 2 − α)

2ξ
√
α − ξ 2

sinh
(

x2

√
α − ξ 2

))
. (4.2)

This problem is examined in many excellent texts including [2, 3, 10, 11].
The potential well or barrier problem is the standard example to introduce students to the

concept of quantum tunnelling which is a phenomenon where a particle ‘tunnels’ over a barrier
that it cannot overcome in the classical mechanics setting [28]. The closed form solutions we
present at the end of this section all depend on the initial conditions from each of the three
regions and quantum tunnelling is clearly present.

Finding the closed form solutions is as easy as letting n = 2, α1 = α3 = 0 and α2 = α in (3.9)
as in Figure 12. Again we denote g( j)

0 = g( j)
0 (−iκ2, t), g( j)

1 = g( j)
1 (−iκ2, t), for j = 1, 2 and ν( j) =

ν( j)(κ). Solving (3.15) in the case of n = 2, we have solutions for g(1)
0 , g(1)

1 , g(2)
0 , g(2)

1 valid in D(4)
R .
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FIGURE 12. A cartoon of the potential α(x) for a potential well or barrier.

Let

�(κ) = 2π
(

iκ
(

e−ix2ν
(2) + 1

)
+ ν(2)

(
e−ix2ν

(2) − 1
)) (

iκ
(

1 − eix2ν
(2)
)

+ ν(2)
(

1 + eix2ν
(2)
))

= 4iπ
(
(α + 2κ2) sin(x2ν

(2)) + 2κν(2) cos(x2ν
(2))
)
.

The solutions (3.9) with the appropriate values of g( j)
0 and g( j)

1 are

ψ (1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω1tψ̂

(1)
0 (k) dk +

∫
∂D

(4)
R

iα
(

e−ix2ν
(2) − eix2ν

(2)
)

�(κ)
eκx+iκ2tψ̂

(1)
0 (iκ) dκ

+
∫
∂D

(4)
R

2iκ(κ − iν(2))

�(κ)
eκx−ix2ν

(2)+iκ2tψ̂
(2)
0 (−ν(2)) dκ

+
∫
∂D

(4)
R

2iκ(κ + iν(2))

�(κ)
eκ(x2ix2ν

(2))+iκ2tψ̂
(2)
0 (ν(2)) dκ

−
∫
∂D

(4)
R

4κν(2)

�(κ)
eκ(x+x2)+iκ2tψ̂

(3)
0 (−iκ) dκ , (4.3)

for x< 0,

ψ (2)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω2tψ̂

(2)
0 (k) dk +

∫
∂D

(4)
R

2iκ(κ + iν(2))

�(κ)
eiν(2)(x2−x)+iκ2tψ̂

(1)
0 (iκ) dκ

−
∫
∂D

(4)
R

κ(κ + iν(2))2

ν(2)�(κ)
eiν(2)(x2−x)+iκ2tψ̂

(2)
0 (−ν(2)) dκ

+
∫
∂D

(4)
R

ακ

ν(2)�(κ)
eiν(2)(x2−x)+iκ2tψ̂

(2)
0 (ν(2)) dκ

−
∫
∂D

(4)
R

2iκ(κ − iν(2))

�(κ)
e−iν(2)x+κx2+iκ2tψ̂

(3)
0 (−iκ) dκ

−
∫
∂D

(4)
R

2iκ(κ − iν(2))

�(κ)
eiν(2)(x−x2)+iκ2tψ̂

(1)
0 (iκ) dκ

+
∫
∂D

(4)
R

ακ

ν(2)�(κ)
eiν(2)(x−x2)+iκ2tψ̂

(2)
0 (−ν(2)) dκ

+
∫
∂D

(4)
R

κ(κ + iν(2))2

ν(2)�(κ)
eiν(2)(x2+x)+iκ2tψ̂

(2)
0 (ν(2)(κ)) dκ

+
∫
∂D

(4)
R

2iκ(κ + iν(2))

�(κ)
eiν(2)x+κx2+iκ2tψ̂

(3)
0 (−iκ) dκ , (4.4)
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for 0< x< x2, and

ψ (3)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω3tψ̂

(3)
0 (k) dk −

∫
∂D

(4)
R

4κν(2)

�(κ)
eκ(x2−x)+iκ2tψ̂

(1)
0 (iκ) dκ

+
∫
∂D

(4)
R

2κ(κ + iν(2))

�(κ)
eκ(x2−x)+iκ2tψ̂

(2)
0 (−ν(2)) dκ

−
∫
∂D

(4)
R

2iκ(κ − iν(2))

�(κ)
eκ(x2−x)+iκ2tψ̂

(2)
0 (ν(2)(κ)) dκ

+
∫
∂D

(4)
R

iα
(

1 − e2iν(2)x2

)
�(κ)

eκ(x2−x)+iκ2tψ̂
(3)
0 (−iκ) dκ , (4.5)

when x> x2.
Using the change of variables κ = ik in (4.3), κ = −ik in (4.5), κ = ik

√
1 + α

k2 in the second,

third, fourth and fifth integrals of (4.4) and κ = −ik
√

1 + α

k2 in the last four integrals of (4.4), we

find

ψ (1)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω1tψ̂

(1)
0 (k) dk

+
∫
∂D

(3)
R

α

(
e
−ikx2

√
1− α

k2 − e
ikx2

√
1− α

k2

)
�(ik)

eikx−ω1tψ̂
(1)
0 (−k) dk

−
∫
∂D

(3)
R

2k2
(

1 +
√

1 − α

k2

)
�(ik)

e
ik

(
x+x2

√
1− α

k2

)
−ω1t

ψ̂
(2)
0

(
k

√
1 − α

k2

)
dk

+
∫
∂D

(3)
R

2k2
(

1 −
√

1 − α

k2

)
�(ik)

e
ik

(
x−x2

√
1− α

k2

)
−ω1t

ψ̂
(2)
0

(
−k

√
1 − α

k2

)
dk

−
∫
∂D

(3)
R

4k2
√

1 − α

k2

�(ik)
eik(x+x2)−ω1tψ̂

(3)
0 (k) dk, (4.6)

for x< 0,

ψ (2)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω2tψ̂

(2)
0 (k) dk

−
∫
∂D

(3)
R

2k2
(

1 −
√

1 + α

k2

)
�
(

ik
√

1 + α

k2

) eik(x−x2)−ω2tψ̂
(1)
0

(
−k

√
1 − α

k2

)
dk

+
∫
∂D

(3)
R

k2
(√

1 + α

k2 − 1
)2

�
(

ik
√

1 + α

k2

) eik(x−x2)−ω2tψ̂
(2)
0 (k) dk

+
∫
∂D

(3)
R

α

�
(

ik
√

1 + α

k2

)eik(x−x2)−ω2tψ̂
(2)
0 (−k) dk
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−
∫
∂D

(3)
R

2k2
(

1 +
√

1 + α

k2

)
�
(

ik
√

1 + α

k2

) e
ik

(
x+x2

√
1+ α

k2

)
−ω2t

ψ̂
(3)
0

(
k

√
1 − α

k2

)
dk

+
∫
∂D

(1)
R

2k2
(

1 +
√

1 + α

k2

)
�
(
−ik

√
1 + α

k2

) eik(x−x2)−ω2tψ̂
(1)
0

(
k

√
1 − α

k2

)
dk

+
∫
∂D

(1)
R

k2
(√

1 + α

k2 − 1
)2

�
(
−ik

√
1 + α

k2

) eik(x+x2)−ω2tψ̂
(2)
0 (k) dk

−
∫
∂D

(1)
R

α

�
(
−ik

√
1 + α

k2

)eik(x−x2)−ω2tψ̂
(2)
0 (−k) dk

+
∫
∂D

(1)
R

2k2
(

1 −
√

1 + α

k2

)
�
(
−ik

√
1 + α

k2

) e
ik

(
x−x2

√
1+ α

k2

)
−ω2t

ψ̂
(3)
0

(
−k

√
1 − α

k2

)
dk, (4.7)

for 0< x< x2 and

ψ (3)(x, t) = 1

2π

∫ ∞

−∞
eikx−ω3tψ̂

(3)
0 (k) dk

+
∫
∂D

(1)
R

4k2
√

1 − α

k2

�(−ik)
eik(x−x2)−ω3tψ̂

(1)
0 (k) dk

+
∫
∂D

(1)
R

2k2
(

1 +
√

1 − α

k2

)
�(−ik)

eik(x−x2)−ω3tψ̂
(2)
0

(
k

√
1 − α

k2

)
dk

−
∫
∂D

(1)
R

2k2
(

1 −
√

1 − α

k2

)
�(−ik)

eik(x−x2)−ω3tψ̂
(2)
0

(
−k

√
1 − α

k2

)
dk

+
∫
∂D

(1)
R

α

(
e
−ikx2

√
1− α

k2 − e
ikx2

√
1− α

k2

)
�(−ik)

eik(x−2x2)−ω3tψ̂
(3)
0 (−k) dk, (4.8)

when x> x2.

Remarks

• If one lets α= 0 in (4.6)–(4.8), then the Fourier transform solution to the free Schrödinger
equation on the whole line is recovered.

• In order to numerically or asymptotically evaluate these expressions, one could use techniques
presented in [6, 22, 35, 36].

• As stated at the beginning of this section, (4.1) is solved in standard quantum mechanics
texts using separation of variables and the study of the forward scattering problem with the
specified potential. The zeros of a(ξ ), the (1, 1) component of the scattering matrix, are the
discrete eigenvalues for the problem. The zeros of a(ξ ) cannot be found explicitly but it is
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clear that the zeros of a(ξ ) for ξ purely imaginary correspond to the zeros of the denominators
of (4.6)–(4.8) with iξ 2 =ωj(k). The contribution of the discrete spectrum can be recovered
explicitly by deforming contours in the complex plane to the real line, resulting in a sum of
residue contributions corresponding to the eigenmodes of the problem. This is done explicitly
for other problems solved via the UTM in [14].

• As is typical in using the UTM, we find the solution under the assumption of existence. Often,
to justify existence, one checks that the solution formula obtained actually satisfies the original
problem a posteriori. This is not attempted in this paper.

5 Initial-to-interface map

The construction of a Dirichlet-to-Neumann map, i.e. determining the boundary values that are
not prescribed in terms of the initial and boundary conditions, is important in the study of PDEs
and particularly in inverse problems [13, 34]. In this section, we construct a similar map between
the initial values of the PDE and the function (and its first spatial derivative) evaluated at the
interfaces. This map allows for an alternative to the approach of finding solutions to interface
problems as presented in the first four sections of this paper. Given the initial conditions, one
could find the value of the function and its derivatives at the interface(s). This changes the prob-
lem at hand from an interface problem to a (consistently) overspecified BVP. At this point, the
BVP can be solved on any segment using any number of methods appropriate to the given prob-
lem. In this section, we construct the initial-to-interface map for the IVP (3.1). We begin by
evaluating the 2n × 2n linear equation (3.10) at t = T :

A(κ)X (−iκ2, T) = Y (κ) + e−iκ2TY(κ , T), (5.1)

where A(κ), X (−iκ2, T), Y (κ) and Y(κ , T) are given in (3.11). Using Cramer’s rule to solve this
system, we have

g( j)
0 (−iκ2, T) =det(Aj(κ , T))

det(A(κ))
, (5.2a)

g( j)
1 (−iκ2, T) = − i

det(Aj+n(κ , T))

det(A(κ))
, (5.2b)

where 1 ≤ j ≤ n and Aj(κ , T) is the matrix A(κ) with the jth column replaced by Y (κ) +
e−iκ2TY(κ , T). This does not give an effective initial-to-interface map because (5.2) depends
on the solutions ψ̂ ( j)(·, T). To eliminate this dependence, we multiply (5.2) by κeiκ2t and inte-
grate around D(4)

R , as is typical in the construction of Dirichlet-to-Neumann maps [14]. Switching
the order of integration, we have

∫ T

0
ψ ( j)(xj, s)

∫
∂D

(4)
R

κeiκ2(t−s) dκ ds =
∫
∂D

(4)
R

eiκ2t κ det(Aj(κ , T))

det(A(κ))
dκ , (5.3a)

∫ T

0
ψ ( j)

x (xj, s)
∫
∂D

(4)
R

κeiκ2(t−s) dκ ds = − i

∫
∂D

(4)
R

eiκ2t κ det(Aj+n(κ , T))

det(A(κ))
dκ. (5.3b)
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Using the change of variables �= κ2 and the classical Fourier transform formula for the delta
function, we find

ψ ( j)(xj, t) = 1

π

∫
∂D

(4)
R

eiκ2t κ det(Aj(κ , T))

det(A(κ))
dκ , (5.4a)

ψ ( j)
x (xj, t) = −i

π

∫
∂D

(4)
R

eiκ2t κ det(Aj+n(κ , T))

det(A(κ))
dκ. (5.4b)

To examine the right-hand side of (5.4), we factor the matrix A(κ) as AL(κ)AM (κ), where
AL(κ) is given by (3.12). Similarly, Aj(κ , T) = e−iκ2TAL(κ)AM

j (κ , T). Using these factorisations,
(5.4) becomes

ψ ( j)(xj, t) = 1

π

∫
∂D

(4)
R

eiκ2(t−T)
κ det(AM

j (κ , T))

det(AM (κ))
dκ , (5.5a)

ψ ( j)
x (xj, t) = −i

π

∫
∂D

(4)
R

eiκ2(t−T)
κ det(AM

j+n(κ , T))

det(AM (κ))
dκ . (5.5b)

As in Section 3, the elements of AM (κ) are either 0, O(κ) or decaying exponentially fast for
κ ∈ D(4)

R and

det(AM (κ)) =�(κ) =O(κn),

for large κ in D(4)
R . Expanding the determinant of AM

j (κ , T) along the jth column, we see that

eiκ2(t−T)
κ det(AM

j (κ , T))

det(AM (κ))
= eiκ2(t−T) κ

c(κ)
det(AM

j (κ , T))

= eiκ2(t−T)
n∑
�=1

c�(κ)eix�ν
(�)
ψ̂ (�)

(
ν(�), T

)
+ c�+n(κ)e−ix�ν

(�)
ψ̂ (�+1)

(−ν(�+1), T
)
,

where c�(κ) =O(κ0) and xj−1 < x< xj. The terms eix�ν
(�)
ψ̂ (�)

(
ν(�), T

)
and e−ix�ν

(�)
ψ̂ (�+1)(−ν(�+1), T

)
decay exponentially for k ∈ D(4)

R and the integrands of (5.5) are analytic for

Re(κ)> 0. As in previous sections, since the integral along L(4)
C vanishes for large C, the integrals

(5.5) must vanish since the contour LD(4) becomes ∂D(4) as C → ∞.
Since the terms involving the elements of Y(κ , T) evaluate to zero in the solution expression,

the initial-to-interface map for (3.1) is

ψ ( j)(xj, t) = 1

π

∫
∂D

(4)
R

eiκ2t
κ det(AM

j (κ))

det(AM (κ))
dκ , (5.6a)

ψ ( j)
x (xj, t) =−i

π

∫
∂D

(4)
R

eiκ2t
κ det(AM

j+n(κ))

det(AM (κ))
dκ , (5.6b)

where Aj(κ) is the matrix A(κ) with the jth column replaced by Y (κ) and is factored as Aj(κ) =
AL(κ)AM

j (κ). Equation (5.6) is an effective map between the values of the function at the interface
and the given initial conditions.
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Remark Since the problem is linear, one could have assumed the initial condition was zero for
x outside the region x�−1 < x< x�. Then, the map would be in terms of just ψ (�)

0 (·). Summing over
1 ≤ �≤ n + 1 would give the complete map for a general initial condition.

6 Conclusion

In this paper, we find explicit, closed-form solutions to the time-dependent LS equation with a
piecewise constant potential. Further, we construct an initial-to-interface map which allows one
to change the problem from an interface problem to a BVP. This is a classical problem with
important applications.
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